新闻阅读

A numerical simulation of sea breeze thunderstorm structure over the Hainan Island

作者:重点实验室  发布时间:2016/01/31 15:47:51  浏览量:

Article

A numerical simulation of sea breeze thunderstorm structure over the Hainan Island

Chinese Journal of Geophysics

SU Tao,JF Miao,QB Cai

Abstract

The land-sea breeze system is a wind pattern that is observed in coastal regions. It is generated by the differences in the heat budgets of the land and sea surfaces. The role of the sea breeze circulation, including the sea breeze front, in triggering thunderstorm has long been recognized. The afternoon thunderstorms triggered by sea breeze can affect the basic characteristics of the sea breeze and its change. In this paper, the thunderstorm caused by sea breeze is called sea breeze thunderstorm. Surrounded by the sea, Hainan Island has strong sea breeze and rich water vapor under the influence of tropical ocean. It has a high incidence of sea breeze thunderstorm, which is triggered by interaction of local circulations such as land-sea breeze and mountain-valley breeze. The WRF-ARW model (Version 3.6) coupled with the Noah land surface is used to simulate the sea breeze thunderstorm over the Hainan Island during July 20, 2012.The characteristics of thunderstorm over complex terrain are analyzed with radar, satellite, sounding and surface observations data. The structure and evolution of thunderstorm as well as its trigger mechanism are also discussed. This paper is intended to represent the mechanism of sea breeze thunderstorm and improve the forecasting performance. As a typical sea breeze thunderstorm day, there was a significant wind shift around the island. The low-level sea breeze and land cover caused a unique water vapor distribution, which provided the conditions for local thunderstorm to produce precipitation. The convective instability layer emerged in the southern part of the island, which was conducive to the formation and development of the convective activity. While the cold air in the north of island broke the unstable layer, the convection occurrence became more difficult in this region. After the sea breeze formed along the coast, it penetrated inland and developed gradually. Because of the topography forcing, northern and southern sea breezes met in the vicinity of Boating station. As a result, a significant sea breeze convergence zone has formed, affecting local divergence and characteristics of vortex. Under the favorable dynamical condition, the local thunderstorm weather occurred. When sea breeze thunderstorm over Hainan is discussed, we should not only concern with the development of the sea breeze front, but also need to analyze the local distribution of convective inhibition. The evolution of local energy and convective parameters can indicate the arise of sea breeze thunderstorm in temporal and spatial scales. The large convective available potential energy (CAPE) and small convective inhibition (CIN) have provided favorable conditions for the development of thunderstorm before it occurred. As the occurrence of thunderstorm, the instability energy was released. The CAPE decayed rapidly and the CIN began to rise. It was a symbol that thunderstorm system has entered into the decline stage. This study indicated that the characteristics of the sea breeze and thunderstorm can be reasonably simulated by WRF model. Under the influence of the tropical ocean, the water vapor, convective potential energy and the level of free convection keep long-lasting development state which is favorable for the convection. The convection would develop autonomously when the uplift produced by sea breeze convergence overcome the convective inhibition and reach free convection level, so the sea breeze convergence can often trigger thunderstorm in Hainan. The sea breeze thunderstorm is closely related to the local terrain, which affects the spatial and temporal distributions of low-level wind and convection convergence zone. This study is conducive to understand sea breeze thunderstorm over Hainan Island and the key factor to forecast it, but we still need further studies of more cases to support the relevant conclusion.

http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201601006.htm

上一条:A PV-gradient related quantity in moist atmosphere and its application in the diagnosis of heavy precipitation

下一条:Contribution of Atmospheric Internal Processes to Interannual Variability of South Asian Summer Monsoon

关闭

© 2019  气象灾害教育部重点实验室   版权所有 NUIST备80040
地址:江苏省南京市宁六路219号 气象灾害教育部重点实验室 邮编:210044