田越, 苗峻峰, 赵天良. 2020. 污染天气下成都东部山地一平原风环流结构的数值模拟 [J]. 大气科学, 44(1): 53-75. TIAN Yue, MIAO Junfeng, ZHAO Tianliang. 2020. A Numerical Simulation of Mountain-Plain Breeze Circulation during a Heavy Pollution Event in Eastern Chengdu [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(1): 53-75. doi:10.3878/j.issn.1006-9895.1812.18209

污染天气下成都东部山地—平原风环流结构的 数值模拟

田越1 苗峻峰1 赵天良2

1 南京信息工程大学气象灾害教育部重点实验室,南京2100442 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室,南京210044

摘 要本文利用中尺度模式WRF(V3.9)对2016年12月7日成都东部(龙泉山)一次污染过程下的山地一 平原风环流进行了模拟,旨在探讨冬季污染天气下山地一平原风环流的结构和演变特征。此外,通过减少气溶 胶光学厚度(AOD, Aerosol Optical Depth)的敏感性试验探究气溶胶污染对山地一平原风环流的影响。结果表 明:冬季污染大气条件下成都平原地区存在显著逆温。龙泉山南北长、东西窄且高度较低,由于东、西坡辐射 能量的不均匀分布和背景风的强迫,上午、凌晨和夜间均出现越山下坡风环流,上午强度较强,凌晨和夜间强 度较弱。午后开始出现平原风环流,最大影响范围为山体宽度的3~4倍,17:00(当地标准时,下同)左右结 束。各阶段环流在南北方向上差异较大,越山下坡风环流在南段最强,中段最弱;中、南段山体较低窄,平原 风环流易被湍流掩盖,北段平原风环流最为明显。AOD减小后辐射及地表热通量均有所增加,中、南段湍流 更加旺盛,边界层显著抬升且降低时间滞后,山体与平原间感热通量差异增加,北段平原风环流增强、持续时 间增长。

关键词 大气污染 山谷风 山地一平原风环流 复杂地形
 文章编号 1006-9895(2020)01-0053-23 中图分类号 P445 文献标识码 A
 doi:10.3878/j.issn.1006-9895.1812.18209

A Numerical Simulation of Mountain–Plain Breeze Circulation during a Heavy Pollution Event in Eastern Chengdu

TIAN Yue¹, MIAO Junfeng¹, and ZHAO Tianliang²

1 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044

2 Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044

Abstract In this paper, WRF (V3.9) is used to simulate the mountain-plain breeze circulation in eastern Chengdu (Longquan mountain) during a heavy pollution event on 7 December, 2016. The structure and evolution of the mountain-plain breeze circulation are discussed. Besides, the influence of the Aerosol Optical Depth (AOD) on the mountain-plain

收稿日期 2018-07-31; 网络预出版日期 2019-01-15

作者简介 田越, 女, 1994年出生, 硕士研究生, 主要研究方向为中尺度气象学。E-mail: tianyue0704@163.com

通讯作者 苗峻峰, E-mail: miaoj@nuist.edu.cn

资助项目 国家重点研发计划重点专项项目2016YFC0203304,国家自然科学基金重大研究计划项目91544109

Funded by National Key Research and Development Program of China (Grant 2016YFC0203304), National Natural Science Foundation of China (Grant 91544109)

	大	气	科	学		
Chinese Journal of Atmospheric Sciences						

breeze circulation is examined by conducting a sensitivity experiment in which the AOD value is reduced. The Longquan mountain is fairly long from north to south and relatively narrow from east to west with low elevation. Results show that strong ground inversion existed in the winter during the heavy pollution event. Cross-mountain downslope wind circulation occurred in the night and late morning due to the imbalance of radiative heating between western and eastern slope and the dynamic forcing of background wind. The plain breeze began after the noon and ended at around 1700 LST. The maximum horizontal stretch of the plain breeze circulation could reach 3 to 4 times of the mountain width. Cross-mountain downslope wind circulation and mountain–plain breeze circulation varied greatly in the north–south direction. The former was stronger in the southern part of the mountain whereas the latter in the central and southern part was easily covered by vigorous turbulence. In the northern part, on the contrary, there existed significant plain breeze circulation. After reducing the AOD in the sensitivity experiment, the solar radiative heating and planetary boundary layer height both increased to a certain extent. Plain breeze circulation in the central and southern part became more ambiguous due to amplified turbulences. In the northern part, plain breeze circulation and lasted longer due to the elevated planetary boundary layer and the strengthened difference in sensible heat flux between the mountain and plain areas.

Keywords Atmospheric pollution, Mountain-valley breeze, Mountain-plain breeze circulation, Complex terrain

1 引言

山地一平原风是由山地与平原之间的热力差异 引起的夜间由山地吹向平原、白天由平原吹向山地 的风(Weissmann et al., 2005; 王喜全等, 2008), 其形成机理、特征与山谷风相同(田越和苗峻峰, 2019),但尺度相对较大,且影响范围也较广。如 北京地区受其西、北方向的太行山、燕山影响,在 晴或少云、弱天气系统条件下,山地一平原风常对 北京局地流场及其污染分布情况起到主导作用(王 喜全等, 2008)。美国科罗拉多州落基山脉的前岭 和东部的大平原之间的山地一平原风,将大平原产 生的污染带到山区边界层中(Letcher and Minder, 2018)。过去国内山谷风(山地一平原风)研究主 要集中在靠近山地的城市如北京,山谷城市兰州、 乌鲁木齐,以及关中平原、珠峰绒布河谷等地,主 要关注局地山谷风环流对污染物输送的情况(董群 等,2017; 马学款等,2017)。研究表明,平原地 区,污染物主要通过边界层内的湍流运动、平流输 送扩散;而在山谷地形中,边界层内气象场变化更 为复杂,特殊的气象条件和地理条件对挟带着污染 物的气流产生热力和动力作用,往往导致局地的严 重污染(胡隐樵和张强, 1999)。

污染大气条件也能够造成局地气象要素的改 变。过去研究表明,气溶胶通过吸收和散射太阳辐 射,影响地表辐射和能量平衡,即气溶胶直接辐射 效应(苏涛等,2017; 王昕然等,2018),这对边 界层之内的气象要素具有显著影响。太阳辐射的减

少使边界层高度降低,层结更加稳定,地面风速减 小,进一步抑制气溶胶的扩散(Gao et al., 2015; Yang X et al., 2016; Li et al., 2017); 上升运动的 减弱也减少了降水对气溶胶的清除作用(Zhao et al., 2006), 使气溶胶浓度进一步升高。同时, Liu et al. (2018) 发现边界层的降低也抑制了水汽 的向上输送, 使近地面相对湿度增加(Gao et al., 2015),促进二次气溶胶的生成,进一步削弱了到 达地面的太阳辐射。Wang et al. (2014) 通过 WRF-CMAQ耦合模式统计了华北平原一次大规模 长时间污染过程中气溶胶对太阳辐射、边界层高 度、气温等气象要素的影响。Yang Y et al. (2016) 通过WRF-Chem模式研究了气溶胶对降水的抑制 作用在华山地区的表现:吸收性气溶胶使地面加热 减少,山体与平原之间的热力差异减小,谷风减 弱,水汽向山顶的输送量减少;高层空气加热增 加,更易发生逆温。近年来,自然环境的恶化和人 类活动导致气溶胶浓度增加(郑小波等,2012; Ning et al., 2018), 气溶胶污染所带来的环境问 题、局地边界层和气候特征变化已成为热门研究之 - (Zhao et al., 2013).

龙泉山(29.6°~31.4°N,103.6°~104.7°E)地 处四川盆地西部,沿东北一西南向伸展,北起绵阳 市,途经德阳市、金堂县、龙泉驿区、仁寿县等, 南达乐山市,长约200 km(成都市内约85 km), 宽约10 km,平均高度不到1000 m,最高处海拔 1051 m,是成都平原及川中丘陵地带的自然分界 线。Ning et al.(2018)对四川盆地区域的空气污

染分布特征进行统计后发现,颗粒污染物更易在盆 地底部城市堆积。成都地区受两侧地形(西侧青藏 高原、龙门山, 东侧龙泉山) 影响, 长时间出现静 小风或逆温天气(周书华等, 2014, 2015), 尤其 是冬季典型的辐射逆温,具有维持时间长、强度大 且厚的特点,有时甚至存在多层逆温(李培荣和向 卫国, 2018; 邵梦琪等, 2018), 更加导致污染物 难以及时扩散和稀释。近年来,成都地区风速有持 续减小的趋势,一方面由于成都独特的地理环境和 气象要素,另一方面又因为城市化的发展,使城市 的通风条件变差(Liu et al., 2016)。龙泉驿区作 为"国家中心城市副中心",经济发展迅速,但这 也使龙泉驿区局地乃至整个成都面临污染问题的挑 战。因此,本文研究了一次污染大气条件下成都东 部地区(龙泉山)局地山地一平原风环流结构和演 变情况,旨在为理解成都东部的污染成因和城市的 建设规划提供一定参考。

2 个例选取

本文选取2016年12月7日污染大气条件下的 山地一平原风环流个例进行模拟。12月7日为长时 间污染过程中污染物逐渐累积的一天,长时间污染 过程从2016年12月1日开始,共持续11天。12月 7日午前为中度污染,午后转为重度污染(图1), 首要污染物为PM₂₅细颗粒物。持续污染过程一般 发生在天气形势稳定且背景风场较弱的条件下(张

碧辉等, 2012; 郭倩等, 2018), 这种天气形势也 有利于局地山地一平原风环流的发展。从12月7日 的环流形势来看,500 hPa东亚地区主要受弱两槽 一脊系统的控制,不利于北方冷空气南下,这种背 景形势下更易导致四川地区长时间污染过程的发生 (冯良敏等, 2014; 曾胜兰和王雅芳, 2016); 四川 地区无明显南支槽脊波动,主要受平直西北风气流 控制(图略)。850 hPa(图2a)受青藏高原动力和 热力作用的影响,等高线较为凌乱,总体处于均压 系统中,我国中西部等高线稀疏,没有明显系统; 海平面气压场中(图2b),四川地区处于地面高压 前部,受偏北风控制;整体来看,各层无明显天气 系统,有利于污染物的累积。从温江站的探空资料 来看,500 hPa以下大气处于稳定状态,整层没有 显著切变。08:00(当地标准时,下同)、20:00近 地面层始终存在逆温,且低层风速较小,20:00在 850 hPa以下风速小于3 m s⁻¹。地面观测资料显示, 整个污染过程中成都天气以晴和多云为主, 无降 水: 12月7日为少云, 全天各站点风速均小于等于 3 m s⁻¹。总体来看, 12月7号天气稳定, 无明显天 气过程,低层尤其是850 hPa以下风速小且静稳, 满足山地一平原风环流发展条件。

3 模式设置与数值试验

本文采用WRF(V3.9)进行山地一平原风环 流的模拟。模式的初始和边界条件由NCEPFNL再

图 1 2016年12月6~8日成都市空气质量指数(Air Quality Index,简称 AQI, 101~150为轻度污染, 151~200为中度污染, 201~300为 重度污染)

Fig. 1 Evolution of Air Quality Index (AQI) in Chengdu from 6 to 8 December, 2016 (101–150: light pollution; 151–200: moderate pollution; 201– 300: heavy pollution)

图2 2016年12月7日20:00(当地标准时,下同)的(a) 850 hPa位势高度场(单位: dagpm)和(b)海平面气压场(单位: hPa) Fig. 2 (a) 850-hPa geopotential height field (units: dagpm) and (b) sea surface pressure field (units: hPa) at 2000 LST on 7 December, 2016

分析资料生成,水平分辨率为1°×1°,时间分辨率 为6小时。起始时间为2016年12月6日08:00,积 分42小时,前16小时为起转(spin up)时间,之 后24小时为主要研究时段。模式的中心点位于成 都境内的龙泉山上(30.57°N, 104.36°E)。为减 小侧边界的影响并节约计算量,采用双向反馈四重 嵌套方案,分辨率由外至内依次为27 km、9 km、 3 km、1 km (图 3a), D1 覆盖中国西南部地区, 用 于捕捉天气尺度背景过程,D4区域包含了成都市 内的龙泉山脉,也包含了新都(XD)、金堂(JT)、 龙泉(LQ)、简阳(JY)、温江(WJ)、新津(XJ) 六个地面观测站点(图3b)。山地地区由于受坡 度、坡向、地形遮蔽等影响,地表入射太阳辐射的 描述更为复杂,为了更加接近真实情况下的辐射分 布,D4区域考虑了地形辐射效应参数化方案(韩 芙蓉等, 2018)。采用 TOPO GMTED2010 30s 地 形资料以及 MODIS 30s 土地利用类型数据(图 3c),农田和城市为D4区域主要土地利用类型。垂 直方向σ层层数为35层,下密上疏,其中2km以 下设为24层,模式层顶气压为100hPa。物理过程 参数化方案如表1所示。选用的参数化方案中, YSU边界层参数化方案能够较好地适用于山地地 形的局地风场和边界层内要素特征的模拟(Prasad et al., 2017; 陆正奇等, 2018; 杨秋彦等, 2019)。 RRTMG长短波辐射方案含有气溶胶光学厚度的辐 射效应参数化,可通过调整参数实现对模拟区域的 气溶胶污染程度的控制(苏涛等,2017; 王昕然 等,2018)。

表1 控制和敏感性试验的参数化方案配置 Table 1 Configuration of physical parameterizations in

both the control and sensitivity experiments

物理过程	参数化方案	
长波辐射	RRTMG	
短波辐射	RRTMG	
微物理	Lin et al.	
积云对流(仅D1)	Kain-Fritsch	
边界层	YSU	
陆面过程	Noah + UCM	

本文共设计两个试验。控制试验结果用于检验 模式性能,并重点分析龙泉山污染天气下山地一平 原风环流的结构及演变。根据郑小波等(2012)对 近十年来中国地区气溶胶光学厚度 (AOD, Aerosol Optical Depth)的地理分布和月、季、年 际变化的统计分析,以及Liu et al. (2016)对四 川盆地,特别是成都地区近十年来的AOD时空变 化的统计分析,冬季四川盆地AOD平均值为0.9 ~1.2。从当日 MODIS (TERRA) 10 km 空间分辨 率的 AOD 资料来看(图略),成都及周边地区 AOD 值为1.0 左右。因此,将本次冬季污染个例 的辐射方案中AOD参数设为1.0(控制试验,称 为AOD 1.0试验)。敏感性试验通过半理想试验 的方式,主要研究减小AOD对环流结构和演变的 影响。根据郑小波等(2012)的统计,成都周边 如川西高原、云贵高原地区冬季AOD平均值为

图3 (a)四重嵌套模式区域,阴影为地形高度(单位:m);(b) D4区域模拟地形高度(阴影,单位:m)及站点分布(XD:新 都;JT:金堂;LQ:龙泉;JY:简阳;WJ:温江;XJ:新津); (c)D4区域MODIS 20类土地利用情况

Fig. 3 (a) Model domains (D1, D2, D3, D4), shadings represent terrain height (units: m); (b) terrain height in D4 (shaded, units: m) and locations of six weather stations (XD: Xindu; JT: Jintang; LQ: Longquan; JY: Jianyang; WJ: Wenjiang; XJ: Xinjin); (c) land use types in D4 derived from the MODIS 20-class dataset (1: Evergreen Needleleaf Forest; 2: Evergreen Broadleaf Forest; 3: Deciduous Needleleaf Forest; 4: Mixed Forests; 5: Closed Shrublands; 6: Open Shrublands; 7: Grasslands; 8: Permanent Wetlands; 9: Croplands; 10: Urban and Built-Up; 11: Cropland/Natural Vegetation Mosaic; 12: Barren or Sparsely Vegetated; 13: Water)

0.1~0.3,以该值作为参考,在其它参数和配置不变的条件下,将敏感性试验中AOD值设为0.2 (AOD_0.2试验)。

4 模拟结果分析

4.1 与观测的比较

选取六个龙泉山附近站点(新都、金堂、龙 泉、简阳、温江、新津),对比观测与控制试验中 模拟的2米温度(图4)、风速(图5)、风向(图 6) 的日变化。日出前,模拟的2米温度持续降低, 在07:00~08:00达到最低;相比于观测,模拟的凌 晨降温速率更大,因此夜间和凌晨的模拟温度稍 低于观测温度,这种现象在过去的研究中也曾出 现,主要是由于模式对于夜间地表辐射冷却强度 的估计偏高所致(王颖等,2010)。08:00后,气 温快速升高,模拟的2m(高度)温度和观测气温 都在15:00~16:00达到最大值,16:00后气温迅速 降低,与日落后降温不明显的情况相比,这更有利 于逆温的形成(郭倩等, 2018)。除简阳站外,其 它站点的模拟效果均与观测较为接近。简阳站模拟 气温与观测存在一些误差,这可能是由于模式地形 高度与实际海拔的偏差引起的,简阳以丘陵地形为 主,且地势由北向南倾斜,在模式预处理中经地形 平滑后容易导致模式地形的偏差;且简阳站实际下 垫面与模式土地利用情况存在一定差异:实际观测 站点可能受沱江影响,而这在模式中未能体现,这 也可能是造成模拟气温与观测存在差异的原因 之一。

57

从风速的模拟来看(图5),模式模拟出了本 次个例的小风特征,午后至傍晚各站点模拟风速整 体偏小,而凌晨和夜间,模拟风速则都偏大。由于 当天近地面主要为静小风,这种天气条件下湍流运 动和平均运动量级相当,风向易发生变化,模拟难 度较大(张碧辉等, 2012; 姚日升等, 2017)。从 风向的模拟来看(图6),除简阳站外,模式均能 够较好地捕捉到风向的变化。新都、金堂、龙泉三 站主要受龙泉山影响,风向第一次转变的时间在上 午9:00~11:00, 第二次风向转变主要为午后16:00 ~18:00, 且第二次风向转换持续时间较长。龙泉 站模拟的上午风向转变早于观测2个小时,午后风 向转换早于观测1个小时。简阳、温江、新津三站 距龙泉山距离较远,其中温江、新津主要受大型山 谷风或背景风影响,午后风向转换时间在20:00以 后。简阳站风向的模拟结果中虽未出现明显的风向 转变,但由于距离较远,对模拟龙泉山山地一平原 风水平环流的基本特征影响不大。以上分析表明,

58

图4 2016年12月7日6个站点(新都、金堂、龙泉、简阳、温江、新津)观测与模拟的2m(高度)温度(单位: ℃)对比 Fig. 4 Comparisons between observed and simulated 2-m (height) temperature (units: °C) at six weather stations (XD, JT, LQ, JY, WJ, XJ) on 7 December, 2016

模式能够较合理地模拟出龙泉山山地一平原风的演 变情况。

从温江站垂直方向上温度与风场的模拟来看 (图7),温江站处模拟的低层温度偏高,高层偏 低,但总体趋势较为吻合。08:00和20:00均存在多 层逆温,且两个时刻中观测资料的贴地逆温层厚度 和强度均大于模拟结果,这可能是因为温江站位于 成都市区外侧,实际下垫面为城市,城市热岛现象 会使局地逆温增强。风向风速的模拟中,08:00在 海拔高度1200~2000 m(ASL,Above Sea Level) 的区间内,模拟的风速偏大;20:00 在海拔高度 1800~2400 m出现较小的西风分量,但误差在允 许范围之内。温江站处低层易受其它中小尺度环流 (如城市热岛环流)影响而出现风、温场的变化。 受青藏高原的影响,成都一年四季以多云天气为 主,云层的存在会影响边界层参数化方案的模拟效 果(王成刚等,2017)。总体来看,模拟结果可用 于分析当日山地一平原风结构。

4.2 模拟结果分析

4.2.1 山地一平原风环流结构

受中低层及地面高压前部的影响,12月7日 D4区域全天基本受偏北风控制,低层风场在上午 由西北风逐渐转变为东北风。由于受到下垫面的影 响,近地面风向风速变化不明显,龙泉山地区呈现 出特殊的地面风场结构。凌晨时(图8a),D4区域 整体温度较低,龙泉山两侧有辐散气流存在,西坡 更为明显;龙泉山北段西北侧由于地形低洼,出现 了一个水平的地形小环流(Steyn et al., 2013); D4区域西部受西侧龙门山影响,盛行来自西北方 向的大型山风。日出后,D4区域开始增温,龙泉 山东坡接收更多的太阳辐射增温显著,而此时西部 平原温度明显较低,东坡开始出现下坡气流(图 8b),并在接近正午11:00~12:00达到最强。随着午 后太阳辐射的均匀加热,D4区域整体温度达到最

高,龙泉山西北侧地形低洼处出现向周围辐散的气流,D4区域西部风场转为受龙门山影响的大型谷风;龙泉山东坡出现风向的转变,平原风开始形成,并沿山出现一条气流辐合带(图8c),辐合在30.5°N以北更为明显,但持续时间较短,仅维持4~5个小时。日落前约16:00,D4区域温度开始迅速降低。18:00后龙泉山两侧大部分地区重新转为辐散气流。日落后,D4区域温度缓慢持续降低,山坡温度逐渐高于平原和山顶,龙泉山两侧辐散气流稳定发展,西坡逐渐强于东坡(图8d);D4区域西部再次转为西北风(大型山风),成都市区出现风场的辐合,同时市区2米温度偏高,在两侧山风的辐合作用下,很可能使城市热岛环流增强(杨礼荣等,1992;安兴琴等,2002;王喜全等,2008)。

从图8中可以看到,山体与平原之间存在显著的热力差异。为了从总体上考量平原与山体地区的

2米温度变化,我们对D4区域的模式海拔进行平 均,将排除西北侧龙门山后大于等于495m的地区 划为山体,其余地区为平原。分别计算各区域平均 2米温度随时间的变化(图9)。山体地区海拔较 高,午后2米温度略低于平原地区;而在凌晨和夜 间,山体地区2米温度高于平原,这在图8a和图9 中都有所体现。过去研究发现,四川盆地地区由于 其地理位置和独特的地形条件,常出现静小风和逆 温现象。李培荣和向卫国(2018)选取四川盆地内 温江(成都)、宜宾、达州、沙坪坝(重庆)四个 观测站2015年1月至2017年4月的探空资料,发 现四站中成都冬季贴地逆温和多层逆温的出现频 次最多。逆温阻碍了地面污染物的向上扩散,同 时静小风也使污染物不易在水平方向上传播,而 污染物反过来也使逆温情况进一步加强和维持 (Zhong et al., 2018)。从12月7日温江站探空观 测的温度廓线中,可以发现当日贴地逆温和多层

图7 2016年12月7日温江站(WJ) 探空观测与垂直方向上模拟的温度(单位: °C)、风场(单位: m s⁻¹)的对比: (a) 08:00; (b) 20:00 Fig. 7 Comparisons between vertical profiles of observed and simulated vertical temperature (units: °C) and wind fields(units: m s⁻¹) at Wenjiang weather station (WJ) on 7 December, 2016: (a) 0800 LST; (b) 2000 LST

图8 2016年12月7日模拟的10m(高度)风场(箭头,单位:ms⁻¹)、2米温度(阴影,单位:°C):(a)03:00;(b)10:00;(c)15:00; (d)22:00。等值线为地形高度(单位:m)

Fig. 8 Simulated 10-m (height) wind field (vectors, units: m s⁻¹), 2-m temperature (shaded, units: °C) on 7 December, 2016: (a) 0300 LST; (b) 1000 LST; (c) 1500 LST; (d) 2200 LST. Contour lines represent terrain height (units: m)

逆温的存在。从凌晨和夜间气温的纬向剖面图 (图略)中,也可以清楚地看到平原地区尤其是龙 泉山西侧成都平原,近地层100~200 m(AGL, Above Ground Level,下同)以内存在强烈的贴地 逆温,尤其是日出前的凌晨时段,逆温强度可达 约3°C(100 m)⁻¹。从龙泉山山脚到山腰,由于逆温 层的存在,温度逐渐升高;龙泉山山顶处于贴地 逆温层以上,因此温度又略有降低,这与图8a中 2米气温的水平分布是一致的。

图8中10米风场的水平辐合辐散必然导致垂直 速度的变化。从第1模式层(约28m, AGL)的垂 直速度分布来看(图10),龙泉山山体处的垂直速 度具有明显的日变化,其在山体南北方向的特征也存在显著差异。凌晨山体上空为显著的下沉气流,山体中南段西坡下沉气流较东坡更为明显,这与水平10米风场中西坡更强的辐散气流相对应。06:00后山体上方的下沉气流强度开始减弱。日出后,东坡下沉气流开始加强。11:00~12:00,西坡开始出现上升气流,同时东坡下坡气流的存在使龙泉山东坡在接近正午时出现强烈的越山下坡气流,这种越山下坡气流在中南段更为显著。午后太阳辐射在13:00达到最强,垂直速度在山体南北方向的差异性凸显:北段(30.75°N以北)原山体上空的下沉气流逐渐被上升气流替代;此时南段(30.55°N以

图9 2016年12月7日控制试验中D4区域山体(不含龙门山)、平 原地区的区域平均2米温度(单位: °C)随时间的演变

Fig. 9 Evolutions of D4 area-averaged 2-m temperature with time (units: °C) for mountain (excluding Longmen mountain) and plain areas, respectively, on 7 December, 2016

南) 东坡还存在较弱的下沉气流,说明南段在下午 平原风发展的强度远不及北段;中段(30.55°N~ 30.75°N) 垂直运动则较弱。17:00 后,地面快速 冷却,上升气流逐渐消失,转变为下沉气流并迅 速加强,山地风、下坡风再次发展,垂直速度分 布与凌晨相似(图略)。需要注意的是,文中山地 风、平原风为山地和平原之间的热力差异引起的, 与山谷风形成机理类似;而下坡风、越山下坡风 形成机理与山地一平原风不同,当西坡出现上升 气流后,越山气流的形成使下坡风发展成为越山 下坡风,其成因将在后文具体讨论。凌晨和夜间 主要为山地风和越山下坡风的耦合,而上午则仅 为越山下坡风。

图 10 2016年12月7日模拟的第1模式层垂直速度w(阴影,单位:ms⁻¹):(a) 03:00;(b) 10:00;(c) 12:00;(d) 15:00。等值线为地形 高度(单位:m)

Fig. 10 Simulated vertical wind speeds w (shaded, units: m s⁻¹) at the first eta level: (a) 0300 LST; (b) 1000 LST; (c) 1200 LST; (d) 1500 LST on 7 December, 2016. Contours represent terrain height (units: m)

以30.9 °N、30.7 °N、30.4 °N 三个纬度分别代 表龙泉山北、中、南段,对各纬度近地面水平风场 随时间的变化进行分析,图11 可以清晰地看到龙 泉山地区水平风场变化的四个阶段:日出前的山地 风和下坡风阶段、日出后越山下坡风阶段、午后平 原风阶段以及日落前开始并在夜间发展的山地风和 下坡风阶段。山体北段(图11a)高且宽,此处激 发出的热力环流更加强盛,其转换阶段也更加快 速、清晰。上午10:00前山体两侧一直呈现辐散气 流,但在东西坡强度上有所差异:凌晨05:00前, 西坡由于下坡风的存在,东风强度更强,随后东坡 下坡风逐渐发展;10:00~12:00山体上空统一为西

图 11 2016年12月7日模拟的沿 (a) 30.9°N、(b) 30.7°N、(c) 30.4°N纬向风分量u (阴影,单位: m s⁻¹)、10 m (高度)风场 (箭头,单位: m s⁻¹)随时间的演变和地形高度 (Above Sea Level,简称ASL,单位: km) Fig. 11 Time-longitude cross sections of simulated zonal wind u (shaded, units: m s⁻¹) and 10-m (height) wind field (vectors, units: m s⁻¹) on 7 December, 2016, and zonal distribution of terrain height (ASL, units: km) along (a) 30.9°N, (b) 30.7°N, (c) 30.4°N 风,即为越山下坡风盛行阶段:12:00~17:00东坡 转为偏东风,偏东风首先出现在山体东侧的位置, 随着平原风的发展,东风逐渐向西移至山顶,北段 山体两侧出现明显辐合,且强度最大、持续时间最 长; 18:00后重新转为山地风和西坡的下坡风。山 体中段(图11b)较矮,且山上还存在小型山谷和 水体,这使凌晨和夜间西侧的下坡风出现了两个大 值中心;由于地形不够突出,午后平原风难以发展 到足够抵抗越山下坡风的强度,因此越山下坡风的 持续时间较长(09:00~13:00),且范围、强度均 较大; 平原风持续时间最短(13:00~16:00), 且 转换时段风向较为凌乱,各阶段分界不清晰。南段 (图11c)山体较高但窄,上午越山下坡风发展最 盛,表现在影响时间最长、影响范围最广;午后平 原风、夜间山地风和下坡风发展最弱,强度均小于 中段和北段。

为进一步分析北、中、南段越山下坡风、平原

风环流结构及演变的异同, 对三个代表纬度上风和 位温的垂直剖面场进行讨论。山体北段,凌晨01: 00 (图12a, 13a),近地面层等位温线密集,大气 层结稳定; 西坡等位温线下凹, 温度较高, 东西坡 之间的水平温度差异使东坡较冷的气流流向西坡并 沿坡下沉;此外,凌晨时低层背景风为偏东风,由 于动力作用,背景风越山后在背风坡下沉,也可导 致等位温线下凹(Grubišić et al., 2008),但山体 东西跨度小且高度较矮,因此仅形成了半个波长的 明显背风波,本文主要讨论热力作用形成的越山下 坡气流,因此对于动力作用不进行过多分析。日出 后,东坡空气首先开始加热,等位温线呈东高西低 分布。10:00东坡气温升高显著,等位温线下凹; 西坡仍保持稳定层结且温度较低, 东坡越山下坡气 流开始形成; 11:00 (图12b, 13b), 阴阳坡之间的 热力差异达到最强,越山下坡气流在坡底辐合上 升,对应边界层高度也有所抬升,一定高度后受背

景风强迫回流,形成了上午的越山下坡风环流。午 后,由于西侧平原稳定层结的维持,加热速率较 慢,同时上午东坡越山下坡气流将较热空气向东侧 平原输送,因此西侧平原温度仍略低于东侧。北段 山顶和两侧平原之间水平位温梯度相较于南、中段 (图14)更大,有利于平原风环流的发展。15:00 (图12c, 13c),平原风环流达到最强,水平方向 范围可达约37km,为山体宽度的3~4倍;由于山 体东部边界层高度更高,层结稳定性更低,因此北 段山体东坡平原风环流更强,环流高度可达1.2 km, 而西坡仅为0.7 km; 东西坡平原风在山顶汇 合成为一支强烈的上升气流,速度可达0.61 m s⁻¹; 此时边界层高度达到最高,山体处由于地形的抬 升,平均边界层高度高于平原地区100~150 m, 此后山体处边界层高度迅速降低。日落后,边界层 高度再次恢复到仅为10m左右,东坡较早开始冷 却,因此西坡温度仍保持稍高于东坡的状态。22: 00(图12d,13d),西坡等位温线下凹,下坡风重 新生成,山地风和下坡风环流的发展相较于凌晨少 了稳定层结的限制,其范围较大,强度强于凌晨。 过去关于山谷风环流的研究主要集中在山谷地形之 中,阴、阳坡的差异主要体现在山风、谷风环流的 起止时间和强度上(蒲朝霞和邱崇践,1991;李江 林等,2009),而在龙泉山这样一个东西跨度较 小,且平均坡度仅为约5°的平缓山脉上,阴阳坡 之间的热力差异则会引发热力性越山气流;过去研 究发现,平缓地形上山体高度落差小,下坡风沿山 下滑时绝热下沉增温幅度小,下坡风始终保持较低 的温度,有利于下坡风的不断增强(Skyllingstad, 2003; Zhong and Whiteman, 2008)。

龙泉山中段,凌晨和夜间仅在个别时段山体两侧存在辐散气流,其它时段均被背景气流所掩盖。 西坡下坡风在山体上方表现为随地形的波动(图略),这也对应着图11b中凌晨和夜间西坡东风的

图 13 2016年12月7日沿30.9 °N的位温(阴影,等值线,单位:K)和边界层高度(ASL,红色实线,单位:km)的垂直剖面:(a)01: 00;(b)11:00;(c)15:00;(d)22:00。白色空白部分表示沿30.9°N的地形高度

Fig. 13 Vertical cross sections of potential temperature (shaded, contours, units: K) and planetary boundary layer height (ASL, red solid line, units: km) along 30.9 °N on 7 December, 2016: (a) 0100 LST; (b) 1100 LST; (c) 1500 LST; (d) 2200 LST. White parts represent terrain height along 30.9 °N

两个大值区。15:00山体与平原之间位温的水平梯 度较小,难以激发出平原风环流。此外,龙泉山中 段小型山谷会激发小尺度环流(图14a),使该段 山体处局地环流变得更为复杂,难以辨析。由于山 体对西侧平原的遮蔽作用小,区域加热均匀,且该 纬度西部平原上为城市下垫面,城市热岛的存在使 西侧等位温线、边界层高度抬高,东西等位温线、 边界层高度一致(图14c)。

龙泉山南段,从30.4°N的垂直剖面图上来看, 凌晨西坡下坡风强度稍强于北段,02:00最强,随 后快速减弱并消失。上午越山下坡风环流较为明 显,强度、范围都大于北段(图略)。午后,等位 温线、边界层高度存在明显东高西低分布,平均边 界层高度高于北段。由于山体窄,山体下垫面对山 上空气冷却、加热能力较弱,山体与平原之间水平 位温梯度小,仅在15:00山体西坡出现完整但强度 极弱、范围小的环流(图14b)。而东侧,边界层 发展充分,湍流的伸展高度与边界层高度吻合,湍 流活动较强掩盖了平原风环流。夜间,等位温线较 为平直,无明显山地风和下坡风环流,仅在山坡两 侧出现下沉和辐散气流,未能激发出上升补偿流和 高空回流(图略)。值得注意的是,垂直剖面只展 现了某一特定纬度上的风场结构,环流可能不明 显,但从水平风场、垂直速度的水平分布来看,可 以肯定较弱环流的存在。

图 15 为由下至上第 14 模式层上的水平风场。 凌晨龙泉山两侧上空存在与 10 米风场相反的辐合 气流,说明此高度约为山地风回流所在高度。上 午,D4 区域上空从北部开始由西北风逐渐转向东 北风。东北风沿山体伸展出现狭长东北一西南分布

图 14 2016 年 12 月 7 日沿 (a、c) 30.7°N 和 (b、d) 30.4°N 的 15:00 (a、b) 纬向风分量 *u* (等值线,单位: m s⁻¹)、垂直速度 *w* (阴影, *u* 和 *w* 的单位: m s⁻¹)、风场 (*u*, *w*×20) (箭头,单位: m s⁻¹, *w* 扩大 20 倍) 的垂直剖面, (c、d) 位温 (阴影,等值线,单位: K) 和边界 层高度 (ASL,红色实线,单位: km) 的垂直剖面。白色空白部分表示沿 30.9 °N 的地形高度

Fig. 14 Vertical cross sections of (a, b) zonal wind speed (contours, units: $m s^{-1}$), vertical wind speed (shaded, units: $m s^{-1}$), wind field (*u*, *w* ×20) (vectors, units: $m s^{-1}$), (c, d) potential temperature (shaded, contours, units: K), planetary boundary layer height (red solid line, units: km ASL) along (a, c) 30.7°N and (b, d) 30.4°N at 1500 LST on 7 December, 2016. White parts represent terrain height along 30.9°N

图 15 2016 年 12 月 7 日模式第 14 层 (约 820 m, Above Ground Level, 简称 AGL)的纬向风分量 *u* (向东为正,向西为负)(阴影,单位: m s⁻¹)和水平风场(箭头,单位: m s⁻¹): (a) 03:00; (b) 11:00

Fig. 15 Zonal wind speed u (shaded, units: m s⁻¹, positive values are towards east and negative values are towards west) and horizontal wind field (vectors, units: m s⁻¹) at the 14th eta level (about 820 m, AGL) on 7 December, 2016: (a) 0300 LST; (b) 1100 LST

的气流带,其成因一方面可能是山体的动力阻挡, 另一方面是越山下坡风回流使沿山出现显著的偏北 气流。下午边界层抬高,平原风环流开始发展,最 大伸展高度超过第14模式层高度,但由于高处背 景气流的掩盖,平原风回流不明显(图略)。日落 后,地面逐渐冷却,边界层降低,等位温线重新逐 渐变得密集,直至次日凌晨,第14模式层上山地 风回流才重新显现。

4.2.2 地表辐射与能量平衡

山地地形的遮蔽、坡向、坡度、山体对长短波 辐射的反射以及地形云对辐射的影响,都使山地地 形上地表辐射分布与能量平衡过程更为复杂 (Oliphant et al., 2003)。本文通过讨论地表辐射通 量和热通量变化,分析龙泉山越山下坡风和山地一 平原风形成的可能机制。由于选取个例为冬季重污 染天气,地面接收太阳辐射的时间较短,仅在08: 00~18:00受到太阳的照射, D4区域平均向下短波 辐射通量最大值仅为496.9 W m⁻²。当日 D4 区域内 太阳短波辐射在13:00达到最大值(图16a),而地 表对太阳辐射的加热有一定的响应时间,因此向上 长波辐射14:00达到最大值,同时大气对地表长波 辐射加热也存在响应时间,因此2米温度在16:00 达到最大(图9)。图16b中,白天山体平均接受的 太阳辐射多于平原,因此在反照率差异较小的情况 下,山体处向上短波通量也大于平原;由于平原下

垫面类型较为复杂,受植被、城市冠层以及山体侧 壁的反射或漫射,平原逆辐射大于山体(Hoch et al.,2011);地表向上长波辐射与地表温度直接相 关,因此山体向上长波辐射通量小于平原。总体来 看,龙泉山山体较平缓,且山体与平原下垫面类型 无明显差异,因此龙泉山山体与两侧平原之间的净 辐射差异较小,最大差值仅为4Wm⁻²。

67

地表接受的净辐射部分以土地热通量(模式输出的土地热通量为正表示土地储存热量,为负表示 土地将热量传递给大气)的方式保存在土地中,另 一部分以感热、潜热的方式与大气进行能量交换, 由于成都位于内陆,地表更多以感热的方式加热大 气,潜热通量占比较少且山体与平原间差异较小 (图16d)。图16d中可以看到,白天山体的潜热和 土地热通量小于平原,而感热通量大于平原,这是 造成山体与平原之间位温的水平梯度的主要原因, 从而保证了平原风环流的产生和维持。

当日太阳直射点在研究区域以南的位置,从向 下短波辐射通量的水平分布来看,在考虑地形辐射 效应参数化后,上午东坡能够接收更多太阳辐射 (图17a);中段由于山体低矮,东坡辐射通量较 南、北段小,太阳辐射更易抵达西侧平原。由于龙 泉山山体为东北一西南向,下午龙泉山西南坡为阳 坡(图17b),南段山体在一天之内可接收到太阳 辐射的时间更长,午后接受的太阳短波辐射也更

图16 (a) 2016年12月7日D4区域平均净辐射(NET)、向上短波辐射(SW_up)、向下短波辐射(SW_down)、向上长波辐射(LW_up)和向下长波辐射(LW_down)通量;(b)山体与平原各辐射通量的差异(山体一平原,单位:Wm⁻²);(c)D4区域平均感热(HFX)、潜热(LH)和土地热通量(GRDFLX);(d)山体与平原各热通量的差异(山体一平原,单位:Wm⁻²)

Fig. 16 (a) D4 area-averaged net radiation (NET), upward shortwave radiation (SW_up), downward shortwave radiation (SW_down), upward longwave radiation (LW_up), and downward longwave radiation (LW_down) fluxes (units: W m⁻²); (b) radiation flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (c) D4 area-averaged sensible heat flux (HFX), latent heat flux (LH) and ground heat flux (GRDFLX) (units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²); (d) heat flux differences between mountain and plain (mountain minus plain, units: W m⁻²) on 7 December, 2016

图17 2016年12月7日向下短波辐射通量(阴影,单位:Wm⁻²): (a) 10:00; (b) 15:00。等值线为地形高度(单位:m) Fig. 17 Downward shortwave radiation flux (shaded, units:Wm⁻²) on 7 December, 2016: (a) 1000 LST; (b) 1500 LST. Contours represent terrain height (units:m)

多,但南段山体较窄,因此南段平原风环流较弱且 易被湍流运动掩盖。中段东侧平原存在向下短波辐 射通量的异常低值区,结合前后两个时次的结果可 知,为由北向南沿山体移动且逐渐消散的云团所 致,该云团主要影响了龙泉山中段山体,这也是该 段未能激发出明显的平原风环流的原因之一。北段 山体的西南坡在午后能够拦截更多的太阳辐射,北 段山体感热通量显著高于两侧平原(图略),因此 在北段由热力差异引起的平原风环流更为强盛。

4.3 气溶胶光学厚度的影响

经前文对污染个例模拟的分析发现,冬季污染 条件下,龙泉山西侧成都平原在日出后加热速率慢 于东侧平原,且由于两侧山体的影响,夜间形成的 稳定层结不易消散,导致成都平原边界层发展较 低,平原风环流较弱。敏感性试验将AOD减小后, 从总体特征来看,凌晨和夜间D4区域平均的边界 层高度变化不大,仍仅为10m左右; 白天,边界 层高度相较于控制试验(AOD 1.0试验)最大可 高出250 m左右(图18)。AOD 1.0 试验中, 16:00 ~17:00边界层高度迅速降低,同时平原风环流迅 速减弱;而AOD 0.2试验中,17:00边界层高度依 然较高,边界层高度在17:00~18:00时降低迅速。 从边界层高度的水平分布来看, AOD 1.0 试验上 午11:00(图19a),边界层高度仍较低,龙泉山东 坡由于强烈的越山下坡风环流的发展,在越山下坡 风的上升支位置,出现了一条沿山分布的边界层高 度高值带(Miao et al., 2015),这与前文位温剖面 图中的结论是一致的(图13b)。同时刻AOD 0.2

图 18 2016 年 12 月 7 日控制试验 (AOD_1.0) 和敏感性试验 (AOD_0.2) 中的 D4 区域平均边界层高度 (AGL, 单位: m) 随时 间的演变

Fig. 18 Evolutions of D4 area-averaged planetary boundary layer height (AGL, units: m) with time in the control (AOD_1.0) and sensitivity (AOD_0.2) experiments on 7 December, 2016

试验中(图19c), D4区域整体边界层高度稍有增 大,龙泉山东坡边界层抬升的更为明显(图19e)。 AOD 1.0试验午后15:00 (图19b), 整体区域平均 边界层发展达到最高,龙泉山东侧平原边界层发展 更为旺盛, 而成都平原大部分地区边界层高度仍在 1000 m 以下, 龙泉山中段西侧也即成都市区的位 置,由于太阳辐射的加热以及城市热岛的发展,边 界层高度较高。同时刻AOD 0.2试验中(图19d), 成都平原南、北部边界层高度升高了600m以上, 该增量远远超出该时刻D4区域的平均值(图19f), 边界层高度抬升后的成都平原与东侧平原基本一 致,此时山体由于白天温度较低,边界层高度反而 不及平原地区(Serafin and Zardi, 2011)。由此可 见,气溶胶污染通过削弱辐射强度,可显著影响边 界层高度(王昕然等, 2018); 气溶胶减少后, 白 天边界层高度明显抬升,傍晚边界层高度降低时间 滞后; 气溶胶污染对西侧成都平原边界层高度的降 低能力更显著。

从辐射与能量平衡的角度来看,AOD减少后, 白天地面接受的太阳短波辐射通量最大增加了 111.3 W m⁻²,净辐射通量最大增加了 73.6 W m⁻², 其它辐射通量也都随之有不同程度的增加。净辐射 量的增加使白天 D4 区域平均 2 米温度升高约 0.8°C。AOD减少也使夜间大气的保温作用减弱, 因此夜间增温幅度较小(邓涛等,2010)。D4 区域 平均感热、潜热、土地热通量都有所增加,其中感 热通量的增幅最大,午后 14:00 增加了 42.5 W m⁻², 而同时刻潜热通量和土地热通量增量则分别只有 20.6 W m⁻²和 19.2 W m⁻²。各热通量在山体与平原 之间的差异也有所增大,其中感热通量差异的增大 有利于环流的发展。

边界层高度的变化以及辐射、热通量的变化必 然引起局地环流的变化。AOD减小后,局地环流 变化主要体现在上午的越山下坡风环流和午后的平 原风环流上,这是因为相较于夜间,AOD对白天 太阳短波辐射的直接作用更加显著。对比图12b, 13b与图20a、b可以看到,上午东坡越山下坡风环 流显著增强,环流伸展高度增加,平原上升补偿气 流明显加强,这也导致了上文中AOD_0.2试验11: 00东坡与平原交接处边界层抬升的现象。午后中、 南段由于山体自身激发平原风环流的能力差,且地 面受太阳辐射加热更强,两侧平原在午后都出现强 烈湍流(图20c、d),山地一平原风环流更加不明

图19 2016年12月7日 (a、b) 控制试验 (AOD_1.0), (c、d) 敏感性试验 (AOD_0.2) 的边界层高度 (AGL, 阴影, 单位: m); (e、f) 两组试验边界层高度之差 (AOD_0.2-AOD_1.0) (阴影, 单位: m)。(a、c、e) 11:00; (b、d、f) 15:00

Fig. 19 Planetary boundary layer height (AGL, shaded, units: m) in (a, b) the control experiment (AOD_1.0) and (c, d) sensitivity experiment (AOD_0.2); (e, f) planetary boundary layer height difference (shaded, units: m) (AOD_0.2 minus AOD_1.0) between the two experiments on 7 December, 2016. (a, c, e) 1100 LST; (b, d, f) 1500 LST

图 20 (a) 同图 12、(b) 同图 13, 但为 AOD_0.2 试验中沿 30.9 °N 11:00 的垂直剖面; (c) 同图 12, 但为 AOD_0.2 试验中沿 30.7 °N 15:00 的垂直剖面; (d) 同图 12, 但为 AOD_0.2 试验中沿 30.4 °N 15:00 的垂直剖面

Fig. 20 (a) Same as Fig. 12, (b) same as Fig. 13, but along 30.9 °N for AOD_0.2 experiment at 1100 LST; (c) same as Fig. 12, but along 30.7 °N for AOD_0.2 experiment at 1500 LST; (d) same as Fig. 12, but along 30.4 °N for AOD_0.2 experiment at 1500 LST

显。AOD减小后,北段山体与平原之间的感热通 量差异增加,平原风环流增强,垂直最大上升速度 增至0.63 m s⁻¹,水平伸展无明显变化,但垂直方向 上东坡升高至1.73 km, 西坡升高至1.52 km。由于 边界层降低时间的推迟,平原风环流持续时间增 长: AOD 0.2 试验中14:00, 边界层已充分发展, 东、西部平原边界层高度相当,而AOD 1.0试验 中的15:00(图13c),西坡边界层仍未完全发展, 高度显著低于东坡; 16:00, AOD_1.0 试验边界层 高度已经显著降低(图21a),而AOD 0.2试验中 边界层高度仍维持较高的状态(图21b),平原风 环流结构仍十分清晰,山体上方上升气流可达到的 高度仍较高,但由西侧成都平原流向山体的水平最 大速度有所减小,直接导致了西坡上升气流向山顶 的推进距离缩短,无法与东坡平原风上升支汇合, 从而在山顶出现了两支上升气流。总体来看,减少 气溶胶污染后,白天边界层抬升更高,湍流发展更 加旺盛,上午的越山下坡风环流和午后北段平原风 环流都有显著增强。

5 总结与讨论

本文利用中尺度数值模式WRF(V3.9)模拟 了2016年12月7日污染大气条件下成都东部龙泉 山地区的山地一平原风环流特征。此外,通过改变 RRTMG辐射参数化方案中的气溶胶光学厚度参 数,讨论了污染情况的改变对环流的影响及可能 机制。

龙泉山地区具有特殊的地理位置及地形分布, 是在大地形(青藏高原、龙门山)背景下的一条南 北长、东西极窄的山脉,因此局地环流易受大型山 谷风的影响。东、西坡的辐射和能量平衡具有显著 日变化。凌晨、夜间及上午,在平均坡度仅为5° 左右的缓坡上,东西坡之间的热力差异易引起热力 性越山下坡风环流。当主导风向为偏东、西风的情

图 21 2016年12月7日(a) AOD_1.0和(b) AOD_0.2 试验中沿 30.9 °N 16:00 的垂直风速w(阴影,单位: m s⁻¹)、位温(等值线,单位: K)和边界层高度(ASL,红色实线,单位: km)的垂直剖面。白色空白部分表示沿 30.9 °N 的地形高度

Fig. 21 Vertical cross sections of vertical wind speed (shaded, units: m s⁻¹), potential temperature (contours, units: K), and planetary boundary layer height (ASL, red solid line, units: km) in (a) AOD_1.0 and (b) AOD_0.2 experiments along 30.9 °N at 1600 LST on 7 December, 2016. White parts represent terrain height along 30.9 °N

况下,背风坡处由于动力作用也易激发这种越山下 坡风。冬季污染大气条件下,成都平原凌晨和夜间 2米温度低于龙泉山山坡温度。冬季太阳辐射弱, 大气层结稳定且不易被破坏, 平原风环流在午后形 成, 且持续时间短。各阶段环流在龙泉山北、中、 南段有显著区别:冬季太阳直射点位于D4区域以 南,南段山体较窄,相比北段山体较矮,在热力差 异相同的条件下,越山气流更容易形成,因此南段 越山下坡风环流强度稍强于北段,但同时午后激发 山地一平原风环流的能力较差,易被旺盛的湍流掩 盖。中段山体低矮且地形复杂,东、西坡之间热力 差异小导致越山下坡风环流最弱,西侧成都市区存 在城市热岛作用,山地一平原风环流不明显。北段 山体宽高,山地一平原风的转换过程清晰,各阶段 环流最为明显,但即使如此,平原风环流的持续时 间也仅为4~5个小时。

敏感性试验减少D4区域的AOD后,上午越山 下坡风环流显著增强,并在东侧上升补偿气流的位 置沿山体出现一条边界层高度高值带;午后,太阳 辐射显著增强,山体与平原间地表感热通量的差异 增大,中、南段湍流增强进一步掩盖平原风环流, 北段平原风环流增强,且由于不稳定边界层维持时 间增长,平原风环流的持续时间也增加。敏感性试 验证明了气溶胶污染通过影响大气光学一辐射特性 对山地一平原风环流具有减弱作用。

值得一提的是,贴地逆温和多层逆温是成都乃 至四川盆地地区冬季污染天气条件下长时间存在的 现象,这种情况下龙泉山和成都平原的2米气温具 有特殊的日变化特征。简阳站模拟结果与观测之间 存在偏差的可能原因还需进一步研究。另外,本文 结论的普适性还需进行更多不同条件下(季节、天 气、背景场和污染情况等)的观测与模拟研究来 佐证。

参考文献(References)

- 安兴琴, 陈玉春, 吕世华. 2002. 中尺度模式对冬季兰州市低空风场 和温度场的数值模拟 [J]. 高原气象, 21(2): 186-192. An Xingqin, Chen Yuchun, Lü Shihua . 2002. Mesoscale simulations of winter low-level wind and temperature fields in Lanzhou City [J]. Plateau Meteorology (in Chinese), 21(2): 186-192. doi: 10.3321/j. issn:1000-0534.2002.02.011
- 邓涛,张镭,陈敏,等.2010. 高云和气溶胶辐射效应对边界层的影响 [J]. 大气科学, 34(5): 979-987. Deng Tao, Zhang Lei, Chen Min, et al. 2010. The influence of high cloud and aerosol radiative effect on boundary layer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(5): 979-987. doi:10.3878/j.issn.1006-9895.2010.05.12
- 董群, 赵普生, 王迎春, 等. 2017. 北京山谷风环流特征分析及其对 PM2.₅浓度的影响 [J]. 环境科学, 38(6): 2218-2230. Dong Qun, Zhao Pusheng, Wang Yingchun, et al. 2017. Impact of mountainvalley wind circulation on typical cases of air pollution in Beijing [J]. Environmental Science (in Chinese), 38(6): 2218-2230. doi: 10. 13227/j.hjkx.201609231
- 冯良敏,陈朝平,龙柯吉,等. 2014. 成都地区 2012年 PM₁₀污染过程 气象条件分析 [J]. 高原山地气象研究, 34(2): 57-62. Feng Liangmin, Chen Chaoping, Long Keji, et al. 2014. Analysis on meteorological conditions during PM₁₀ pollution of Chengdu in 2012
 [J]. Plateau and Mountain Meteorology Research (in Chinese), 34 (2): 57-62. doi:10.3969/j.issn.1674-2184.2014.02.011.
- Gao Y, Zhang M, Liu Z, et al. 2015. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary

layer during a severe fog-haze event over the North China plain [J]. Atmospheric Chemistry and Physics, 15: 4279–4295. doi: 10.5194/acp-15-4279-2015

- Grubišić V, Doyle J D, Kuettner J, et al. 2008. The terrain-induced rotor experiment: A field campaign overview including observational highlights [J]. Bull. Amer. Meteor. Soc., 89(10): 1513–1534. doi:10. 1175/2008bams2487.1
- 郭倩, 汪嘉杨, 周子航, 等. 2018. 成都市一次典型空气重污染过程特 征及成因分析 [J]. 环境科学学报, 38(2): 629-639. Guo Qian, Wang Jiayang, Zhou Zihang, et al. 2018. Characteristics and reason analysis of a typical heavy air pollution event in Chengdu [J]. Acta Scientiae Circumstantiae (in Chinese), 38(2): 629-639. doi: 10. 13671/j.hjkxxb.2017.0341
- 韩芙蓉, 苗峻峰, 王语卉. 2018. 地形辐射效应参数化对海南岛海风 环流结构和云水分布模拟的影响 [J]. 热带气象学报, 34(1): 115-132. Han Furong, Miao Junfeng, Wang Yuhui. 2018. Impact of radiation parameterization of topographic effects on sea breeze circulation and cloud water pattern over the Hainan Island [J]. Journal of Tropical Meteorology (in Chinese), 34(1): 115-132. doi: 10.16032/j.issn.1004-4965.2018.01.011
- Hoch S W, Whiteman C D, Mayer B. 2011. A systematic study of longwave radiative heating and cooling within valleys and basins using a three-dimensional radiative transfer model [J]. Journal of Applied Meteorology and Climatology, 50: 2473–2489. doi:10.1175/ JAMC-D-11-083.1
- 胡隐樵,张强. 1999. 兰州山谷大气污染的物理机制与防治对策 [J]. 中国环境科学, 19(2): 119-122. Hu Yinqiao, Zhang Qiang. 1999. Atmosphere pollution mechanism along with prevention and cure countermeasure of the Lanzhou hollow basin [J]. China Environmental Science (in Chinese), 19(2): 119-122. doi:10.3321/j. issn:1000-6923.1999.02.006.
- Letcher T W, Minder J R. 2018. The simulated impact of the snow albedo feedback on the large-scale mountain-plain circulation east of the Colorado Rocky Mountains [J]. J. Atmos. Sci., 75(3): 755-774. doi:10.1175/JAS-D-17-0166.1
- 李培荣, 向卫国. 2018. 四川盆地逆温层特征对空气污染的影响 [J]. 成都信息工程大学学报, 33(2): 220-226. Li Peirong, Xiang Weiguo. 2018. Influence of inversion layer characteristics in Sichuan Basin on air pollution [J]. Journal of Chengdu University of Information Technology (in Chinese), 33(2): 220-226.
- 李江林, 陈玉春, 吕世华, 等. 2009. 利用 RAMS 模式对山谷城市兰州 冬季湖泊效应的数值模拟 [J]. 高原气象, 28(5): 955-965. Li Jianglin, Chen Yuchun, Lü Shihua, et al. 2009. Numerical simulation of winter lake effect in valley city of Lanzhou using RAMS model [J]. Plateau Meteorology (in Chinese), 28(5): 955-965.
- Li Z Q, Guo J P, Ding A J, et al. 2017. Aerosol and boundary-layer interactions and impact on air quality [J]. National Science Review, 4 (6): 810–833. doi:10.1093/nsr/nwx117
- Liu X Y, Chen Q L, Che H Z, et al. 2016. Spatial distribution and temporal variation of aerosol optical depth in the Sichuan Basin, China, the recent ten years [J]. Atmos. Environ., 147: 434-445. doi:

10.1016/j.atmosenv.2016.10.008

- Liu Q, Jia X C, Quan J N, et al. 2018. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events [J]. Scientific Reports, 8: 6095. doi:10.1038/s41598-018-24366-3
- 陆正奇,韩永翔,夏俊荣,等. 2018. WRF模式对污染天气下边界层高度的模拟研究[J]. 中国环境科学, 38(3): 822-829. Lu Zhengqi, Han Yongxiang, Xia Junrong, et al. 2018. Modeling study on boundary layer height in pollution weather by WRF with different boundary layer schemes [J]. China Environmental Science (in Chinese), 38(3): 822-829. doi:10.19674/j.cnki.issn1000-6923.2018. 0096.
- 马学款,张碧辉,桂海林,等. 2017. APEC前后北京几次静稳天气边 界层特征对比分析 [J]. 气象, 43(11): 1364-1373. Ma Xuekuan, Zhang Bihui, Gui Hailin, et al. 2017. Comparative analysis of boundary layer characteristics during stable weather over Beijing around APEC [J]. Meteorological Monthly (in Chinese), 43(11): 1364-1373. doi:10.7519/j.issn.1000-0526.2017.11.005
- Miao Y C, Hu X M, Liu S H, et al. 2015. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing– Tianjin–Hebei region and implications for air quality [J]. Journal of Advances in Modeling Earth Systems, 7(4): 1602–1626. doi:10.1002/ 2015MS000522
- Ning G C, Wang S G, Ma M J, et al. 2018. Characteristics of air pollution in different zones of Sichuan Basin, China [J]. Science of the Total Environment, 612: 975–984. doi:10.1016/j.scitotenv.2017. 08.205
- Oliphant A J, Spronken-Smith R A, Sturman A P, et al. 2003. Spatial variability of surface radiation fluxes in mountainous terrain [J]. J. Appl. Meteor., 42: 113–128. doi: 10.1175/1520-0450(2003)042< 0113:svosrf>2.0.co;2
- Prasad K B R R H, Srinivas C V, Rao T N, et al. 2017. Performance of WRF in simulating terrain induced flows and atmospheric boundary layer characteristics over the tropical station Gadanki [J]. Atmospheric Research, 185(1): 101–117. doi: 10.1016/j. atmosres. 2016.10.020
- 蒲朝霞, 邱崇践. 1991. 兰州地区山谷风环流的二维数值模拟 [J]. 兰 州大学学报(自然科学版), 27(2): 169-175. Pu Zhaoxia, Qiu Chongjian. 1991. Two-dimensional numerical simulation of the mountain-valley wind circulation in Lanzhou region [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 27(2): 169-175. doi:10.13885/j.issn.0455-2059.1991.02.033
- Serafin S, Zardi D. 2011. Daytime development of the boundary layer over a plain and in a valley under fair weather conditions: A comparison by means of idealized numerical simulations [J]. J. Atmos. Sci., 68(9): 2128–2141. doi:10.1175/2011JAS3610.1
- 邵梦琪,甘维金,向卫国.2018.2017年初一次四川重污染过程气象 条件综合分析 [J]. 成都信息工程大学学报, 33(2): 212-219. Shao Mengqi, Gan Weijin, Xiang Weiguo. 2018. Comprehensive analysis of meteorological conditions in heavy pollution process in Sichuan in early 2017 [J]. Journal of Chengdu University of

Information Technology (in Chinese), 33(2): 212–219. doi: 10. 16836/j.cnki.jcuit.2018.02.017.

- Skyllingstad E D. 2003. Large-eddy simulation of katabatic flows [J]. Bound. -Layer Meteor., 106(2): 217–243. doi: 10.1023/A: 1021142828676
- Steyn D G, De Wekker S F J, Kossmann M, et al. 2013. Boundary layers and air quality in mountainous terrain [M]//Chow F K, De Wekker S F J, Snyder B J. Mountain Weather Research and Forecasting. Dordrecht: Springer, 261–289. doi:10.1007/978-94-007-4098-3_5
- 苏涛, 苗峻峰, 王语卉. 2017. 辐射参数化对海南岛海风雷暴结构模 拟的影响 [J]. 地球物理学报, 60(8): 3023-3040. Su Tao, Miao Junfeng, Wang Yuhui. 2017. Impact of radiative transfer parameterizations on simulated sea breeze thunderstorm over the Hainan Island [J]. Chinese Journal of Geophysics (in Chinese), 60 (8): 3023-3040. doi:10.6038/cjg20170811
- 田越, 苗峻峰. 2019. 中国地区山谷风研究进展 [J]. 气象科技, 47(1): 41 - 51. Tian Yue, Miao Junfeng. 2019. Overview of mountainvalley breeze studies in China [J]. Meteorological Science and Technology (in Chinese), 47(1): 41 - 51. doi:10.19517/j.1671-6345. 20170777.
- 王喜全, 王自发, 龚晏邦, 等. 2008. 北京城区热岛环流对山地一平原风的调节作用 [J]. 气候与环境研究, 13(5): 639-644. Wang Xiquan, Wang Zifa, Gong Yanbang, et al. 2008. Modulation of urban heat island circulation on mountain-plain wind in the Beijing area [J]. Climatic and Environmental Research (in Chinese), 13(5): 639-644. doi:10.3878/j.issn.1006-9585.2008.05.06
- 王颖,张镭,胡菊,等. 2010. WRF模式对山谷城市边界层模拟能力 的检验及地面气象特征分析 [J]. 高原气象, 29(6): 1397-1407. Wang Ying, Zhang Lei, Hu Ju, et al. 2010. Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain [J]. Plateau Meteorology (in Chinese), 29(6): 1397-1407.
- 王成刚, 沈滢洁, 罗峰, 等. 2017. 晴天及阴天条件下 WRF 模式中几种边界层参数化方案的对比分析研究 [J]. 地球物理学报, 60(3): 924-934. Wang Chenggang, Shen Yingjie, Luo Feng, et al. 2017. Comparison and analysis of several planetary boundary layer schemes in WRF model between clear and overcast days [J]. Chinese Journal of Geophysics (in Chinese), 60(3): 924-934. doi:10. 6038/cjg20170307
- 王昕然, 贺晓冬, 苗世光, 等. 2018. 气溶胶辐射效应对城市边界层影 响的数值模拟研究 [J]. 中国科学: 地球科学, 48(11): 1478-1493. Wang Xinran, He Xiaodong, Miao Shiguang, et al. 2018. Numerical simulation of the influence of aerosol radiation effect on urban boundary layer [J]. Science China: Earth Sciences, 48(11): 1478-1493. doi:10.1007/s11430-018-9260-0
- Wang J D, Wang S X, Jiang J K, et al. 2014. Impact of aerosolmeteorology interactions on fine particle pollution during China' s severe haze episode in January 2013 [J]. Environmental Research Letters, 9: 094002. doi:10.1088/1748-9326/9/9094002

Weissmann M, Braun F J, Gantner L, et al. 2005. The Alpine mountain-

plain circulation: Airborne Doppler lidar measurements and numerical simulations [J]. Mon. Wea. Rev., 133(11): 3095–3109. doi: 10.1175/MWR3012.1

- 杨礼荣,陈义珍,任阵海. 1992. 山谷地带城市冷热岛及其影响初探
 [J]. 环境科学研究, 5(1): 17-22. Yang Lirong, Chen Yizhen, Ren Zhenhai. 1992. Preliminary study of the urban cold-heat island and its effects in the valley region [J]. Research of Environmental Sciences (in Chinese), 5(1): 17-22. doi: 10.13198/j.res. 1992.01.19. yanglr.004
- 杨秋彦, 苗峻峰, 王语卉. 2019. 边界层参数化对海南岛海风环流结 构模拟的影响 [J]. 热带气象学报, 35(2): 234 - 252. Yang Qiuyan, Miao Junfeng, Wang Yuhui. 2019. Impact of planetary boundary layer parameterizations on simulated sea breeze circulation over the Hainan Island [J]. Journal of Tropical Meteorology (in Chinese), 35 (2): 234 - 252. doi:10.16032/j.issn.1004-4965.2019.021.
- Yang X, Zhao C F, Guo J P, et al. 2016. Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing [J]. J. Geophys. Res., 121: 4093–4099. doi:10. 1002/2015JD024645
- Yang Y, Fan J W, Leung L R, et al. 2016. Mechanisms contributing to suppressed precipitation in Mt. Hua of central China. Part I: Mountain valley circulation [J]. J. Atmos. Sci., 73(3): 1351–1366. doi:10.1175/JAS-D-15-0233.1
- 姚日升, 涂小萍, 张小伟, 等. 2017. 宁波一次罕见持续重度污染事件 的成因分析 [J]. 气象学报, 75(2): 342-355. Yao Risheng, Tu Xiaoping, Zhang Xiaowei, et al. 2017. Analysis on a rare persistent heavy pollution event in Ningbo [J]. Acta Meteorologica Sinica (in Chinese), 75(2): 342-355. doi:10.11676/qxxb2017.018
- 曾胜兰, 王雅芳. 2016. 成都地区污染天气分型及其污染气象特征研究 [J]. 长江流域资源与环境, 25(S1): 59-67. Zeng Shenglan, Wang Yafang. 2016. Researches of weather pattern and pollution meteorological characteristics in Chengdu area [J]. Resources and Environment in the Yangtze Basin (in Chinese), 25(S1): 59-67. doi: 10.11870/cjlyzyyhj20160Z1009
- 张碧辉, 刘树华, Liu H P, 等. 2012. MYJ和YSU方案对WRF边界层 气象要素模拟的影响 [J]. 地球物理学报, 55(7): 2239–2248. Zhang Bihui, Liu Shuhua, Liu H P, et al. 2012. The effect of MYJ and YSU schemes on the simulation of boundary layer meteorological factors of WRF [J]. Chinese Journal of Geophysics (in Chinese), 55(7): 2239–2248. doi:10.6038/j.issn.0001-5733.2012. 07.010
- Zhao C S, Tie X X, Lin Y P. 2006. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China [J]. Geophys. Res. Lett., 33: L11814. doi: 10.1029/ 2006GL025959
- Zhao C, Leung L R, Easter R, et al. 2013. Characterization of speciated aerosol direct radiative forcing over California [J]. J. Geophys. Res., 118(5): 2372–2388. doi:10.1029/2012JD018364
- 郑小波, 罗宇翔, 赵天良, 等. 2012. 中国气溶胶分布的地理学和气候
 学特征 [J]. 地理科学, 32(3): 265-272. Zheng Xiaobo, Luo
 Yuxiang, Zhao Tianliang, et al. 2012. Geographical and

climatological characterization of aerosol distribution in China [J]. Scientia Geographica Sinica (in Chinese), 32(3): 265–272. doi: 10. 13249/j.cnki.sgs.2012.03.003

- Zhong S Y, Whiteman C D. 2008. Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modeling [J]. Journal of Applied Meteorology and Climatology, 47 (7): 2039–2057. doi:10.1175/2007JAMC1670.1
- Zhong J T, Zhang X Y, Wang Y Q, et al. 2018. Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols [J]. Atmospheric Research, 209: 59–64. doi: 10.1016/j. atmosres.2018.03.011
- 周书华, 倪长健, 刘培川. 2014. 成都市温江边界层风场特征的研究 [J]. 四川环境, 33(3): 30-35. Zhou Shuhua, Ni Changjian, Liu Peichuan. 2014. Study on the characteristics of Wenjiang boundary layer wind field in Chengdu [J]. Sichuan Environment (in Chinese), 33(3): 30-35. doi:10.14034/j.cnki.schj.2014.03.001
- 周书华, 倪长健, 刘培川. 2015. 成都地区大气边界层逆温特征分析 [J]. 气象与环境学报, 31(2): 108-111. Zhou Shuhua, Ni Changjian, Liu Peichuan. 2015. Characteristics of temperature inversion in atmospheric boundary layer in Chengdu area [J]. Journal of Meteorology and Environment (in Chinese), 31(2): 108-111. doi:10.3969/j.issn.1673-503X.2015.02.016