新闻阅读

Development and Evaluation of an Ensemble-Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions

作者:重点实验室  发布时间:2019/12/03 16:06:45  浏览量:

Article

Development and Evaluation of an Ensemble-Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions

JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS

He Jie,Zhang Fuqing,Chen Xingchao,Bao Xinghua,Chen Deliang,Kim Hyun Mee,Lai Hui-Wen,Leung L. Ruby,Ma Xulin,Meng Zhiyong

Abstract

The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of several major rivers that impact more 20% the world population. This high-altitude region is reported to have been undergoing much greater rate of weather changes under global warming, but the existing reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation system based on the limited-area Weather Research and Forecasting (WRF) model was evaluated for use in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3-month prototype reanalysis over the summer months (June-August) of 2015 using WRF-EnKF at a 30-km grid spacing to assimilate nonradiance observations from the Global Telecommunications System was developed and evaluated against independent sounding and satellite observations in comparison to the ERA-Interim and fifth European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) global reanalysis. Results showed that both the posterior analysis and the subsequent 6- to 12-hr WRF forecasts of the prototype regional reanalysis compared favorably with independent sounding observations, satellite-based precipitation versus those from ERA-Interim and ERA5 during the same period. In particular, the prototype regional reanalysis had clear advantages over the global reanalyses of ERA-Interim and ERAS in the analysis accuracy of atmospheric humidity, as well as in the subsequent downscale-simulated precipitation intensity, spatial distribution, diurnal evolution, and extreme occurrence.

DOI: 10.1029/2019MS001665

上一条:Northwestwards shift of tropical cyclone genesis position during autumn over the western North Pacific after the late 1990s

下一条:Robust Solar Signature in Late Winter Precipitation Over Southern China

关闭

© 2019  气象灾害教育部重点实验室   版权所有 NUIST备80040
地址:江苏省南京市宁六路219号 气象灾害教育部重点实验室 邮编:210044