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Abstract: In this paper, the winter visibility in Jiangsu Province is simulated by WRF-Chem (Weather
Research and Forecasting (WRF) model coupled with Chemistry) with high spatiotemporal resolutions.
Simulation results show that WRF-Chem has good capability to simulate the visibility and related
local meteorological elements and air pollutants in Jiangsu in the winters of 2013–2017. For visibility
inversion, this study adopts the neural network algorithm. Meteorological elements, including wind
speed, humidity and temperature, are introduced to improve the performance of WRF-Chem relative
to the visibility inversion scheme, which is based on the Interagency Monitoring of Protected Visual
Environments (IMPROVE) extinction coefficient algorithm. The neural network offers a noticeable
improvement relative to the inversion scheme of the IMPROVE visibility extinction coefficient,
substantially improving the underestimation of winter visibility in Jiangsu Province. For instance,
the correlation coefficient increased from 0.17 to 0.42, and root mean square error decreased from 2.62
to 1.76. The visibility inversion results under different humidity and wind speed levels show that the
underestimation of the visibility using the IMPROVE scheme is especially remarkable. However,
the underestimation issue is essentially solved using the neural network algorithm. This study
serves as a basis for further predicting winter haze events in Jiangsu Province using WRF-Chem and
deep-learning methods.

Keywords: WRF-Chem; visibility; eastern China; neural network algorithm; IMPROVE

1. Introduction

Daytime visibility is defined as the maximum horizontal distance at which an object can be
seen and recognized against the sky background under current weather conditions. In meteorology,
low atmospheric visibility generally refers to visibility impairment caused by weather processes,
such as fog, haze, rain, snow, and sandstorms. Due to the rapid development of urbanization and the
sharp increase in pollutant emissions, high concentrations of aerosols can also lead to low visibility,
which has become one of the most important atmospheric environmental problems in many regions
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worldwide. Air pollution has adverse effects on human physiological function and increases the risk
of death [1,2]. It also has considerable potential impacts on the tourism industry [3] and ecological
environment [4]. Therefore, accurate simulation and prediction of air pollution are necessary for public
health and sustainable development.

Studies show that the formation and persistence of low-visibility weather are closely related
to the chemical processes of aerosols. Haze days are always accompanied by high concentrations
of PM2.5, PM10, black carbon, sulfate, nitrate, organic matter, and dust [5]. Low-visibility weather
is also affected by local meteorological conditions, such as temperature inversion, higher humidity,
and lower wind speed [6]. Moreover, the relative contribution of meteorological factors exceeds 50% of
the variance of low-visibility weather [5]. Recent studies [7,8] indicate that the reduction of sea ice in
the Arctic in autumn will lead to anomalies in the atmospheric circulation over the Eurasian continent,
the weakening of cyclone activity in the northern part of the country and stabilization of atmospheric
stratification, thus increasing haze pollution in the eastern part of the country in winter.

Recently, the ability of the current global dynamical prediction system to predict haze days in
regional areas is far from meeting the actual needs of disaster prevention and reduction. Moreover, it is
difficult to rapidly improve its prediction performance in the short term [9]. In this respect, downscaling
is a relatively efficient and feasible method. The dynamical downscaling method uses regional climate
models with higher resolution and more detailed physical process parameterization schemes by nesting
global climate models to improve the simulation performance of regional climate, especially climate
in complex underlying surfaces [10]. A number of studies have shown that regional climate models
perform better than global models in simulating the spatial distribution of climate factors [11,12].
At present, the WRF-Chem (Weather Research and Forecasting (WRF) model coupled with Chemistry)
model has been widely used to study air pollution [13,14]. Most studies of its application focus on the
concentration and variation of the atmospheric pollutants in a certain pollution episode. However,
few studies have been performed to research short-term climate predictions to inverse and diagnose
atmospheric visibility. In spite of the excellent performance of the WRF model in the field of short-term
climate prediction, its ability to simulate the meteorological elements, air quality and inverted regional
visibility must be further examined.

Located along the eastern coast of mainland China, Jiangsu Province is an important economic
region in China with rapid economic growth and fast worsening air quality in recent decades.
Liu et al. (2017) show that the low visibility events in Jiangsu Province occur frequently in winter
and are often haze events [9]. In addition, the regional continuous haze days show increasing
trends in recent years. As urban areas expand each year, industrial emissions, coal consumption,
and car ownership increased accordingly, resulting in regional temperature increases and relative
humidity decreases that form the urban heat island and dry island effects. Hence, meteorological
conditions became more favorable for haze formation and maintenance and thus favored more haze
days, which caused significant increases in continuous, regional, and regional continuous haze days.
Song et al. (2017) used the WRF-Chem model to examine the relationships between dust emissions
and meteorological variables (wind speed, humidity, and temperature) over East Asia during the
period of 1980–2015. Result shows that these meteorological variables substantially contribute to the
haze days [15]. The northerly monsoon is the prevailing wind direction in winter in Jiangsu Province,
and higher wind speed shows a strong correlation with higher visibility [16].

Jiangsu Province is the core area of the Yangtze River Delta region, which is one of the most
air-polluted regions in China. Similar to the conditions in eastern China, continuous air polluting
processes there were jointly affected by pollutant emissions, which are mainly produced by industrial
development and transport pollution, and the weather conditions that favor the accumulation of
pollutants as well. Steady meteorological conditions were important external factors affecting air
pollution. Winter had the most stable meteorological conditions, thus most regional haze days appeared
in winter, accompanied by lower visibility [17–19].
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Considering the WRF-Chem model does not output the visibility values directly, many methods
are developed to inverse visibility by the WRF-Chem output. The Interagency Monitoring of Protected
Visual Environment (IMPROVE) monitoring project in the United States is the most widely used.
Recently, with the development of deep learning technology, some deep learning algorithms such as
neural network and multi-criteria decision analysis are also used to analyze the air quality [20,21].
In this study, we systematically evaluate the ability of WRF-Chem to reproduce winter visibility in
Jiangsu Province and introduce local meteorological elements (wind speed, humidity, and temperature)
and a neural network scheme to further improve the simulation results. This study will provide a
scientific basis for further developing a winter visibility forecast in Jiangsu Province.

2. Experimental Design, Data and Method

2.1. WRF-Chem Numerical Experiment Design

The WRF-Chem model was developed by NOAA (National Oceanic and Atmospheric
Administration) Forecast System Laboratory (FSL) in the United States. The model is a new-generation
regional air quality model that is fully coupled with the meteorological model (WRF) and chemical
model (Chem) online [22]. This model has the full function of the WRF model and can be used to
predict and simulate temperature, wind, cloud, and rain processes as well as other physical quantities.
In addition, it can couple the weather forecast/diffusion model to simulate emission and transport
components as well as the weather/diffusion/air quality model with integrated chemical species to
simulate the interaction among ozone, ultraviolet radiation, particulate matter, etc.

The WRF-Chem model version 3.9.1 used in this paper was released in 2017, representing the latest
version. The air quality in Jiangsu Province in the winters of 2013–2017 is simulated. The integration
time is from 00:00 UTC on November 16th each year to 00:00 UTC on March 1st of the following year,
and the first 15 days are spin-up time. The initial meteorological field uses NCEP FNL (National Centers
for Environmental Prediction Final) 1◦ × 1◦ data with an interval of 6 h. The model outputs once every
hour with a spatial grid of 18 km and a grid number of 100 × 100 (Figure 1). The physical schemes
include the Kain–Frisch convective scheme [23], Lin microphysics scheme [24], RRTMG-K radiation
scheme [25], YUS boundary layer meteorological scheme [26], and Noah land surface scheme [27]. With
regard to the meteorological chemical mechanism, the CBM-Z carbon bond mechanism, which includes
67 chemical reaction species and 164 chemical reactions, is adopted. Moreover, the MOSAIC mechanism
is adopted as a chemical mechanism of aerosols, which includes sulfate (SULF = SO4

2− + HSO4−),
methyl sulfuric acid (CH3SO3), nitrate (NO3

2+), chloride (CL−), carbonate, ammonium salt (NH4
+),

sodium salt, calcium salt, black carbon, organic carbon, and other aerosols [28]. The direct effects of
aerosols are calculated based on Fast et al. (2006) and the Mie scattering theory [29]. The estimation
of indirect effects of aerosols includes the effect of clouds on shortwave radiation, the calculation
of aerosol activation/suspension, and the calculation of cloud droplet concentration is based on the
number of activated aerosols [30,31].

The Multiresolution Emission Inventory for China (MEIC) is a set of anthropogenic emission
inventory models of atmospheric pollutants and greenhouse gases in China based on the cloud
computing platform. The MEIC is currently the most complete and accurate source of emissions in
China. With a 0.25-degree resolution for the base years 2008 and 2010, the MEIC covers 10 major
atmospheric pollutants and greenhouse gases, such as SO2, NOx, CO, NMVOC, NH3, CO2, PM2.5,
PM10, BC and OC, and more than 700 anthropogenic emission sources. The MEIC 2010 V1.2 monthly
gridded emissions with the spatial resolution of 0.25◦ × 0.25◦ is used in this paper [31–35].

2.2. Visibility Inversion Scheme

In recent years, many studies have been performed to research the impact of aerosols on visibility
in China and abroad. Among them, the Interagency Monitoring of Protected Visual Environment
(IMPROVE) monitoring project in the United States is the longest project [36,37]. Since 1985, the project
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has made long-term observations and research on important optical parameters related to atmospheric
visibility and the chemical composition of aerosols. Of numerous visibility inversion schemes, the most
commonly used method is the atmospheric extinction coefficient estimation model. The atmospheric
extinction coefficient refers to the total optical attenuation in a unit distance. The attenuation is
caused by the scattering and absorption of gas and aerosols between the source and the receiver.
Irrespective of the interference of special weather processes (such as rain, snow, fog, and dust
storms, etc.) and the pollutant transport, the main factors affecting the extinction coefficient are
summarized. These influencing factors related to aerosols include mass concentration of aerosols,
particle size spectrum distribution, chemical composition, hygroscopicity, black carbon and its mixed
state, and the shape of particles. The extinction calculation method is proposed by the IMPROVE
project. The calculation idea is to reconstruct aerosol mass concentration and environmental extinction
by measured aerosol species, including sulfate, nitrate, ammonia, organic matter, black carbon, coarse
particulate matter (PM2.5–10), and soil-derived aerosols. Moreover, the method is the basis for assessing
the implementation of the regional haze rule (1999). Thus, we also adopted this method to calculate
the visibility in Jiangsu Province through the inversion of aerosol concentration simulated by the air
quality model WRF-Chem.
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Based on the modified empirical formula of extinction coefficient from IMPROVE of the United
States in 2012 [38], the formula of atmospheric visibility inversion is established.

v = K/Bext

where K is a constant with a value of 3.912, v is atmospheric visibility (km), and Bext (km−1) is the
extinction coefficient. The extinction coefficient is calculated as follows:

Bext = Bsg + 2.2 ×fs(RH) × S(sulfate) + 4.8× fL(RH) × L(sulfate) + 2.4× fs(RH)

×S(nitrate) + 5.1× fL(RH) × L(nitrate) + 2.8× S(OM) + 6.1
×L(OM) + 10× [EC] + [FS] + 0.6× [CM] + 0.33× [NO2]
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where Bsg is the Rayleigh scattering extinction coefficient (Mm−1); fs(RH) and fL(RH) are the moisture
absorption growth coefficients of coarse and fine particles, respectively, and they are functions of
relative humidity (RH) [37]; L(X) and S(X) represent the mass concentration of coarse and fine aerosol
particles (unit: µg/m3), respectively, in which X denotes sulfate, nitrate and organic matter (OM); [EC],
[FS] and [CM] are elemental carbon concentration, fine soil dust aerosol concentration (PM2.5) and
coarse particle concentration (PM10) (unit: µg/m3), respectively; and [NO2] is the volume fraction
(10−9) of NO2.

Simulated by WRF-Chem, the concentration of air pollutants, i.e., ρ(SO4
2−), ρ(NO3

−), ρ(NH4
+),

ρ(OM), ρ(BC), ρ(PM10), ρ(PM2.5) and ρ(NO2) are obtained. Using these factors and RH,
the atmospheric extinction coefficient is calculated, and the visibility is subsequently obtained.

According to two calculation reports of the World Meteorological Organization (WMO) in 1990
and 2008, the conversion formulas between manual and automated visibility observation are as follows.

VISinstrumental

VISobserver
=

(1/k)∗ ln(1/0.05)
(1/k)∗ ln(1/0.02)

≈ 0.766

In the equation, VISinstrumental is visibility obtained from the automated observation, VISobserver is
visibility obtained from the manual observation, and k is the extinction coefficient.

Since January 1st 2014, the visibility observations were all performed by automatic observers in
Jiangsu Province. Therefore, the visibility data before January 1st 2014 are converted into automatic
observation visibility.

2.3. Visibility Correction Scheme

As the extinction coefficient formula of IMPROVE does not consider weather processes and
external pollutant transport, the visibility inversion might be impacted to some extent. Therefore, in this
paper, a method of visibility inversion is introduced to increase the weight of meteorological factors.

As the impact of meteorological factors on visibility is complex and nonlinear, a deep learning
algorithm is adopted for the inversion scheme of visibility. Deep learning is a subfield of machine
learning. It is a new approach of learning representation from data that emphasizes learning from
continuous layers that correspond to meaningful representation. The higher layer level contains
richer information. In deep learning, these layers are almost always obtained by a model called a
neural network. The structure of the neural network is stacked layer by layer. The neural network
is derived from neurobiology. However, a deep learning model is a mathematical framework for
learning representation from data in contrast to a brain model. In this paper, a simple but typical
neural network algorithm is used to build up the visibility model based on the relationship between
the meteorological/chemical factors and the visibility. Thus, this model can overcome the limitations of
the traditional multivariate linear regression method in statistical modeling and improves visibility
inversion products.

In the extinction coefficient formula in Section 2.2, the visibility inversion scheme based on the
extinction coefficient formula takes into account chemical factors, such as sulfate, nitrate, ammonia,
OM, black carbon, PM (PM2.5–10) and aerosol factors, whereas meteorological factors are not included.
However, in recent years, many studies [39,40] have shown that surface meteorological factors, such as
temperature, humidity, and wind, have an important impact on regional low visibility episodes.
Therefore, it is necessary to introduce these factors into the model of visibility inversion.

The surface meteorological elements, i.e., 2-m humidity, 2-m air temperature, 10-m meridional and
zonal wind speed, are obtained from WRF-Chem simulation. Furthermore, the air pollutants which are
in the IMPROVE equation, including sulfate, nitrate, ammonia, OM, black carbon, PM (PM2.5–10) and
aerosol factors, are also involved in the neural network model. Along with the modulated visibility
based on the scheme in 2.2, the observed visibility is modeled. The training period is 90 days in the
winter of 2013, and the daily visibility in winters of 2014–2017 is evaluated.
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The multilayer neural network is a deep learning method, and its training mainly focuses on the
four factors as follows [41]:

(1) Layer: it is the core component of neural network. It is a data processing module that
extracts representation from input data. Thus, simple layers are linked to realize progressive
data distillation.

(2) Input data and corresponding targets: in this paper, the input training data are 2-m humidity,
2-m air temperature, 10-m meridional and zonal wind speed, sulfate, nitrate, ammonia, OM,
black carbon, PM (PM2.5–10), and aerosol factors in the winter of 2013 simulated by WRF-Chem.
The target data are the visibility diurnal series in the Yangtze River Delta in winter of 2013.

(3) Loss function: it is used to measure the performance of the neural network on training data
to ensure the network progresses correctly. In this paper, the mean square error between the
prediction and observation data are used as the loss function.

(4) Optimizer: it is a mechanism for updating the network based on training data and loss function.
The smaller the loss function value, the better the performance of the neural network model.

The relationship among the four factors is shown in Figure 2. Multiple layers are linked together,
forming a network, and the input data are mapped into predicted values by the network. Then, the loss
function compares these predicted values with targets and obtains the loss values, measuring the
matching degree between predicted values and targets. Optimizer updates the weight of network by
the loss value. The first order optimization algorithm is Gradient Descent.
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This paper uses the neural network algorithm to investigate the relationship between the
meteorological and chemical factors and the visibility from the training data set. The neural network
algorithm uses meteorological and chemical factors over the Jiangsu province to automatically extract
features that can be used to invert the visibility. A one-way propagation multi-layer feedforward
network is used in this paper. The meteorological and chemical factors can be treated as neurons of the
input layer. Moreover, each of the three hidden layers has 64 units. The input signal passes through
each hidden layer in turn to the output layer node.

2.4. Error Analysis Method

In general, four error analysis methods are available, including correlation coefficient (R), root mean
square error (RMSE), mean fractional error (MFE), and mean fractional bias (MFB) [42]. In numerical
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simulation, a model performance goal is met when both MFE and MFB are less than or equal to +50%
and ±30%, respectively. This standard is also used in the verification of model products in our study.

R =
Cov(S−O)√
Var(S)Var(O)

RMSE =

 1
n

n∑
i=1

(S(i) −O(i))2


1
2

MFE =
1
n

n∑
i=1

∣∣∣∣∣∣ S(i) −O(i)
O(i) + S(i)/2

∣∣∣∣∣∣
MFB =

1
n

n∑
i=1

(
S(i) −O(i)

O(i) + S(i)/2

)
In the above equations, S and O represent the simulated and observed sequence, respectively.

The number of samples is n, and sample i is recorded as S (i) and O (i), respectively. Cov (S, O) is the
covariance of S and O. Var (S) and Var (O) are the variances of S and O, respectively.

2.5. Observation Data

The environmental monitoring data are hourly monitoring data of atmospheric chemical
composition obtained from 72 environmental monitoring stations in Jiangsu Province from 2013
to 2017. The chemical components include SO2, NO2, PM10, PM2.5, CO, and O3. The location
distribution of the 72 stations is marked by red dots in Figure 3. As noted in Figure 2, rather than being
evenly distributed throughout the area of Jiangsu Province, these monitoring stations are centered on
cities. Therefore, when analyzing a city, the results of all the monitoring station in this city are equally
weighted and averaged as the monitoring values of atmospheric chemical composition of the city.
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Meteorological observation data adopt the 3-hourly surface observation data from 70 stations,
including 3 national base stations, 21 basic stations, and 46 general stations in Jiangsu Province. The data
contain surface air temperature measured at 2 m above ground, relative humidity, wind direction,
weather phenomena, visibility, precipitation, and other meteorological elements. As noted in Figure 2,
the locations of 70 stations marked by blue dots are distributed evenly in Jiangsu Province.

3. Simulation Result Analysis

3.1. Simulation of Meteorological Elements in Jiangsu Province

The model results are interpolated to the locations of 70 meteorological stations in Jiangsu
Province. Further, the simulated regional average value is compared with the observed average value
of 70 stations to test the ability of the WRF-Chem model to simulate the winter meteorological elements
in Jiangsu Province from 2013 to 2017.

The observed and simulated spatial distribution of 2013–2017 winter mean visibility in Jiangsu
province is shown in Figure 4. The winter mean visibility is lower than 8 km over most of the area,
which can be well reproduced by WRF-Chem. However, the simulation somewhat overestimates and
underestimates the visibility in the northern and southern part, respectively, which means the haze
events could be underestimated and overestimated correspondingly.

Figure 5 shows the observed and simulated data by the WRF-Chem model in winters of 2013–2017
in Jiangsu Province. The data include the 2-m air temperature (T2), 2-m relative humidity (RH2), 10-m
wind speed (WS10) and the time series of visibility (VIS). The 3-hourly observation data are rendered
in scattered red dots. The WRF-Chem model outputs once an hour as marked by a black curve.
The value at the upper right corner is the correlation coefficient (R) of the observed and simulated
3-hourly data. As the observation’s time step is 3-hour, the length of the time series used for statistical
calculation is 720. To evaluate the simulation quantitatively, the statistics of meteorological variables
obtained from observation and simulation are also calculated, as shown in Table 1. As presented in
Figure 5 and Table 1, the most effective simulation is the temporal variation of T2 with an R reaching
0.95, followed by the simulation of the temporal variation of RH2 with an R of approximately 0.9.
In addition, the mean relative error of visibility in Table 1 is minus 32% and is close to the standard
of 30%. Additionally, the mean relative deviation is less than 50%. Hence, the inversion results are
generally useful. Moreover, the inverted visibility obtained from output products from WRF-Chem
model is also highly correlated with the actual observation with an R of 0.77. The black dotted line
in Figure 5d represents the visibility threshold of haze events (7.5 km), and the number of haze days
inverted by WRF-Chem overestimates the observed data obviously.

Table 1. Correlation coefficient (R), root mean square error (RMSE), mean fractional error (MFE),
and mean fractional bias (MFB) of the multi-winter (2013–2017) mean 3-hourly T2, RH2, WS10, and VIS
simulated by WRF-Chem model compared to the observation in Jiangsu Province.

Weather Element R RMSE MFE MFB

T2(◦C) 0.95 0.97 0.04 0.11
RH2(%) 0.90 5.95 −0.02 0.04

WS10(m/s) 0.43 0.75 −0.02 0.19
Visibility(km) 0.76 3.70 −0.32 0.33
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Figure 5. The temporal variation of multi-winter (2013–2017) mean 3-hourly (a) 2m temperature, (b) 2m
relative humidity, (c) 10m wind speed, (d) visibility in Jiangsu province in observation (red spots) and
WRF-Chem simulation (black curves).

To test in detail the ability of the WRF-Chem model to simulate urban meteorological elements and
the inverted visibility, four representative cities in Jiangsu Province were selected, namely, Xuzhou City
(XZ), Yancheng City (YC), Nanjing City (NJ), and Suzhou City (SZ). The locations of these four cities,
which are shown in Figure 3, are as follows: Xuzhou City is located in the extreme northwest of Jiangsu
Province close to Shandong Province; Yancheng City is located on the east coast of Jiangsu Province
and has the longest coastline in Jiangsu Province; Nanjing is located in the southwest of Jiangsu
Province, bordering Anhui Province; and Suzhou is located in the south of Jiangsu Province near
Shanghai. Figures 6 and 7 show the mean values of T2, RH2, and WS10 obtained from observation and
WRF-Chem model inversion in the winters of 2013–2017 in these four cities as well as the time series of
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VIS from observation and inversion based on WRF-Chem products. Meanwhile, the statistics of each
meteorological variable obtained from observations and simulations are also calculated, as shown in
Table 2. Similar to the simulation results in Jiangsu Province, the simulation of temporal variation
of T2 in each city is the most effective, with an R of approximately 0.90, followed by the temporal
variation of RH2, with an R of approximately 0.8. Moreover, the average relative errors of all variables
in Table 2 are within the range of minus 30% and plus 30%, and the average relative deviation is less
than 50%, which meet the standards of accurate simulation. The inverted visibility obtained from
output products based on the WRF-Chem model is also highly correlated with the actual data, with an
R of approximately 0.5. The dotted line in the visibility curve figure is the visibility threshold of haze
(7.5 km). The visibility curve and scattering points of XZ for most of the wintertime are below the dotted
line. This could be attributed to that XZ is located in the northwest of Jiangsu Province with a prevalent
northwest wind in winter. Thus, air pollutants are continuously transported from North China and
Central China, resulting in frequent low-visibility weather in XZ in winter. The visibility of YC is
obviously higher than that of XZ. The visibility of YC inverted by WRF-Chem can reach a maximum of
77 km. This is mainly because YC is located on the eastern coast of Jiangsu Province, and the strong
local sea–land wind helps to remove pollutants. On the whole, the ground meteorological elements
simulated by WRF-Chem and the values and temporal variation of visibility obtained from inversion
are in good agreement with the observations.
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the city of Xuzhou City (XZ) (left column) and Yancheng City (YC) (right column).
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Figure 7. The temporal variation of multi-winter (2013–2017) mean 3-hourly T2, RH2, WS10, and VIS
from top to bottom, obtained from observation (red dots) and WRF-Chem simulation (black curves) in
the city of Nanjing City (NJ) (left column) and Suzhou City (SZ) (right column).

Table 2. R, RMSE, MFE and MFB of the multi-winter (2013–2017) mean 3-hourly T2, RH2, WS10, and
VIS simulated by WRF-Chem model compared to the observation in the four cities of XZ, YC, NJ,
and SZ.

Weather Element City R RMSE MFE MFB

T2(◦C)

XZ 0.90 1.51 −0.22 0.45
YC 0.91 1.38 0.24 0.40
NJ 0.90 1.36 −0.16 0.14
SZ 0.87 1.30 0.014 0.10

RH2(%)

XZ 0.78 10.50 −0.06 0.10
YC 0.84 11.26 −0.08 0.09
NJ 0.83 7.88 −0.01 0.07
SZ 0.78 9.25 −0.04 0.07

WS10(m/s)

XZ 0.36 1.01 −0.02 0.34
YC 0.44 1.07 −0.08 0.27
NJ 0.38 1.07 −0.08 0.25
SZ 0.28 1.14 0.00 0.26

Visibility
(VIS, km)

XZ 0.59 3.16 −0.03 0.26
YC 0.53 6.52 0.16 0.33
NJ 0.54 3.26 −0.24 0.34
SZ 0.48 4.49 −0.30 0.42
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3.2. WRF-Chem Simulation of Air Pollutants in Jiangsu Province

The monthly mean concentrations of SO2, NO2, PM2.5, PM10, CO, and O3 in Jiangsu Province
during the winters of 2013–2017 obtained from the observation and WRF-Chem simulation are shown
in Figure 8. WRF-Chem has a good ability to simulate the monthly variation of pollutants in Jiangsu
Province in winter. Nevertheless, exceptions of underestimating PM2.5 and overestimating PM10 are
also observed.
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Figure 8. Comparison of monthly mean atmospheric pollutant concentrations between observation
and WRF-Chem simulation in winters of 2013–2017.

Figure 9 shows the diurnal variation curves of SO2, NO2, PM2.5, PM10, CO, and O3 obtained
from observation and WRF-Chem simulation. SO2, NO2, PM2.5, PM10, and CO have similar diurnal
variations. The concentration begins to increase at approximately 08:00 LST and then slowly declines
in the afternoon, reaching the lowest level at approximately 15:00 LST. Then, the value increases again
and becomes steady after approximately 17:00 LST. The variation is mainly due to human activities.
In the rush hours of approximately 08:00 LST and 17:00 LST, automobile emissions are significantly
higher, thus resulting in an increase in pollutants. The variation curve of O3 also begins to increase
at approximately 08:00 LST followed by a peak observed at 15:00 LST. Then, levels begin to decline
and are relatively stable after 19:00 LST. This is because solar radiation is the main factor affecting the
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concentration of O3. The test results indicate that the R values of PM2.5, PM10, CO, and O3 obtained by
WRF-Chem simulation pass the 90% confidence test (R threshold is 0.33). The simulation reasonably
reproduces the daily variation characteristics of each pollutant concentration.
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and WRF-Chem modulation. The R thresholds of passing 90% and 95% confidence tests are 0.33 and
0.388, respectively.

3.3. Test for Modified Visibility Based on the Neural Network Scheme

WRF-Chem shows a low ability to represent the daily visibility over Jiangsu Province. The R
of the daily mean visibility between observation and inversion in winters of 2014–2017 is only 0.17
(Figure 10). Therefore, we used the neural network to modify the daily visibility series obtained from
WRF-Chem inversion.

Based on previous work on the physical linkage between weather conditions and winter haze,
the contribution of near-surface temperature, wind, and other meteorological factors to the variance
of haze episodes can exceed 50% [1,30,31]. Moreover, Section 3.1 also proves that WRF-Chem has a
strong ability to simulate these three meteorological elements. Therefore, three variables, including 2-m
temperature, 10-m meridional and zonal wind speed, obtained from WRF-Chem simulation are
employed for the neural network scheme. The training period is 90 days in the winter of 2013. The daily
visibility series in winters of 2014–2017 are modified, as shown in Figure 10b.

Figure 10a shows the daily visibility series in the winters of 2014–2017 obtained from observation
and WRF-Chem based on extinction coefficient inversion. Notably, the visibility inverted by this
method is generally underestimated. This problem also occurs in the hourly series in Figure 4. After the
modification of the neural network model by introducing meteorological factors, the underestimation
of the inverted visibility is mostly solved. The statistical results of R, RMSE, MFE and MFB are
shown in Table 3. Remarkably, the neural network significantly improves the visibility directly
inverted by WRF-Chem based on the extinction coefficient. Here, R increased from 0.17 to 0.42,
and RMSE/MFE/MFB decreased from 2.62/−0.26/0.33 to 1.76/−0.05/0.12.



Atmosphere 2020, 11, 520 14 of 18

Atmosphere 2018, 9, x FOR PEER REVIEW  15 of 20 

 

directly inverted by WRF-Chem based on the extinction coefficient. Here, R increased from 0.17 to 

0.42, and RMSE/MFE/MFB decreased from 2.62/−0.26/0.33 to 1.76/−0.05/0.12. 

 

Figure 10. Time series of daily mean visibility obtained from observation and WRF-Chem model 

simulation corrected by the neural network in Jiangsu Province in winters of 2014–2017. 

Table 3. R, RMSE, MFE and MFB of daily mean visibility (360 days by length) between observation 

and WRF-Chem model simulation corrected by neural network in Jiangsu Province in winters of 

2014–2017. 

Scheme R RMSE MFE MFB 

IMPROVE 0.17 2.62 −0.26 0.33 

Neural Network 0.42 1.76 −0.05 0.12 

To further evaluate the correction ability of the neural network for visibility simulation, the 

visibility obtained from inversion is evaluated at different humidity and wind speed levels. In view 

of the daily series of surface relative humidity (RH) in winters of 2014–2017, there are only two days 

with RH less than 60% and zero days more than 90%. Therefore, the observed RH is divided into four 

grades, namely, RH < 70%, 70% ≤ RH < 75%, 75% ≤ RH < 80% and RH ≥ 80%. Then, the MFE and MFB 

of atmospheric visibility simulated by the two schemes in each grade are calculated. Similarly, wind 

speed (WS) is divided into three grades, namely WS < 2 m/s, 2 m/s ≤ WS < 2.5 m/s, and WS > 2.5 m/s, 

and the corresponding MFE and MFB are also computed. As noted in Figure 11, the visibility 

inversion performance of the IMPROVE extinction coefficient formula is unsatisfactory under low 

RH, and the visibility is significantly underestimated. However, its performance improves as RH 

Figure 10. Time series of daily mean visibility obtained from observation and WRF-Chem model
simulation corrected by the neural network in Jiangsu Province in winters of 2014–2017.

Table 3. R, RMSE, MFE and MFB of daily mean visibility (360 days by length) between observation and
WRF-Chem model simulation corrected by neural network in Jiangsu Province in winters of 2014–2017.

Scheme R RMSE MFE MFB

IMPROVE 0.17 2.62 −0.26 0.33
Neural Network 0.42 1.76 −0.05 0.12

To further evaluate the correction ability of the neural network for visibility simulation, the visibility
obtained from inversion is evaluated at different humidity and wind speed levels. In view of the daily
series of surface relative humidity (RH) in winters of 2014–2017, there are only two days with RH
less than 60% and zero days more than 90%. Therefore, the observed RH is divided into four grades,
namely, RH < 70%, 70% ≤ RH < 75%, 75% ≤ RH < 80% and RH ≥ 80%. Then, the MFE and MFB of
atmospheric visibility simulated by the two schemes in each grade are calculated. Similarly, wind
speed (WS) is divided into three grades, namely WS < 2 m/s, 2 m/s ≤WS < 2.5 m/s, and WS > 2.5 m/s,
and the corresponding MFE and MFB are also computed. As noted in Figure 11, the visibility
inversion performance of the IMPROVE extinction coefficient formula is unsatisfactory under low RH,
and the visibility is significantly underestimated. However, its performance improves as RH increases.
The performance of the visibility inversion scheme by the neural network is better than the IMPROVE
method at each humidity level. In particular, the IMPROVE method is significantly improved under
high wind speeds. For different level wind speeds, the greater the WS is, the worse the performance
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of the IMPROVE method. Moreover, the visibility is significantly underestimated under high WS.
The performance of visibility inversion by the neural network under high WS is much better than the
IMPROVE method.
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4. Conclusions and Discussions

In this paper, high-resolution downscaling simulation of meteorological elements and air quality
in Jiangsu Province in winters of 2013–2017 was performed using the air quality model WRF-Chem.
The simulation was conducted at a spatial resolution of 18 km and a temporal resolution of 1 h.
The inverted daily visibility of Jiangsu Province in winter was also calculated. The results show that
WRF-Chem can accurately simulate the meteorological elements and air quality in Jiangsu Province and
the four representative cities of XZ, YC, NJ, and SZ. Regarding air pollutants, NO2, PM10, and O3 are
overestimated, while PM2.5 is underestimated. To some extent, the overestimation of the air pollutants
leads to the low daily visibility in winter generated from the visibility inversion scheme based on the
IMPROVE extinction coefficient calculation formula.

The IMPROVE extinction coefficient calculation formula mainly takes the factors of atmospheric
chemical composition into account, while no meteorological factors are considered except RH. However,
studies show that near-surface temperature, wind field, and other meteorological factors can contribute
to greater than 50% to the variance of haze episodes. Therefore, meteorological factors that have obvious
influence on visibility were employed, including 2-m air temperature, 10-m meridional and zonal wind,
to improve the visibility inversion scheme based on the extinction coefficient. Considering the complex
and nonlinear relationship between meteorological factors and visibility, a deep learning method,
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namely a neural network, was adopted. By self-modifying and modeling through machine learning,
the neural network can create a modified model suitable for the simulation. The results indicate that
the neural network can significantly improve the visibility inversion based on the extinction coefficient
formula to solve the issue of visibility underestimation. In addition, under different RH and WS levels,
the neural network has significant improvements for the IMPROVE scheme. The performance of the
IMPROVE scheme to invert visibility is relatively poor under low RH or high WS, which are conducive
to pollutant diffusion. Thus, the visibility is significantly underestimated. The problem is mainly
caused by only considering the extinction impact of aerosol factors but leaving out meteorological
factors. In short, the inverted visibility under low RH and high WS is significantly improved after
introducing meteorological factors by multilayer neural network modeling.

This study fully examined the ability of the WRF-Chem model in simulating winter visibility and
related meteorological variables in Jiangsu Province in eastern China. WRF-Chem reliably reproduces
winter haze-related variables, especially after applying the multilayer neural network scheme. Based
on this work, a dynamic downscaling study to predict the winter visibility in Jiangsu Province using
WRF-Chem and the neural network scheme is on-going. Considering the possible effect of the emission
and model resolution, further refinement in the emission and model resolution could help improve the
simulation and prediction of regional visibility.
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