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Abstract
The performance of 20 models participating in the atmospheric model intercomparison project (AMIP) is evaluated con-
cerning surface latent (QLH) and sensible (QSH) heat flux over the tropical oceans (30°S–30°N). Biases were calculated by 
comparing model fluxes to observations from moored buoys and the objectively analyzed air–sea fluxes (OAFlux) database. 
All 20 AMIP models overestimate QLH with an ensemble mean bias of 20 W m−2, and 18 of the 20 models overestimate QSH 
with an ensemble mean bias of 5 W m−2 when compared to OAFlux, implying a systematic positive bias over the tropical 
oceans. A comparison with buoy observations also showed similar biases. To obtain insights into the causes behind model 
bias, we quantified the contribution from near-surface winds, specific humidity, and temperatures. It is found that near-surface 
humidity contributes more to the bias in QLH than wind speed, while air temperature contributes more to bias in QSH than wind 
speed. On the other hand, the root mean squared error (RMSE) in QLH has contributions from both near-surface humidity and 
wind. The contribution from humidity to the mean bias in QLH is 13 W m−2, with RMSE of 15 W m−2, suggesting a system-
atic overestimation of sea-air humidity difference in models. The model ensemble, in general, simulates QLH and QSH better 
than individual models. Models with higher horizontal and vertical resolutions perform better than coarse resolution models.
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1 Introduction

A vital component of the earth’s surface energy budget is 
the surface heat flux. Surface heat flux allows the exchange 
of mass and energy between the ocean, land, and the atmos-
phere and thereby influences oceanic and atmospheric cir-
culations (e.g., Trenberth et al. 2001; Fasullo and Trenberth 
2008; Andersson et al. 2010; Bentamy et al. 2013; Brownlee 
et al. 2017; Valdivieso et al. 2017). To correctly simulate 
weather and climate, general circulation models (GCMs) 
must be able to capture the mean and variability of surface 
heat flux. A GCM’s ability to simulate the surface heat flux 

feeds directly into its simulation of convection, and convec-
tion is one of the critical factors in determining global and 
regional climate variability and its impact on society (Tost 
et al. 2006; Guilyardi et al. 2009; Ray et al. 2012; McNeely 
et al. 2012). For example, the common problem of double-
intertropical convergence zone (double-ITCZ) in GCMs is 
generally related to biases in the sea surface temperature 
(SST)-associated feedback in model simulations (Lin 2007; 
Liu et al. 2010). Understanding both the model’s capability 
to simulate the surface heat flux and its sources of bias is 
important for users and developers in the operational and 
research communities (Zhou et al. 2019).

The net surface heat flux into the ocean (Qnet) includes 
two turbulent terms (latent heat flux QLH and sensible heat 
flux QSH) and two radiation terms (longwave flux QLW and 
shortwave flux QSW) and is given by.

There are very few direct measurements of these com-
ponents over the ocean, in particular for QLH and QSH. The 
most common way to calculate turbulent heat flux at the 
air–sea interface is to use aerodynamic bulk formula (e.g., 

(1)Qnet = QSW − QLW − QLH − QSH .
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Fairall et al. 1996b), which are based on statistical fits to 
observations and are a relatively accurate and inexpensive 
way to calculate the QLH and QSH. They are given by.

where ρ is the density of air at the air–sea surface deter-
mined using the ideal gas law; LE is the latent heat of evapo-
ration (~ 2.5 × 106 J Kg−1); U is the wind speed at 10 m; CE 
and CH are the bulk transfer coefficient of latent heat and 
sensible heat; qs is the saturation specific humidity at the 
SST, qa is the specific humidity of near-surface air; Cp is the 
isobaric specific heat of air (~ 1008 J Kg−1 K−1); Ts is the 
SST; and Ta is the near-surface air temperature. Saturation 
specific humidity (qs) is estimated as (Fairall et al. 1996b).

where the factor 0.98 accounts for the reduction in vapor 
pressure caused by a typical sea surface salinity of 34 parts 
per thousand. Saturation specific humidity at the SST (in °C) 
is given by (e.g., Gill 1982; Pielke et al. 2007).

where 0.622 is the ratio of molecular weight of water 
(18.016) and molecular weight of dry air (28.966), P is the 
atmospheric pressure in Pa, and ew is the saturation vapor 
pressure at SST and is calculated as,

The sensitivity of turbulent heat fluxes to the bulk for-
mula has been studied in the past (e.g., Gao et al. 2013; 
Cao et al. 2015; Zhang et al. 2018). However, those stud-
ies were restricted to the influence of the bias in individual 
variables on turbulent heat flux in model simulations. In 
this study, we not only address the role of bulk parameters 
on the turbulent heat flux, but we also quantify the role the 
interactions between the parameters have on bias in turbulent 
heat flux. We expect that a better understanding of how the 
individual variables in bulk formula control the variation in 
turbulent heat fluxes will help improve models. Given the 
large heat capacity of the tropical oceans (30°S–30°N) that 
cover nearly half of the globe’s surface area, it is important 
to find contemporary models’ ability to capture the surface 
latent and sensible heat fluxes.

Previous studies have calculated the upper-ocean heat 
budget in the equatorial oceans using in situ measurements 
(e.g., Wyrtki 1981; Stevenson and Niiler 1983; Enfield 1986; 
Oberhuber 1988; Kessler and McPhaden 1995; Sengupta 

(2)QLH = �LEUCE

(

qs − qa
)

,

(3)QSH = �CpUCH

(

TS − Ta
)

,

(4)qs = 0.98 × qs
(

Ts
)

,

(5)qs
(

Ts
)

=
ew × 0.622

P − 0.378 × ew
,

(6)ew = 10
0.7859+0.03477 x Ts

1+0.00412 x Ts
.

et al. 2002; Liu et al. 2010; Zhang and McPhaden 2010; Bhat 
and Fernanda 2016; Valdivieso et al. 2017). Using those 
in situ measurements, biases in QLH were found to contribute 
to 75% of the bias in Qnet over the tropical oceans (Jo et al. 
2004). The partitioning of the surface energy budget has also 
been examined using numerical models. For example, Cao 
et al. (2015) found that the CMIP5 (coupled model inter-
comparison project phase 5; Taylor et al. 2012) models can 
generally capture the climatological QLH over the Pacific 
Ocean, but still overestimate it compared to observations.

In this study, we evaluate the performance of 20 atmos-
pheric GCMs (AGCMs) from the atmospheric model inter-
comparison project (AMIP, Gates 1999) to explore their 
ability to simulate QLH and QSH over the tropical oceans 
(30°S–30°N). We o estimate the bias in latent and sensible 
heat flux that is contributed by individual bulk parameters. 
We also show the dependence of the results on vertical reso-
lution of the models, which has been largely ignored by pre-
vious studies. The structure of the rest of this paper is as fol-
lows. A description of the AMIP models and data are given 
in Sect. 2. Comparisons between model output and OAFlux 
data and buoy observations are presented in Sect. 3, followed 
by a diagnosis of the possible causes behind model bias in 
Sect. 4. Summary and conclusions are given in Sect. 5.

2  Model and data

2.1  AMIP models

The AMIP is an international effort to generate, validate, and 
inter-compare the performance of atmospheric general circu-
lation models (AGCMs) (Gates 1992, 1999; Gleckler 1996) 
and is an integral part of the coupled model intercomparison 
project (CMIP, Taylor et al. 2012). All AMIP models used 
prescribed SST and sea ice concentration and had no missing 
data, leading to the removal of SST bias that is caused by 
undefined points (Fiorino 2000; Hyder et al. 2018). These 
biases in SSTs have caused biases in QLH and QSH in ear-
lier AMIP simulations since both QLH and QSH are depend-
ent on SSTs (Fiorino 2000). We evaluate 20 AMIP mod-
els (Table 1) using 22 years (1979–2000) of model output. 
All the models used observed monthly SSTs as the lower 
boundary conditions. The horizontal resolutions range from 
0.19° × 0.19° (MRI-AGCM3-2S) to 2.8° × 2.8° (BNU-ESM 
and CanAM4). All the AMIP surface heat flux components 
and the associated bulk parameters used in this study were 
based on monthly mean values. To have consistent intercom-
parison between AMIP model output and observational data, 
we interpolated monthly mean output from each model onto 
a uniform grid with a horizontal spacing of 2.5° × 2.5° over 
the tropical oceans (30°S × 30°N).
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2.2  OAFlux data

To evaluate model biases, we use the objectively analyzed 
air–sea heat fluxes (OAFlux; Yu and Weller 2007; Yu et al. 
2008) data product over a period of 22 years (1979–2000). 
The OAFlux provides a globally gridded dataset for surface 
heat flux components that allows direct comparison with that 
from model output. The OAFlux data have also been used 
to validate surface heat fluxes in reanalysis datasets (Gao 
et al. 2016) and model simulations (Lin 2007). The OAFlux 
biases in the monthly latent heat and sensible heat fluxes 
at the surface are < 5 W m−2 and 2 W m−2 (Pinker et al. 
2014), respectively, and are expected to be much smaller for 
seasonal and annual means. In addition to OAFlux, TROP-
Flux (1° × 1° Praveen Kumar et al. 2012) is another widely 
used air–sea heat flux products over the tropics. Both flux 
products are found to be similar (Pokhrel et al. 2020), and 
perform well when compared with observations (e.g., de 
Szoeke et al. 2015). However, a few studies have found that 
OAFlux may perform better than TROPFlux for QLH and 
specific humidity (Rahaman and Ravichandran 2013), and 
over regions of low clouds such as the eastern equatorial 
Pacific and Atlantic Oceans (Praveen Kumar et al. 2012).

One important aspect of OAFlux is that the estimation of 
flux is based on Earth relative winds, but fluxes need surface 
relative winds. This may lead to regional biases in the tropics 
that may not be apparent in this assessment. However, there 
are no data available for surface current velocity (Usfc) from 
OAFlux and the AMIP models, which are atmosphere-only 
models forced by observed SST and hence lack a dynamic 
ocean component. Therefore, flux estimations by the OAF-
lux and the models are similar. Therefore, our comparison 
of AMIP fluxes with that from OAFlux is fair and consist-
ent but may provide a source of uncertainty in our model-
data comparison due to non-inclusion of Usfc, even though 
the effect of Usfc is generally thought to be small, except 
in places of strong surface currents (Dawe and Thompson 
2006).

2.3  Buoy observations

In addition to OAFlux data, the following buoy observa-
tions are compared to AMIP model output (Fig. 1): 63 
tropical atmosphere ocean (TAO, McPhaden 1995) buoys 
from the Pacific, 18 Prediction and Research Moored Array 
(PIRATA, Bourles et al. 2008) buoys from the Atlantic, 

Table 1  Description of the 20 AMIP models used in this study

The bias and RMSE (averaged over 30°S–30°N) for latent heat flux QLH and sensible heat flux QSH are written to the closest W m−2. CC is the 
correlation between the model and OAFlux data. All the calculations were based on 22 years (1979–2000) of data

No. Model Lat × lon (number of 
vertical levels)

QLH QSH References

Bias RMSE CC Bias RMSE CC

1 ACCESS1-0 1.25° × 1.90° (38) 27 30 0.94 3 8 0.76 Bi et al. (2013)
2 BNU-ESM 2.80° × 2.80° (26) 12 28 0.94 7 10 0.70 Ji et al. (2014)
3 CanAM4 2.80° × 2.80° (26) 13 29 0.94 9 11 0.69 Mitovski et al. (2018)
4 CESM1-CAM5 0.94° × 1.25° (27) 23 26 0.96 4 7 0.82 Kay et al. (2015)
5 CMCC-CM 0.75° × 0.75° (31) 20 25 0.96 1 5 0.81 Scoccimarro et al. (2011)
6 CNRM-CM5 1.40° × 1.40° (27) 23 27 0.96 0 6 0.76 Voldoire et al. (2013)
7 CSIRO-Mk3-6–0 1.90° × 1.90° (18) 18 24 0.94 4 7 0.73 Jeffrey et al. (2013)
8 GFDL-HIRAM-C180 0.50° × 0.625° (48) 20 23 0.96 4 5 0.83 Zhao et al. (2010)
9 GFDL-HIRAM-C360 0.25° × 0.31° (48) 20 23 0.96 3 4 0.82 Zhao et al. 2010
10 GISS-E2-R 2.0° × 2.5°

(40)
29 35 0.95 3 8 0.69 Rind et al. (2018)

11 HadGEM2-A 1.25° × 1.875° (60) 26 33 0.94 3 6 0.75 Martin et al. (2011)
12 INM-CM4 1.50° × 2.0° (21) 32 35 0.93 14 16 0.72 Volodin et al. (2010)
13 IPSL-CM5A-LR 1.875° × 3.75° (39) 10 36 0.94 11 12 0.64 Dufresne et al. (2013)
14 IPSL-CM5B-LR 1.875° × 3.75° (39) 17 36 0.93 10 12 0.65 Dufresne et al. (2013)
15 MIROC5 1.40° × 1.40° (40) 29 33 0.93 − 1 7 0.68 Watanabe et al. (2010)
16 MPI-ESM-LR 1.90° × 1.90° (47) 21 26 0.95 5 7 0.78 Giorgetta et al. (2013)
17 MPI-ESM-MR 1.90° × 1.90° (95) 23 27 0.95 5 7 0.76 Giorgetta et al. (2013)
18 MRI-AGCM3-2H 0.56° × 0.56° (48) 19 22 0.96 5 5 0.84 Shimura et al. (2015)
19 MRI-AGCM3-2S 0.19° × 0.19° (48) 22 25 0.96 4 5 0.83 Kamranzard and Nobuhito (2019)
20 MRI-CGCM3 1.10° × 1.10° (48) 24 27 0.95 4 7 0.85 Yukimoto et al. (2012)

Model ensemble 20 27 0.95 5 7 0.82
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and 10 Research Moored Array (RAMA, McPhaden et al. 
2009) buoys from the Indian Ocean. These buoys cover a 
significant portion of the tropical oceans where the SST 
is warm (25–31 °C) (Fig. 1) and provide data for areas 
with a wide range of ambient conditions. We limited the 
comparison with AMIP model output to January 1997 to 
December 2008 (12 years) because buoy data from all 
three arrays were available during this period. For inter-
comparisons, model output was taken from the grids that 
include the buoy sites. Biases were calculated by subtract-
ing the monthly average of OAFlux and buoy observations 
in the 2.5° × 2.5° grid from interpolated monthly AMIP 
fluxes in the same grid.

The annual mean latent heat and sensible heat fluxes at 
the surface measured by the buoys have uncertainty of about 
4 W m−2, and 1 W m−2, respectively (Cronin et al. 2006). 
This observed data quality is sufficient for our comparisons, 
which were mostly based on seasonal and annual means. 
Similarly, there is also bias in humidity measurements by 
buoys, although among different measuring platforms (e.g., 
rigs and ships), buoys perform best for humidity measure-
ment (Ingleby 2010) with an accuracy of ~ 2.0–2.7% (Lake 
et al. 2003; Jiang et al. 2005; McPhaden et al. 2009). This 
bias in relative humidity (RH) measurement is typically 
higher at high RH values and lower at low RH values (Payne 
et al. 2002). Because of daytime solar heating, the air tem-
perature measured by the buoy is often overestimated com-
pared to ambient temperature, particularly under light winds 
and sunny days, leading to a negative bias in RH (Payne 
et al. 2002; Cronin and McPhaden 1997).

The buoys measure winds that are relative to earth. This 
leads to much of the differences between the buoys and 
satellite measured winds, since satellites observe winds 
relative to currents (Kelly et al. 2001). Furthermore, Kelly 
et al. (2005) estimated surface currents from the altimeter 
at the TAO buoys and then derived air–sea fluxes. When the 
magnitude of currents cannot be neglected, accounting for 
currents leads to better estimation of fluxes. For example, 
Jiang et al. (2008) showed that scatterometer winds that are 
measured relative to currents were able to better reproduce 
surface latent heat flux in a model compared to when the 
same model was forced by reanalysis (National Centers for 

Environmental Prediction NCEP2) winds that uses absolute 
winds.

Even with the above known biases in buoy measurements, 
buoys remain one of the most accurate long-term in situ 
dataset over the tropical oceans. The product of the errors 
coming from bulk parameters that are used to estimate fluxes 
in buoys is presumably small. Moreover, we are primarily 
comparing the seasonal and climatological mean values 
of AMIP with that from OAFlux. As a result, many of the 
errors at shorter time-interval are expected to compensate 
when averaged over a longer time.

3  Results

The QLH is a heat loss for the sea surface and a gain for the 
atmosphere (once this heat is released as the latent heat of 
condensation). In the tropics, the QSH is, in general, a heat 
loss for the sea surface as well (as long as Ts > Ta) and a heat 
gain for the atmosphere. For convenience, we show both 
QLH and QSH as positive when they are heat loss terms from 
the sea surface.

3.1  Comparison of climatological and seasonal 
means with OAFlux

The mean QLH and QSH from the OAFlux, AMIP model 
ensemble, and their bias are shown in Fig. 2. The larger QLH 
is found in the off-equatorial regions of subtropical high 
in all oceans where evaporation exceeds precipitation (Lau 
et al. 2009). The observed QLH minimum is located along 
the equator (Fig. 2a), particularly in the central and eastern 
Pacific, due to the upwelling of colder water there. With 
a decrease in Ts, qs decreases (Eqs. 4, 5, 6) that leads to a 
decrease in QLH (Eq. 2).

The model ensemble (Fig. 2c) is able to capture the 
overall spatial structure of observed QLH (Fig. 2a). The 
largest bias in QLH (Fig. 2e) is found to be away from the 
equator (~ 10° latitude) in the Indian, western Pacific, and 
Atlantic Oceans, where the observed QLH (Fig. 2a) is large. 
However, in the central Pacific, the largest bias in QLH is 
closer to the equator than the other two Oceans. For QSH 

Fig. 1  The sea surface tempera-
ture (averaged over 1979–2000) 
from the OAFlux (shaded, °C) 
and locations of the tropical 
moored buoys (black dots) that 
were used in this study
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(Fig. 2f), the bias along the equator is generally smaller. The 
model ensemble overestimates QLH by 20 W m−2 and QSH 
by 5 W m−2 between 30°S–30°N (Table 1). The root mean 
squared error (RMSE) is 27 W m−2 for QLH and 7 W m−2 
for QSH, which is about 65% larger than mean bias in QLH, 
and about 40% larger than the mean bias in QSH. The smaller 
bias in QSH (5 W m−2) than QLH (20 W m−2) over the tropical 
oceans occurs because observed QSH is much smaller than 
observed QLH.

Although the models and their ensemble mean seem to 
capture the overall horizontal structure of the heat flux com-
ponents (as seen in the correlation values in Table 1), there 
are substantial inter-model differences (Figs. 3, 4). Many 
models (e.g., ACCESS1-0, CNRM-CM5, GISS-E2-R, 
HADGEM2-A, INMCM4, MIROC5, and MRI-CGCM3) 
overestimate QLH by 30–50 W m−2 (Fig. 3) over the Indo-
Pacific warm pool (100°E–160°E). In the same area along 
the equator, however, two models (e.g., BNU-ESM and 
CSIRO-Mk3-6-0) underestimate QLH by 10–30 W m−2. 
Overall, all 20 models overestimate QLH in the tropical 
oceans (Table 1).

All models except CNRM-CM5 and MIROC5 overesti-
mate mean QSH (Table 1). The geographical distribution of 
seasonal variation of QLH bias shows peaks near 15°N dur-
ing boreal winter (Fig. 5a) and 15°S during boreal summer 
(Fig. 5e), but for QSH, maximum bias is located near 30°N 
in boreal winter (Fig. 5b) and 20°S during boreal autumn 
(Fig. 5h). A minimum in QLH bias can be seen near the equa-
tor. For the annual mean, the correlation coefficient (CC) 
between model and OAFlux for QLH is > 0.9 for all models 

between 30°S–30°N (Fig. 6a), whereas the CC is between 
0.64 and 0.85 for QSH (Fig. 6b). The standardized deviation 
(SD, the ratio of the normalized variances that indicates the 
relative amplitude of model flux and observed flux) ranges 
from 1.05 to 1.35 for QLH, indicating that the observed spa-
tial variability is generally well captured by most models. 
One of the models (MRI-CGCM3) has a SD smaller than 1.0 
(Fig. 6a), indicating that it has lower variance than OAFlux. 
For QSH, models have wider range of CC between model and 
OAFlux, between 0.64 and 0.85 (Fig. 6b), than QLH (0.93 to 
0.96) (Fig. 6a). For example, not a single model achieves a 
CC > 0.9 for QSH (Fig. 6b). Model SD ranges from 0.85 to 
1.25 for QSH (Fig. 6b), not as concentrated as QLH (Fig. 6a). 
Models tend to better capture sea-air temperature differ-
ence (Ts-Ta) during boreal winter (Fig. 6d) than summer 
(Fig. 6f). The AMIP models tend to overestimate QLH over 
most of the tropical oceans, especially during boreal win-
ter. The SD and CC of models like GFDL-HIRAM-C180 
and GFDL-HIRAM-C360 are closer to 1.0, indicating the 
accuracy of their flux simulations. Overall, both the GFDL 
models, along with the two MRI models (MRI-AGCM3-2H 
and MRI-AGCM3-2S), are found to simulate fluxes better 
than the other models.

3.2  Comparison with buoy data

The model ensemble mean overestimates QLH and QSH 
throughout the annual cycle when compared to both OAF-
lux and buoy observations (Fig.  7). The annual model 
bias in QLH is 20 W m−2 (Table 2) and is larger over the 

Fig. 2  (left) Annual average (1979–2000) of the QLH from (a) OAF-
lux, (c) model ensemble mean, and (e) model ensemble mean minus 
OAFlux over the tropical oceans. Right panels (b, d, f) are for QSH. 

Dotted areas show where the bias is statistically significant at the 99% 
level based on a Student’s t test. Units: W m−2
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Fig. 3  Climatological bias (model minus OAFLux) in the latent heat flux QLH over the tropical oceans. The numbers in the parentheses show the 
mean bias and correlation coefficient (units: W m−2)
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Fig. 4  Climatological bias (model minus OAFLux) in the sensible heat flux QSH over the tropical oceans. The numbers in the parentheses show 
the mean bias and correlation coefficient (units: W m−2)
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Pacific (Fig. 7a) and Indian (Fig. 7e) Oceans than over the 
Atlantic (Fig. 7c). The seasonality in fluxes has been simu-
lated well by model ensemble, especially over the Indian 
Ocean (Fig. 7e). The difference in QLH between northern 
summer and winter over the Indian Ocean area is as high 
as 30 W m−2 due to the influence of the Indian summer 
monsoon (Raj Parampil et al. 2016). In the case of QSH, the 
model ensemble mean is also higher than buoy data (Fig. 7, 
right; Table 2).

Since the bias is dependent on the seasonal magnitude 
of the heat flux components, we show in Table 3 the ratio 
of estimated bias to observations from OAFlux and buoys. 
The largest QLH bias occurs during the northern winter, 
which is consistent with the standardized deviation of QLH 
in Fig. 6c. We found that the standardized deviation dur-
ing DJF (Fig. 6c) is larger than that in JJA (Fig. 6e) and 
annual mean (Fig. 6a). The ratio of Qnet and QSH peaks dur-
ing boreal summer, while QLH shows opposite trend when 
averaged over 30°S–30°N. However, the maximum values 
of this ratio switch from JJA to MAM when estimated over 
10°S–10°N. The ratio is much larger for QSH than QLH, since 
QSH is much smaller than QLH.

The agreement between the OAFlux and the buoys 
(Fig. 7) is not a surprise since the bulk parameters from the 
buoy data are used in OAFlux, and the difference between 

the OAFlux and buoys for bulk parameters like qa, Ts, Ta 
and U are small, being 0.05 g kg−1, 0.85 °C, 0.76 °C and 
0.15 m s−1, respectively (Yu et al. 2004a, b, 2007; Jin and Yu 
2013). As a result, OAFlux generally performs better in cap-
turing turbulent heat fluxes compared to other datasets over 
buoy locations (e.g., Yu 2007; Jin and Yu 2013). However, 
away from the buoy locations, the performance of OAFlux 
is dependent on the quality of other data sources (e.g., satel-
lite, model output; Yu et al. 2004a; Yu and Weller 2007), and 
therefore, bias in OAFlux away from the buoys may be larger 
than that over buoy locations. Using observed fluxes from a 
research cruise, de Szoeke et al. (2015) pointed out that the 
bias in OAFlux for QLH and QSH is −0.26 and 0.2 W m−2, 
respectively, which are comparable to the accuracy of heat 
flux derived from buoys. But the standard deviation of bias 
in OAFlux compared to that from the research cruise for QLH 
and QSH was 34.8 and 5.7 W m−2, respectively, which are 
larger than that in fluxes from buoy.

3.3  Hemispheric differences

The seasonal variability in QLH is greater in the north-
ern hemisphere (NH) than that in the southern hemi-
sphere (SH), especially during boreal winter (Table 4). 
The QLH bias in NH is as large as 28 W m−2 during DJF 

Fig. 5  Seasonal mean bias (model ensemble mean minus OAFLux) of (left) latent heat (QLH) and (right) sensible heat (QSH). Dotted areas show 
where the bias is statistically significant at the 99% level. Note that the color scales are different for QLH and QSH (units: W m−2)
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compared to 12 W m−2 during SON. However, for QSH, 
model bias is larger during northern spring (MAM) and 
summer (JJA) because of higher wind speed and larger 
sea-air temperature differences in NH in those months. 
This pattern reverses in the SH. The range in bias of QLH 
is larger in NH (13–28 W m−2) than SH (18–20 W m−2). 
QSH shows a similar trend (Table 4). The bias in QLH is 
found to be larger over the off-equatorial (beyond 5°) area 

(Fig. 5). During JJA, the difference between equatorial 
(5°S–5°N°) Indian Ocean and off-equatorial (30°S–5°S 
and 5°N°–30°N) Indian Ocean can be as high as 32 W m−2. 
For Pacific Ocean, the largest QLH bias (47 W m−2) occurs 
over northwestern Pacific during DJF. QSH bias shows sim-
ilar pattern as QLH bias but has a much smaller averaged 
value (~ 4 W m−2).

Fig. 6  (left) Taylor diagrams describing the climatological (a) annual 
mean, (c) boreal winter (DJF) mean, and (e) boreal summer (JJA) 
mean of QLH with related variables including near-surface wind speed 
(U), and difference in sea surface humidity (qs) and near surface air 

specific humidity (qa), simulated by 20 AMIP models compared 
with OAFlux. Right panels (b, d, f) are for QSH and related variables 
including near-surface wind speed (U) and difference in sea surface 
temperature (Ts) and near-surface air temperature (Ta)
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Fig. 7  Annual cycle of (left) QLH and (right) QSH from buoy (blue), OAFlux (red) and model ensemble mean (green) using data over (top) 
Pacific, (middle) Atlantic and (bottom) Indian Ocean from 1997 to 2008 (units: W m−2)
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4  Causes behind model bias

In this section, we explore the possible causes behind the 
similarities and differences between the simulated and 
observed fluxes, with an emphasis on the impacts of the 
10-m winds, 2-m specific humidity, and temperature on 
latent and sensible heat fluxes.

4.1  Latent heat flux (QLH)

The pattern CCs (Fig. 6a) for the QLH and sea-air humidity 
difference (qs − qa) exceed 0.9 and 0.95, respectively, for 
most models. The bias in qs − qa comes from qa, since qs is 
directly related to Ts, and Ts is identical across all models 
since it comes from observations based on the monthly 
mean Hadley Centre sea ice and SST dataset version 1 
(HadISST1) and version 2 of the National Oceanic and 
Atmospheric Administration (NOAA) weekly optimum 
interpolation (OI) SST analysis (Hurrell et al. 2008). The 
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Table 3  The ratio of model ensemble bias and observation for Qnet, 
QLH, and QSH based on the OAFlux (1979–2000) and buoy (1997–
2008) data

DJF MAM JJA SON Annual

Comparison with OAFlux
 Qnet 58 (39) 71 (46) 73 (36) 55 (31) 62 (40)
 QLH 21 (9) 20 (9) 15 (7) 13 (5) 18 (9)
 QSH 57 (50) 50 (140) 86 (125) 50 (100) 83 (100)

Comparison with Buoy
 Qnet 51 65 54 78 62
 QLH 24 12 7 14 13
 QSH 67 160 133 117 117

Table 4  Annual and seasonal means of QLH and QSH for model 
ensemble, OAFlux and model bias compared to the OAFlux (1979–
2000)

Comparison with the OAFlux data was made over 30°S–0° for SH 
and 0°–30°N for NH. Note that we have put the absolute values QLH 
and QSH from model and observation. In reality, however, QLH and 
QSH are heat loss for the surface. Units: W m−2

DJF MAM JJA SON Annual
Bias Bias Bias Bias Bias

Northern hemisphere
 QLH 28 25 13 12 19
 QSH 3 6 7 4 6

Southern hemisphere
 QLH 20 19 20 18 20
 QSH 5 6 4 3 4
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U varies more (SD from 0.75 to 1.25) and has relatively 
lower CC (from 0.8 to 0.97) compared to QLH and qs − qa 
(Fig. 6a). Overall, it seems that the bias in simulated winds 
and humidity both contribute to the bias in QLH.

Figure 8 shows the mean bias in QLH and QSH (calculated 
as the model ensemble mean minus OAFlux) along with 
the bias in the bulk parameters qs − qa, U, and Ts − Ta. The 
areas close to the equator (0°–5°N) with negative bias in 
U (Fig. 8e) also have a lower bias in QLH (Fig. 8a). Given 
that all the models overestimated QLH (Fig. 3), models that 
underestimated U must have overestimated the qs − qa. This 
is confirmed in Fig. 8c, where we show positive bias in qs 
− qa (Fig. 8c) and negative bias in U (Fig. 8e). These bias 
characteristics in qs − qa and U is consistent with Zhang 
et al. (2018) and Cao et al. (2015), who found that qs − qa 
contributes positive bias to QLH while U contributes nega-
tive bias. Although both winds and humidity seem to affect 
the magnitude of bias in simulated QLH, the spatial distribu-
tion of QLH bias correlated better with that of qs − qa bias 
(Fig. 6a, c, e). The largest seasonal bias in QLH is found in 
the Northern Hemisphere during DJF, and the smaller bias 
during JJA (Fig. 5).

4.2  Sensible heat flux (QSH)

A Taylor diagram (Fig. 6, right) shows the annual, boreal 
winter, and boreal summer average of QSH and related 
 variables. Overall, QSH has a higher CC range (0.63–0.89) in 
annual mean (Fig. 6b) than the seasons of winter and sum-
mer (0.59–0.70 in Fig. 6d and 0.49–0.82 in Fig. 6f). Also, 
the annual mean of QSH is closer to 1.0 SD than in winter or 
summer. All the models overestimate QSH in boreal summer. 

The variation in Ts − Ta is farther from the observations than 
U (Fig. 6, right). This can be interpreted as evidence that Ts 
− Ta contributes more to QSH bias than U.

The spatial pattern in QSH bias (Fig. 8b) matches well 
with Ts − Ta bias (Fig. 8d), especially over the Indian and off-
equatorial Pacific Oceans. Positive values of bias (more than 
6 W m−2) are located in the coastal Atlantic, south-central 
Pacific, western coastal areas of South America, and the 
northern Indian Ocean (Fig. 8b). These areas also have large 
bias (> 0.4 °C) in Ts − Ta (Fig. 8d), especially over western 
coastal areas of South America and the northern Indian Ocean. 
The sea-air temperature difference (Ts − Ta) does not change 
much in different seasons (not shown) because near-surface 
air responds quickly to the underlying SST (e.g., Bhat and 
Fernando 2016).

4.3  Relative role of bulk parameters on latent 
and sensible heat flux

To provide a quantitative estimate of the contribution of bias 
from an individual bulk parameter to the bias in heat flux com-
ponents, we use the following relationship (similar to Jiang 
et al. 2005 and applied to monthly mean data),

(7)BiasV =

N
∑

i=1

(
QOAFluxi

VOAFluxi

∗ Vmodeli
− QOAFluxi

)∕N.

(8)RMSEV = [

N
∑

i=1

(
QOAFluxi

VOAFluxi

∗ Vmodeli
− QOAFluxi

)

2

∕N]

1

2

,

Fig. 8  Mean bias in (a) QLH (W m−2), (b) QSH (W m−2), (c) qs − qa (g kg−1), (d) Ts − Ta (°C) and (e) U (m s−1) estimated as model ensemble 
mean minus OAFLux
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where BiasV is bias in heat flux component Q due only to 
the bulk parameter V, RMSE V is RMSE in Q due only to 
the V, the subscript i denotes each time point, and N is the 
total number of time points. For example, to find how much 
of the bias in the QLH is due to wind speed U, all the bulk 
parameters are taken from the OAFlux except U, which is 
taken from the model. This allows us to estimate the bias 
contributed by individual bulk parameters.

Figure 9 shows that the bias in QLH (Fig. 9a) that comes 
from qs − qa (Fig. 9c) is larger than that which comes from 
U (Fig. 9e). This is due to the systematic overestimation of 
qs − qa in the models (Table 5). On the other hand, the model 
bias in surface winds was less systematic (i.e., both overesti-
mation and underestimation), leading to much smaller bias 
contribution to QLH from the winds (−5 W m−2) than qs − qa 
(13 W m−2). The CC shown by line contours in Fig. 9e is 
larger than that in Fig. 9c, especially near the equator. For 
QLH, the area-averaged CC in U (0.74) is larger than qs − qa 
(0.49) (Table 5), indicating that the spatial structure of QLH 
bias is dominated by bias in winds. For QSH, the contribution 
of bias by Ts − Ta (Fig. 9d; Table 5) is larger than that by U 
(Fig. 9f). The CC in Ts − Ta (0.81) is also larger than that in 
U (0.54). This shows that the bias in QSH is dominated by 
bias from Ts − Ta.

Figure 10 shows the RMSE in QLH (Fig. 10, left) and 
QSH (Fig. 10, right), and the contribution from each bulk 

parameter using Eqs. (4, 5). It is evident that the RMSE 
in QLH (Fig. 10a) that comes from U (Fig. 10e; Table 5) 
is slightly larger than that comes from qs − qa (Fig. 10c; 
Table 5), in particular over the Indo-Pacific warm pool 
region. In the case of RMSE in QSH (Fig. 10b), the contribu-
tion from error from Ts − Ta (Fig. 10d, −4 W m−2) is larger 
than that from U (Fig. 10f, 1 W m−2). Contribution of bias 
in latent and sensible heat flux by bias in bulk parameters 
is shown in Table 6 for northern (NH) and southern (SH) 
hemispheres. The bias and RMSE in QLH that is coming 
from qs − qa in both hemispheres are same, but the RMSE 
contribution from U is larger in the NH. The bias in QSH that 
comes from Ts − Ta, is generally higher in the SH.

4.4  Dependence on model resolution

4.4.1  Horizontal resolution

To find out whether the simulated latent and sensible heat 
fluxes were sensitive to the model horizontal resolution, 
we split the 20 AMIP models (Table 1) into two groups: 
with a horizontal resolution finer than 1.5° (group 1) and 
another one with the horizontal resolution coarser than 1.5° 
(group 2). Both groups show (Table 7) that QLH was high-
est in December–January–February (DJF) and lowest in 
June–July–August (JJA) due primarily to the higher wind 

Fig. 9  (left) (a) The model ensemble mean bias in QLH (W m−2) (c) the bias in QLH that comes from qs − qa bias only, and (e) U bias only. The 
right panels are for the bias in QSH (W m−2). The contours represent the correlation coefficient between the top panels and the respective panels

Table 5  Annual mean bias 
(W m−2), RMSE (W m−2) and 
CC (%) between the turbulent 
heat flux bias and that comes 
from the related variables

qs − qa Ts − Ta U

Bias RMSE CC Bias RMSE CC Bias RMSE CC

QLH 13 15 49 − 5 18 74
QSH 3 4 81 − 1 1 54
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speed during DJF and lower wind speed during JJA (see 
Fig. 5a, e). Near-surface winds are also a dominant factor 
in affecting seasonal variation of turbulent flux along two 
regions in Atlantic: one on the equator (Weingartner and 
Weisberg 1991a; b) and the other near 3°N (Yang and Joyce 
2006). The effect of near surface humidity to seasonal vari-
ability in QLH is not as large as wind speed, but can still be 
important (Fig. 6). The seasonal variation in QSH is gener-
ally small (Table 3). In summer, Ts − Ta is larger than that 
in winter and is associated with seasonal variations of shal-
low mixed-layer depth (Feng et al. 2017), which makes QSH 
higher in JJA than DJF, even though U is smaller in JJA than 
DJF (Fig. 6).

The RMSE of turbulent fluxes simulated by models in 
group 1 is smaller than group 2 in all four seasons (Table 7) 
and in annual mean (Fig. 11). The improvements become 
more evident at increasingly higher horizontal resolutions, 
in particular for RMSE (Fig. 11, top) and correlation for QSH 
(Fig. 11d). The geographical distribution of RMSE in QLH 
and QSH of two groups is shown in Fig. 12. Models in group 
1 show lower RMSE in QLH than models in group 2 in equa-
torial Pacific and Indian Oceans (Fig. 12e). However, models 

in group 2 performed better over the Atlantic Ocean because 
coarse resolution models simulated better winds over this 
area. For QSH, models in group 1 generally performed better 
than group 2 models. The results are consistent with previ-
ous studies that have also seen an improvement with higher 
resolutions (Demory et al. 2014; Vannière et al. 2018). For 
example, Demory et al. (2014), using HadGEM1-A and 
HadGEM3-A, found that with an increase in horizontal 
resolution, there was an increase in atmospheric moisture 
transport, which changed the partitioning of moisture fluxes. 
Vannière et al. (2018) compared 18 GCMs and found that 
there is a systematic increase in QLH when model horizontal 
resolution increases.

4.4.2  Vertical resolution

The AMIP output is provided at 17 standard vertical levels, 
but the actual number of vertical levels in AMIP models var-
ies from 18 (CSIRO-Mk3-6-0) to 95 (MPI-ESM-MR) (see 
Table 1). We found that models with more vertical layers 
generally simulated turbulent fluxes better (e.g., they had 
smaller root mean squared errors, RMSE) than those with 

Fig. 10  (left) (a) The RMSE of model ensemble in QLH (W m−2), (c) the RMSE in QLH that comes from qs − qa only, and (e) U only. The right 
panels are for QSH (W m−2). The contours represent the correlation coefficient between the top panels and the respective panels

Table 6  Annual mean bias 
(W m−2), RMSE (W  m−2) and 
CC (%) between the turbulent 
heat flux bias and that comes 
from the related variables in 
different hemisphere

qs − qa Ts − Ta U

Bias RMSE CC Bias RMSE CC Bias RMSE CC

QLH 13 15 49 − 5 18 74
QLH (SH) 13 15 47 − 5 16 72
QLH(NH) 13 15 52 − 5 19 76
QSH 3 4 81 − 1 1 54
QSH(SH) 3 4 80 − 1 1 58
QSH(NH) 2 4 81 − 2 1 51
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fewer vertical layers (Fig. 13). The correlation coefficient 
between the model and OAFlux also improved with number 
of vertical layers (Fig. 13, bottom). A similar trend was also 
found for mean bias (not shown). This pattern was especially 
true over the tropical Pacific Ocean (not shown). This result 
indicates that an increase in number of vertical layers may 
improve the simulated turbulent fluxes. It is unclear whether 
this improvement in simulation of latent and sensible heat 
flux is due to an increase in number of vertical layers in the 
planetary boundary layer (PBL) because the information 
about the distribution of vertical layers in AMIP models is 
not available.

To illustrate the effect of combined horizontal and verti-
cal resolutions, we further split the models with high hori-
zontal resolutions (i.e., group 1 with horizontal resolution 
finer than 1.5°) into two groups, one with higher vertical 
resolution (≥ 30 levels) and the other with lower vertical 
resolution (< 30 levels). Similarly, lower-resolution models 
(i.e., group 2 with horizontal resolution coarser than 1.5°) 
were also split into two groups. It is clear that models with 
higher horizontal and vertical resolutions perform best for 
the simulation of latent (Fig. 14a) and sensible heat flux 
(Fig. 14b) over all seasons, and the difference in bias (blue 
dashed line versus solid red line) is statistically significant at 
the 95% limit. The results are summarized in Table 8.

We also looked at the dependence of the flux simula-
tion on the height of the lowest model level. We found the 
information about the lowest layer thickness of 15 out of 
20 models. No information about the lowest layer thick-
ness could be found for 5 models (BNU-ESM, CMCC-CM, 
GISS-E2-R, MPI-ESM-LR, and MPI-ESM-MR) even after 
repeated attempts. Overall, the height of the lowest layer did 
not seem to influence the simulation of latent and sensible 
heat flux in AMIP models (not shown).

5  Discussion and conclusion

The surface latent (QLH) and sensible (QSH) heat flux over 
the tropical oceans in 20 contemporary climate models par-
ticipating in the atmospheric model intercomparison pro-
ject (AMIP) are evaluated. We use the objectively analyzed 
air–sea fluxes (OAFlux) data product, and buoy observations 
taken from 66 Tropical Atmosphere Ocean (TAO) buoys 
in the Pacific, 18 Prediction and Research Moored Array 
(PIRATA) buoys in the Atlantic and 10 Research Moored 
Array (RAMA) buoys in the Indian Ocean. The main results 
of the study are the following:

 (i) The annual mean bias (compared to OAFlux) for 
the model ensemble mean over the tropical oceans 
(30°S–30°N) is 20 W m−2 for QLH and 5 W m−2 for 
QSH. This explains about 75% of the bias in Qnet in Ta
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the tropical oceans. This bias in Qnet is reduced in the 
deep tropics (10°S–10°N) primarily due to a smaller 
bias in QLH (10 W m−2). This agrees with Valdivieso 
et al. (2017), who used global ocean reanalysis prod-

ucts to show that the bias in Qnet is dominated by bias 
in QLH.

 (ii) The spatial distributions of the QLH and QSH vary 
across models, but some common features emerge. 

Fig. 11  (top) Relationship 
between the horizontal grid-
spacing (in °) and RMSE 
(W m−2) in (a) latent heat QLH 
and (b) sensible heat QSH. The 
bottom panels (c, d) are for 
correlation. The vertical dashed 
lines separate the group 1 (high-
resolution) and group 2 (low-
resolution) models. The red line 
is the regression line and r is the 
Pearson correlation coefficient

Fig. 12  (left) RMSE of model ensemble in QLH of (a) group 1 models 
(< 1.5° grid spacing), (c) group 2 models (> 1.5° grid spacing), and 
(e) their differences (group 1 − group 2). Right panels (b, d, f) are for 

QSH. Dotted areas in e, f show where the bias is statistically signifi-
cant at the 99% level based on a Student’s t-test (units: W m−2)
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For example, most models overestimate QLH and QSH 
in oceans away from the equator, especially in the 
northern and southern Pacific Ocean and the south-
ern Indian Ocean, where the flux values have larger 
uncertainties compared to other areas (Weare 1989). 
The overestimation of QLH in AMIP simulations is 
not unique to AMIP models. Cao et al. (2015) found 

overestimation of QLH by 14 CMIP5 models over the 
Pacific. Most models are able to simulate the spa-
tial variability well with a higher correlation coef-
ficient against OAFlux in QLH (0.93–0.96) than in 
QSH (0.69–0.9).

 (iii) The simulations were also compared to buoy data 
from all three oceans in the tropics. The DJF bias in 

Fig. 13  (top) Relationship 
between the number of vertical 
layers and RMSE (W m−2) 
in (a) latent heat QLH and (b) 
sensible heat QSH. The bottom 
panels (c, d) are for correlation 
coefficient between model and 
OAFlux data. The red line is 
the regression line and r is the 
Pearson correlation coefficient

Fig. 14  Seasonal mean bias 
in QLH and QSH for model 
ensemble against the OAFlux 
for group 1 (< 1.5° grid spac-
ing) and group 2 (≥ 1.5°grid 
spacing) models. Both groups 
were further divided into 
two parts: models with fewer 
vertical layers (< 30 levels) 
and models with more vertical 
layers (≥ 30 levels). Comparison 
with the OAFlux was made over 
30°S–30°N during 1979–2000. 
The shaded area around the 
lines shows the 95% confidence 
limits. Units: W m−2
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QLH is 23 W m−2, and QSH is 4 W m−2, compared to 
biases during JJA of 8 W m−2 and 8 W m−2, respec-
tively. Larger bias in QLH occurs during northern 
winter due to qs − qa, and larger bias in QSH occurs 
during northern summer due to U.

 (iv) Bulk formulae are widely used to estimate surface 
latent and sensible heat fluxes. Previous studies 
found that the uncertainties in parameters in the 
bulk formulae for QLH and QSH can result in signifi-
cant errors (Blanc 1985, 1987; Weare 1989; Planton 
et al. 1991). To obtain insights into the mechanisms 
responsible for the difference between model simu-
lation and observation, we separately examined the 
influence of near-surface specific humidity, winds, 
and temperatures on QLH and QSH. It is found that 
the bias in near-surface humidity contributes more 
to the mean bias in QLH than wind speed, while bias 
in air temperature contributes more to mean bias in 
QSH than wind speed. On the other hand, the root 
mean squared error (RMSE) in QLH is contributed by 
both humidity and winds. The contribution of humid-
ity bias to the mean bias (13 W m−2) and RMSE 
(15 W m−2) in QLH is nearly the same, suggesting a 
systematic overestimation of humidity difference in 
models. On the other hand, winds contributed more 
to RMSE in QLH than humidity. Găinuşă-Bogdan 
et al. (2018) also confirmed the effect of U in QLH, 
especially on the west side of the oceanic basin. They 
also pointed out that the zonal structure of QLH bias 
was driven by bias in wind speed while the meridi-
onal structure of QLH bias was driven by near-surface 
specific humidity.

 (v) Models with higher horizontal resolutions have 
higher CC and lower RMSE than models with 
lower horizontal resolutions for both QLH and QSH 
(Figs. 11, 12; Table 4) and is consistent with other 

studies (e.g., Bryan et al. 2010; Small et al. 2014) 
that have shown how high-resolution atmospheric 
and coupled models can improve the accuracy of 
SST, U, and other atmospheric variables.

 (vi) Models with more vertical layers generally simulated 
turbulent fluxes better (e.g., they had smaller root 
mean squared errors or RMSE, and mean bias) than 
those with fewer vertical layers (Fig. 13). It is, how-
ever, unclear whether this improvement in simulation 
of latent and sensible heat flux is due to an increase 
in number of vertical layers in the planetary bound-
ary layer (PBL) (e.g., Aligo et al. 2009; Lee et al. 
2019) because the information about the distribu-
tion of vertical layers in AMIP models is not read-
ily available. Overall, models with higher horizontal 
resolutions and more vertical layers performed bet-
ter than other models (Fig. 14; Table 8). One major 
implication of this result is that one should consider 
the number of vertical layers as an important factor 
while choosing model configurations. For example, 
doubling the horizontal resolution is computationally 
twice more expensive than doubling the number of 
vertical layers. As a result, increase in the number of 
vertical layers may prove beneficial both computa-
tionally as well as in model performance.

The results of this study spotlight several issues that 
might be of interest to future studies on surface latent and 
sensible heat fluxes, for the following reasons.

 (i) The lowest model layer height in AMIP models 
ranges from 30 to 60 m. Detailed methodological 
descriptions regarding how atmospheric variables 
are interpolated to standard 10-m values needed to 
estimate the air–sea fluxes following the bulk aero-
dynamic formula was not found, beyond sometimes 
vague descriptions suggesting a logarithmic pro-
file was assumed. We believe we understand why 
that is the case: even the information regarding the 
bulk formula that was used in these models is not 
readily available. Moreover, information about the 
implementation of bulk algorithms was generally 
unavailable. This is important, since the implemen-
tation of the same scheme may lead to differences in 
different models. Our experience suggests that such 
information needs to be documented by the modeling 
community and should be more easily locatable by 
researchers seeking a better understanding of model 
behavior.

 (ii) One of the primary differences in the models related 
to estimation of latent and sensible heat flux is in 
the exchange coefficients. The description of the flux 
algorithm or the exchange coefficient that is depend-

Table 8  Annual and seasonal mean bias in QLH and QSH for model 
ensemble against the OAFlux for group 1 ( < 1.5° resolution) and 
group 2 ( ≥ 1.5° resolution) models

Both groups were further divided into two parts: models with fewer 
vertical layers (< 30 levels) and models with more vertical layers ( ≥ 
30 levels, in parentheses). Comparison with the OAFlux was made 
over 30°S–30°N during 1979–2000. Units: W m−2

DJF MAM JJA SON Annual
Bias Bias Bias Bias Bias

Group1
 QLH 23 (22) 22 (20) 18 (16) 16 (14) 20 (18)
 QSH 5 (4) 6 (6) 5 (4) 4 (3) 6 (5)

Group2
 QLH 28 (26) 24 (22) 20 (18) 18 (16) 24 (21)
 QSH 5 (5) 7 (6) 6 (5) 4 (4) 6 (6)
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ent on a variety of factors including the wind speed 
is not available in the AMIP model description. As 
a result, previous studies (including ours) could not 
relate the bias in latent and sensible heat flux with 
exchange coefficients. For example, in multi-model 
evaluation study of surface latent heat flux using the 
CMIP models, Zhang et al. (2018) have assumed 
exchange coefficients to be same in all models. More-
over, the flux parameterizations alone do not deter-
mine the flux values, they depend on other physics 
parameterizations (e.g., PBL scheme, radiation and 
surface layer parameterizations).

 (iii) The models, in general, overestimated sea-air humid-
ity (qs – qa) and temperature (Ts – Ta) differences. 
Since the AMIP models all used the same values of 
observed SST (Ts), it is clear that the models underes-
timated qa and Ta. This is possibly due to the stronger 
mixing in the boundary layer that brings drier and 
cooler air from above to the near-surface area (e.g., 
Garratt 1994). Thus, the mixing in the model bound-
ary layer may be too strong. The drier near-surface 
humidity could also be at least partially due to 
stronger downdraft (Rahaman and Ravichandran 
2013) that brings colder and drier air from the above 
to the surface leading to underestimation of qa and 
Ta in the models.

 (iv) The diurnal cycle in solar radiation results in diurnal 
stratification of near surface temperature. The TAO 
bulk SST is measured at 1-m depth and thus cooler 
than the water temperature closer to real sea surface 
(Fairall et al. 1996a, b; Jiang et al. 2005), and this 
effect is particularly dominant during warm season 
(Cronin and Kessler 2002) on sunny days under light 
wind conditions (Soloviev and Lukas 1997). This 
diurnal sea surface warming affects the turbulent heat 
fluxes (Clayson and Bogdanoff 2013). As a result, 
QLH can be underestimated by as much as 8 W m−2 
due to non-inclusion of diurnal cycle (e.g., Weihs 
and Bourassa 2014). To properly capture the diurnal 
cycle of SST, studies (e.g., Kelly et al. 2005) have 
suggested the use of a combination of in-situ obser-
vations and other datasets. For example, blended flux 
products based on carefully chosen bulk parameters 
from different datasets (satellites, reanalysis and 
model), may have accuracy that is comparable to 
flux derived from buoy measurements (Jiang et al. 
2005). The data that we are using for both AMIP 
and OAFlux, are monthly averages, and they do not 
have sub-daily data. Therefore, although our method 
of comparison is consistent, any bias in seasonal and 
climatological means coming from bias in diurnal 
cycle of fluxes cannot be quantified.

Overall, the AMIP models are able to capture the spatial 
variability of surface latent and sensible heat fluxes well, but 
with large positive bias in magnitudes, that was about three 
fourth of the bias in surface net heat flux. The multi-model 
ensemble typically performed better than individual models. 
But, some high-resolution models (GFDL-HIRAM-C180, 
GFDL-HIRAM-C360, MRI-AGCM3-2H) performed better 
than other models. The results from this study are expected 
to provide guidance towards better simulation of near-sur-
face meteorological variables by adopting suitable model set 
up such as increasing the number of vertical layers.
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