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Wind Speed and Altitude Dependent AMDAR Observational Error and Its
Impacts on Data Assimilation and Forecasting
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Abstract: Aircraft Meteorological Data Relay (AMDAR) observations have been widely used in numerical weather
prediction (NWP) because of its high spatiotemporal resolution. The observational error of AMDAR is influenced by
aircraft flight altitude and atmospheric condition. In this study, the wind speed and altitude dependent observational error
of AMDAR is estimated. The statistical results show that the temperature and the observational error in wind speeds
slightly decrease as altitude increases, and the observational error in wind speed increases as wind speed increases.
Pseudo single AMDAR observation assimilation tests demonstrate that the wind speed and altitude dependent
observational error can provide more reasonable analysis increment. Furthermore, to assess the performance of wind
speed and altitude dependent observational error on data assimilation and forecasting, two-month 3-hourly cycling data
assimilation and forecast experiments based on the Weather Research and Forecasting Model (WRF) and its Data
Assimilation system (WRFDA) are performed for the period during 1 September-31 October, 2017. The results of the
two-month 3-hourly cycling experiments indicate that new observational error improves analysis and forecast of wind
field and geo-potential height, and has slight improvements on temperature. The Fractions Skill Score (FSS) of the 6-h
accumulated precipitation shows that new wind speed and altitude dependent observational error leads to better
precipitation forecast skill than the default observational error in the WRFDA does.
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1 INTRODUCTION

Aircraft Meteorological Data Relay (AMDAR) is a
kind of weather report automatically obtained on
commercial aircraft and transmitted to the ground
receiving department by radio waves. Aircraft reports
were ingested automatically from the Aircraft
Communications Addressing and Reporting System
(ACARS) originally [1]. Later ACARS and other
communication systems formed the complete system
named AMDAR [2-3]. Worldwide collaboration on
AMDAR was established in 1998 and AMDAR weather
report was later included in the World Meteorological
Organization(WMO) Global Telecommunications
System [4]. In 2002, China established the real-time
collection and operating procedures of AMDAR
reports [5-6].

Data assimilation is a useful technique to combine

observations and model to provide better initial
condition for numerical weather prediction (NWP) [7-8].
The ADMAR reports have high spatial and temporal
resolution and play an important role in increasing the
skill of analysis and subsequent forecasts at both
regional and global scales for short-and medium-range
forecasts [9-11].

Observational errors and background errors provide
a weighting of observed values and background fields in
the data assimilation system. Reasonable AMDAR
observational error is a key part of data assimilation. It is
a crucial step to correctly estimate the observational
error of AMDAR before data assimilation. The
observational error of aircraft reports is influenced by
aircraft flight altitude and atmospheric
conditions [1], [3], [12]. Benjamin estimated the wind and
temperature observational errors for ACARS
observations that collected over an area in the western
and central United States for a 13-month period at
different heights and indicated that observational errors
decreased as the altitude increased[13]. Ding compared
temperature and wind observations between Chinese
AMDAR reports and rawinsonde data, and the results
demonstrated that the root-mean-square error (RMSE)
between these two data of wind speed (direction)
increasing (decreasing) with wind speed is a
characteristic of AMDAR wind observation [3]. In the
present Weather Research and Forecasting Model
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(WRF) data assimilation (WRFDA) system, the
temperature and the observational error in the wind
speeds of AMADR are constant values of 3.6 m s-1 and 1
K, respectively. Therefore, the main purpose of this
study is to estimate the wind speed and altitude
dependent AMDAR observational error so as to improve
the AMDAR data assimilation as well as the NWP.

The rest of the paper is arranged as follows. In
section 2, the error statistics methodology and the data
sources are introduced and wind speed and altitude
dependent AMDAR observational error is also estimated
in this section. A brief description of system setup and
experimental design is presented in section 3. In section
4, single AMDAR observation tests that compare the
new observational error with the default observational
error is discussed. The results of the sensitivity
experiments are discussed in section 5. Finally,
conclusions and plans for future are provided in section 6.

2 ESTIMATION OF AMDAR OBSERVATION-

AL ERROR

2.1 AMDAR observations
The AMDAR reports used in this study are

provided by China Meteorological Administration
(CMA). There are quality control (QC) codes for the
AMDAR reports. Quality control is not the focus of this
article, and we just apply it there, so we don't know the
specific quality control process. In addition, the
WRFDA will remove data in which OMB exceeds the
observational error by 5 times. The number of these
AMDAR reports in the Chinese region is far more than
that in the Global Telecommunication System (GTS).
The spatial and temporal distributions of the AMDAR
observations on 22 August 2017 are displayed in Fig. 1.
It is found that there were more AMDAR observations
in central and eastern China, especially near large cities
(Fig.1a). Fig.1b shows the temporal distributions of the
AMDAR observations on 22 August 2017. It can be seen
that the AMDAR observations mainly concentrated
between 0300 UTC and 1500 UTC.

The frequency of temperature and wind speed
differences between AMDAR and ERA-Interim from
0000 UTC 25 August 2017 to 1800 UTC 5 November
2017 are shown in Fig. 2. It is found that the frequencies
follow the Gaussian distribution, with average values of
-0.118 ℃ and 0.628 m s-1, respectively.

Figure 1. The distribution of AMDAR observations on 22 August 2017. (a) Spatial distribution (colors represent altitude), and (b)
temporal distribution.

Figure 2. The frequency distribution of the (a) temperature, (and) b wind speed differences (AMDAR- ERA-Interim) during 0000
UTC 25 August 2017-1800 UTC 5 November 2017. Red solid lines represent the Gaussian distribution according to the mean val-
ues and standard deviations of the differences.
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2.2 Observational error estimation method
The procedure used to estimate observational error

is to calculate the root mean square (RMS) differences
between AMDAR and ERA Interim. The RMS
differences at small spatial and temporal separation
include contributions from observational error of both
aircraft (σAMDAR1, σAMDAR2) and from mesoscale variability
within that small separation[13]:

σ2total ( )h = σ2
AMDAR1 ( )h + σ2

AMDAR2 ( )h + 2σ2meso (1)

where σ total ( )h is the RMS difference between two
reports (AMDAR and ERA-Interim) at altitude (h) and
σmeso is mesoscale variability.

Researchers point out that the AMDAR observa-
tional error is also influenced by wind speed [1, 3]. There-
fore, in the study, the observational error is expanded as
a function of altitude and wind speed:

σ2total ( )h, sp = σ2AMDAR1 ( )h, sp + σ2AMDAR2 ( )h, sp + 2σ2meso (2)

where σ total ( )h, sp is the RMS difference between
AMDAR and ERA-Interim at altitude (h) and wind
speed (sp), σmeso is mesoscale variability and it can be
ignored when the spatial and temporal separation
between the two data is small. If the mesoscale
variability is zero, Eq. (2) can be expressed as

σ2total ( )h, sp = σ2AMDAR1 ( )h, sp + σ2AMDAR2 ( )h, sp (3)

Further assume that there is no correlated error between
two AMDAR reports from two different aircrafts and the
expected error from each aircraft is equal (σAMDAR1 ( )h, sp =

σAMDAR2 ( )h, sp ). The observational error for an individual
aircraft may be estimated as

σAMDAR ( )h, sp =σ total ( )h, sp / 2 . (4)

2.3 Comparison of different observational errors
Employing Eq. (4), the observational error are

calculated, using the AMDAR reports and ERA-Interim
from 25 August 2017 to 5 November 2017. The change
with height of the temperature and wind speed error for
AMDAR are shown in Fig. 3. The WRFDA system
provides default observations for various observations,
and it is found that the default observational errors
(black lines) of wind speed and temperature in the
WRFDA for AMDAR are fixed as 3.6 m s-1 and 1 K
respectively. Fig. 3 indicates the magnitude of
observational error of NOAA(red line). The
observational error of NOAA was estimated by the same
method as the one used in this article, but it was
obtained by counting American aircraft reports [13]. The
present study (Blue line) is similar to NOAA’s study in
that their values are both smaller than the default value
in the WRFDA; the observational errors of this study
and NOAA are both altitude dependent. There are only
about 200 samples at the highest level. It may lead to
unstable statistics, so there is a jump at high altitudes in
the red line. And the area and amount of sample data

will affect the statistical results of observational errors.
The observational error of the red line is compared with
sounding data, and the observational error of the red line
is compared with ERA-interim. On the other hand, the
sample of the observational error of the red line is from
North America, which is somewhat different from
China. Thus, there is a slight difference between the
observational error of the red line and the observational
error of the blue line.

Figure 4 shows the variation of temperature and
AMDAR wind speed observational errors with wind
speed. It can be seen that the magnitude of the
observational error in the wind speed of Ding (red line,
the observational error of Ding was estimated by
comparing sounding with AMDAR reports) and this
study (blue line) are similar; the observational error in
the wind speeds of this study and Ding are both smaller
than the default value in the WRFDA (black line); the
observational error in the wind speeds of Ding and this
study both obviously increase with wind speed while the
default observational error in the WRFDA is constant.
However, the temperature observational error of this
study has different trends compared with that of Ding.

As discussed earlier, the AMDAR observational
error may depend on wind speed and altitude. This study
aims to design a set of wind speed and altitude
dependent AMDAR observational error (Table 1), and
replace the default AMDAR observational error in the
WRFDA with the new observational error of Table 1.
The new observational error scheme (Table 1) is speed
and altitude dependent, so it has certain differences with
Figs. 3 and 4. Almost at all heights, observational error
in wind speed decreases with wind speed and slightly
decreases with altitude. Observational error in
temperature does not change significantly with the wind
speed below 6km and decreases with the wind speed
above 6km; observational error in temperature obviously
decreases with altitude. In general, the observational
error in wind speed changes more obviously with the
wind speed, and the observational error in temperature
changes more obviously with height.

3 MODEL AND EXPERIMENTAL DESIGN

3.1 Model and assimilation system
The version 3.8 of the Advanced Research WRF

Model (ARW-WRF, hereinafter WRF) [14] is used as the
forecasting model in this study. All experiments are
based on the WRF Data Assimilation (WRFDA) three-
dimensional variational data (3DVAR) assimilation
system. Doubly-nested domains with horizontal
resolutions of 9 and 3 km, and with grid points of 649×
500 and 550 × 424 for outer domain and inner domain
respectively are employed (Fig. 5). The domain is
configured with 50 vertical levels and a 50hPa top. The
main physics parameterization schemes include the
WRF Single Moment 6-class (WSM6) microphysics
scheme [15], the Yonsei University (YSU) boundary layer
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Figure 4. AMDAR observational error change with wind height. Black solid lines represent default value of WRFDA, red solid lines
represent statistical value of Ding, and blue solid lines represent statistical value of this study. (a) Observational error in wind speed;
(b) temperature observational error.

Figure 3. AMDAR observational error change with height. Black solid lines represent default value of WRFDA, red solid lines rep-
resent statistical value of NOAA, and blue solid lines represent statistical value of this study. (a) Observational error in wind speed;
(b) temperature observational error; (c) total number of AMDAR observations used for statistics at different altitude.
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Altitude (km)

Temperature error (℃)

Wind peed error (m s-1)

Wind speed
(m s-1)

<3

3-6

6-9

>9

<3

3-6

6-9

>9

<0.8

0.918

0.888

0.927

0.960

1.321

1.655

2.115

3.043

0.8-2

0.833

0.763

0.768

0.842

1.275

1.618

2.098

3.048

2-4

0.705

0.692

0.685

0.687

1.201

1.433

1.793

2.971

Wind speed
(m s-1)

<4

4-8

8-12

>12

<4

4-8

8-12

>12

4-6

0.639

0.592

0.580

0.593

1.211

1.460

1.841

2.666

6-8

0.44

0.465

0.511

0.571

1.145

1.446

1.794

2.092

Wind speed
(m s-1)

<6

6-12

12-18

>18

<6

6-12

12-18

>18

>8

0.458

0.470

0.529

0.641

1.366

1.853

2.316

1.924

Table 1. Wind speed and altitude dependent AMDAR observational (σ-NEW).

3.2 Background error covariance
The background error covariance used in this study

is calculated by the NMC method [21]. Two month 12h
and 24 h forecasts from 1 September 2018 to 31 October
2018 are used to calculate background error covariance.
The CV_UV is selected as control variable option. The
control variables are U, V, Ps, T, and RHs. CV_UV did
not consider the multivariate correlation. Researches
show the control variables of CV_ψχ with that of
CV_UV in the 3DVAR system and conclude that

CV_UV performs better than the CV_ψχ in limited area
convection-scale data assimilation[22-23].
3.3 Experimental Design

To investigate the influence of new AMDAR
observational error on NWP forecasts, this study
presents two groups of two-month 3-hourly cycling data
assimilation and forecast experiments during 0000 UTC
1 September 2017-2100 UTC 31 October 2017 (Table
2). The CTL (Control) assimilates the AMDAR
observations using the default observational error in

scheme [16], the Rapid Radiative Transfer Model (RRTM)
longwave radiation scheme [17], the Dudhia shortwave
radiation scheme [18] and the Noah land-surface

model [19]. The Kain-Fritsch cumulus scheme [20] is only
used in the outer domain.

Figure 5. The domain for model forecasts and the distributions of the main observations in this domain (without AMDAR) at 1200
UTC 17 September 2017.
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WRFDA (σ - Default), and the NEW assimilates the
AMDAR observations using new observational error (σ-
NEW) (Table 1). The first forecast cycle uses the NCEP
global forecast system (GFS) analysis interpolated onto
the 9 km domain (Fig. 5) at 2100 UTC each day to
create the initial conditions, and then spin-up to 0000

UTC the next day. Subsequent data assimilation cycles
are run every 3h from 0000 UTC to 2100 UTC with the
24-h forecasts initialized at each cycle (Fig. 6). The 3-h
forecasts of WRF issued from the previous analysis are
used as the background.

Figure 6. Flow chart of the cycling DA experiments.

4 PSEUDO SINGLE AMDAR OBSERVATION
TESTS

To analyze the influence of new observational error
(σ - NEW) on analysis, pseudo single AMDAR
observations tests using σ - Default and σ - NEW are
performed. For each experiment, two pseudo
observation pairs are introduced at the model grid point.
The observation-background (O-B) of four pseudo
observations are set to be equal; thus, analysis

increments can partly reflect the structure of
observational error. To discuss the influence of altitude
dependent observational error on data assimilation, two
pseudo AMDAR observations for A and B with the same
wind speed (6.3 m s-1) are introduced at different model
levels (Table 3). Similarly, two pseudo AMDAR
observations for C and D at the same model level (12th

level) are introduced with different wind speed (Table 3)
to reflect the influence of wind speed dependent
observational error on data assimilation.

Experiment

CTL

NEW

AMDAR observational error

Default value (σ-Default)

New value list in Table1 (σ-NEW)

Meteorological observations

AMDAR and GTS data

AMDAR and GTS data

Table 2. Experimental design.

Altitude dependent

Wind speed dependent

Point

A

B

C

D

Model level

15th

5th

12th

12th

Wind speed (m s-1)

6.30

6.30

11.2

3.888

O-B of v-wind (m s-1)

1.0

1.0

1.0

1.0

O-B temperature (K)

1.0

1.0

1.0

1.0

Table 3. Pseudo single AMDAR observations.

Figure 7 shows the vertical profiles of analysis
increment of v-wind by assimilating pseudo AMDAR
observations at different altitudes with the same wind
speed. The analysis increment of point A and point B in
the experiment NEW using σ - NEW (Fig. 7b) is larger
than that in the experiment CTL using σ - Default (Fig.
7a), because the observational error in the wind speed of
σ - NEW is smaller than that of σ - Default and the
background error covariance used in CTL and NEW are
the same. It is found that, in experiment CTL, the
analysis increment of v-wind at point A is smaller than

that at point B (Fig. 7a), indicating that the background
error of point A is smaller than that of point B, because
vertical observational error of the σ-Default is constant.
Nevertheless, the analysis increment of v-wind at point
B is smaller than that at point A in experiment NEW
(Fig. 7b), though the background error of point A is
smaller than that of point B. It is because that the
observational error in the wind speed of the σ - NEW is
decreasing with altitude, the observational error in point
A is smaller than that of point B.
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Figure 7. The vertical profiles of analysis increment of v-wind by assimilating pseudo AMDAR observations at different altitudes
with the same wind speed using σ-Default and σ-NEW respectively. (a) CTL, and (b) NEW. The O-B of v-wind are 1 m s-1 of A and B.

Figure 8. The same as Fig. 7 but for temperature increment. (a) CTL, and (b) NEW. The O-B of temperature are 1 K of A and B.
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Figure 8 shows the vertical analysis increment of
temperature by assimilating pseudo AMDAR
observations at different altitudes with the same wind
speed. Similarly, it shows the difference in the size of
temperature analysis increments since temperature

observational error of σ-NEW is smaller than that of σ-
Default, and the difference in analysis increments with
altitude indicates that temperature observational error of
σ-NEW is altitude dependent.

Figure 9 shows the analysis increment of v-wind at
the 12th level by assimilating pseudo AMDAR
observations with different wind speeds at the same
level. It can be seen that the analysis increment of point
A and point B of v-wind in the experiment NEW using σ-
NEW (Fig. 9b) is larger than that in the experiment CTL
using σ - Default(Fig. 9a). This is because the
observational error in the wind speed of σ - NEW is
smaller than σ - Default since the domain averaged
background error covariance is used in the study. It is
found that the analysis increment of v-wind at point C is
equal to that at point D (Fig. 9a) using σ - Default,
because σ - Default is not wind speed dependent.
However, it is found that the analysis increment of v-

wind at point C is larger than that at point D using σ -
NEW (Fig. 9b), indicating that the observational error of
point C is smaller tthan that of point D. This is because
the observational error in the wind speed of σ - NEW
increases with the wind speed at this altitude (the σ -
Default is constant).

Figure 10 displays the analysis increment of
temperature at the 12th level by assimilating pseudo
AMDAR observations with different wind speeds at the
same level. Similarly, the difference in the size of
temperature analysis increments are found since the
temperature observational error of σ - NEW is smaller
than that of σ - Default, and the difference in analysis
increments with wind speed indicates that temperature
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Figure 9. Analysis increment of v-wind at 12th level by assimilating pseudo AMDAR observations with different wind speeds at the
same level using σ-Default and σ-NEW respectively. (a) CTL, and (b) NEW. The O-B of v-wind are 1 m s-1 of C and D. Vector repre-
sents the wind field of the background.

(a) CTL (b) NEW

observational error of σ-NEW is wind speed dependent.
In short, the results of Fig. 7, Fig. 8, Fig. 9, and Fig. 10
indicate that altitude and wind speed dependent

increments can be achieved due to the use of the altitude
and wind speed dependent AMDAR observational error.

Figure 10. The same as Fig. 9 but for temperature increment. (a) CTL, and (b) NEW. The O-B of temperature are 1 K of C and D.
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5 RESULTS OF 2-MONTH CYCLING DATA
ASSIMILATION AND FORECAST EXPERI⁃
MENTS

In this section, two-month 3-hour cycle
assimilation experiments (Table 2) are performed during
0000 UTC 1 September 2017-2100 UTC 31 October
2017. The root mean square error (RMSE) of analysis,
12 h forecast and 24 h forecast against ECMWF
reanalysis and radiosonde observations are calculated,
and the Fractions Skill Score (FSS) is also calculated to
evaluate the precipitation forecast skill quantitatively.
5.1 Effect on other variables

The CV_UV is chosen as the control variable of

background error covariance; therefore, there is no
correlation between u, v and other variables in the
background error covariance. Fig. 11 shows the 500hPa
height field of the analysis field at 0000 UTC 16
September 2017. It can be seen that during the first
assimilation process, although the wind speed
observation error is different, there is almost no
difference in the height field because there is no
correlation between u, v and other variables in the
background error. However, because the experiments
use cyclic assimilation, the model will be adjusted
during the forecast process, which will affect other
variables. Fig. 12 shows the 500hPa height field of the
analysis field at 1200 UTC 16 September 2017.

10 m s-1

10 m s-110 m s-1
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Figure 11. Analyzed geopotential height (GHT) (shaded color, Units: m2 s-2), and wind speed (vector, Units: m s-1) of 500hPa at 00:
00 on September 16 2017 from (a) ERA-interim, and experiments (b) CTL and (c) NEW.

Although the height field is not a direct influence
variable, the 500hPa height field of the two experiments
are significantly different after 5 cycles of assimilation
and mode adjustment. Compared with the ERA-interim

data, the height field of the CTL is significantly higher
in south China. Although the NEW also has a high
situation, it has a significant improvement compared
with the CTL.
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5.2 RMSE verification of analysis and deterministic
forecasts

In order to evaluate the impact of the new
observational error (σ - NEW) on assimilation and
forecast, the root mean square error (RMSE) of analysis,
12-h forecast and 24-h forecast against ECMWF
reanalysis are calculated. Fig. 10 shows the average
vertical profiles of the RMSE scores for the two
experiments including NEW and CTL which measure
the differences of u-wind(U), v-wind(V), w-wind(WV),
temperature(T), geo-potential height (Z) and water vapor
(Q) between the outputs (analysis,12-h forecasts and 24-
h forecasts) of model and the ECMWF reanalysis

respectively. The RMSE is the average value from 1
September to 31 October, 2017.

Figure 13a, b, c indicates that the RMSE for U, V
and WV are smaller in NEW than that in CTL, with the
most significant reductions at the altitudes of the
200hPa-700hPa. Compared with CTL, NEW improves
wind forecasts. Most of the improvements from the
NEW scheme in analyses still retain in the 24 h WRF
forecast. Fig. 13d shows that the RMSE scores of NEW
and CTL for temperature are comparable. This may be
contributed to the fact that the wind and temperature
analysis fields show different responses to the
observational errors. The response is considerably much

Figure 12. Analyzed geopotential height (GHT) (shaded color, Units: m2 s-2), and wind speed (vector, Units: m s -1) of 500hPa at 12:
00 on September 16 2017 from (a) ERA-interim, and experiments (b) CTL and (c) NEW.
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Figure 13. Averaged vertical RMSE profile of analysis(red) ,12-(blue) and 24-h(black) WRF forecasts for NEW (solid line) and CTL
(dashed line) against ECMWF analysis: (a) u-wind, (b) v-wind, (c) w-wind, (d) temperature, (e) geo-potential height, and (f) water
vapor.

stronger relating to the increased observational errors in
the wind analysis field [24]. Similarly, the RMSE scores
of NEW and CTL for water vapor are comparable (Fig.
13f). This is probably because there is no humidity
variable in the AMDAR observations. In Fig. 13e, the

results for geo-potential height of NEW are clearly
better than those of CTL. In general, NEW shows better
results for wind fields and geo-potential height than
CTL, but displays comparable results for water vapor
and temperature to CTL.

Model Evaluation Tools (MET) is a set of
verification tools developed by the Developmental
Testbed Center (DTC). It is to help users from the
numerical weather forecasting community, especially
users of the Weather Research and Forecasting(WRF)
model, evaluate the performance of numerical weather
predictions. In order to further evaluate the impact of the
σ - NEW, the root mean square error (RMSE) scores of
analysis, we also calculated 12 h forecast and 24 h
forecast against radiosonde observations using MET.
Fig. 14 presents the vertical profiles over the period of 2-
month of the RMSE for the two experiments including
NEW and CTL which measure the differences of u-wind
(U), v-wind(V), geo-potential height(HGT) and
temperature(T) between the outputs (analysis, 12 h
forecasts and 24 h forecasts) of model and the
radiosonde observations. The RMSE is the average value

from 1 September 2017 to 31 October 2017.
Similarly, the vertical profiles of the RMSE scores

over the period of 2-month for the u-wind and v-wind
also indicate that the NEW shows better results for wind
than CTL including analysis, 12 h forecast and 24 h
forecasts, especially between 700hPa and 200hPa. This
may be the result of the large amount of AMDAR data
between 700hPa and 200hPa. As the forecasting time
increases, the difference of the two experiments become
smaller. For geo-potential height variable, the NEW also
shows smaller RMSE values than CTL does. The RMSE
scores of 12 h forecasts and 24 h forecast for
temperature in NEW are slightly smaller than that in
CTL. However, the RMSE scores of analysis for
temperature in NEW and CTL are compared. It suggests
that the RMSE scores for the temperature variable in
NEW grows slower than those in CTL.
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Figure 14. Averaged vertical RMSE profile of analysis (red), 12- (blue) and 24-h(black) WRF forecasts for NEW (solid line) and
CTL (dashed line) against radiosonde observations: (a) u wind, (b) v wind, (c) geo-potential height and (d) temperature. The right
hand side of the vertical axis presents the total number of observations used for generating the verification scores.
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5.3 Fractions Skill Score for precipitation forecast
Fractions Skill Score (FSS) is one of the

neighborhood verification methods calculated to
evaluate the precipitation forecast skill [25]. FSS has a
range from 0 to 1. A score of 1 represents complete
overlap between forecast and observed events, and a
score of 0 means no overlap between forecast and
observed events. In this study, 6-h accumulated
precipitation is verified against the China Hourly
Merged Precipitation Analysis (CHMPA) [26] from China
Meteorological Administration, and the resolution of
CHMPA data is 10km. The neighbor size used in
calculating FSS is 6km and the domain for the FSS is
d02.

Figure 15 shows averaged FSS over the period of 2-
month for the forecasts of 6-h accumulated precipitation
over different lead times with precipitation thresholds of
(a) 0.1mm, (b) 4mm, (c) 13mm and (d) 25mm for CTL
(blue bars) and NEW (red bars). Fig. 13a shows clearly
the FSS of NEW is better than that of CTL with
precipitation thresholds of 0.1mm. However, for 6-h
accumulated precipitation greater than 4mm, FSS is

larger in CTL than in NEW during the 12-h and 24-h of
forecasts (Fig. 13b). Fig. 13c and d shows the FSS of
NEW is higher than that of CTL with precipitation
thresholds of 13mm and 25mm, and it suggests that the
result of NEW is better than that of CTL for heavy
rainfall forecasts. It can be concluded that new AMDAR
observational error (σ -NEW) can improve the forecasts
of rainfall.

Figure 16 shows averaged BIAS over the period of
2-month for the forecasts of 6-h accumulated
precipitation over different lead times with precipitation
thresholds of (a) 0.1mm, (b) 4mm, (c) 13mm and (d)
25mm for CTL (blue bars) and NEW (red bars). BIAS
scores show that false alarm ratio of precipitation is high
for two experiments. Compared with the CTL, NEW has
BIAS scores closer to 1, which indicates that NEW
reduces the false alarm ratio.

6 CONCLUSIONS AND DISCUSSION

The AMDAR sensor network provides temperature
and wind observations with high spatial and temporal
resolution. In this study, the altitude and wind speed

1.6 2.0 2.4 2.8 3.2
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Figure 15. Average fractions skill score for the forecasts of 6-h accumulated precipitation over different lead times with precipitation
thresholds of (a) 0.1mm, (b) 4mm, (c) 13mm and (d) 25mm for CTL (blue bars) and NEW (red bars).

Figure 16. Average bias score for the forecasts of 6-h accumulated precipitation over different lead times with precipitation thresh-
olds of (a) 0.1mm, (b) 4mm, (c) 13mm and (d) 25mm for CTL (blue bars) and NEW (red bars).
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dependent AMDAR observational error is estimated.
Pseudo single AMDAR observation tests and two-month
3-hourly cycling data assimilation and forecast
experiments are performed based on the Weather
Research and Forecasting Model (WRF) and its Data
Assimilation system (WRFDA).

The statistical results show that the AMDAR
observational error is altitude and wind speed dependent.
The observational error in the temperature and wind
speed of AMDAR slightly decreases with altitude
increase. A typical characteristic of AMDAR
observation is that the observational error in wind speed
of AMDAR increases with the magnitude of wind speed.
Therefore, a new observational error that is altitude and
wind speed dependent is identified.

The results of Pseudo AMDAR observation
assimilation tests show altitudes and wind speeds
dependent increments can be achieved with the use of
the altitude and wind speed dependent AMDAR
observational error. New observational error is able to
provide more reasonable analysis increments than the
default observational error in WRFDA does.

The root mean square error (RMSE) of two-month
3-hourly cycling data assimilation experiments indicates
that the experiment NEW using altitude and wind speed
dependent AMDAR observational error has superiority
over the experiment CTL for wind field and temperature
field. There is less impact of the new observational error
scheme on the humidity field. FSSs of the two-month
cycling for rainfall forecasts also indicate that the use of
new observational error has a positive impact on the
precipitation forecasting skill. The enhancement for
heavy rainfall is more noticeable.

These conclusions highlight the value of the
altitude and wind speed dependent AMDAR
observational error in data assimilation for prediction of
atmospheric variables and precipitation. However, the
wind direction error of AMDAR used in this study is the
default value in WRFDA. Wind direction error will be
analyzed in our next step. Additionally, the characteristic
of AMDAR observational error in different seasons will
also need to be analyzed.
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