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A B S T R A C T

A resampling method that selects historical forecasting samples as supplementary samples is proposed for the
hybrid ensemble-variational data assimilation system to alleviate the computational burden of ensemble fore-
casting samples. To select reasonable samples from all historical forecasting samples, the first modes of absolute
vorticity are abstracted by the empirical orthogonal function (EOF) as indicators of atmospheric dynamic fea-
tures from the background and each of historical forecasting sample, then they are matched at the analysis time.
A series of single observation tests and 19-day cycling data assimilation and forecasting experiments for a Mei-yu
period are carried out to evaluate the impact of the selected historical forecasting samples.

The single observation tests indicate that the use of selected historical forecasting samples is able to provide
reasonable flow-dependent background error covariance for the data assimilation system. The cycling data as-
similation and forecasting experiments demonstrate that the analyses and forecasts as well as precipitation
forecast skills are improved by using the combination of selected historical forecasting samples and ensemble
forecasting samples. The sample-combined experiment performs close to the experiment with full-size ensemble
forecasting samples, but it spends fewer computational resources. The diagnosis of a heavy rainfall case is
presented to further illustrate the role of the selected historical forecasting samples. It is found that the simu-
lation of vertical velocity and relative humidity are improved for the case in the experiment of the combined
samples, leading to better intensity and position forecasts of the precipitation.

1. Introduction

With the increasing of meteorological observation data, data as-
similation methods have been widely used as an effective way to im-
prove the initial conditions for advancing the forecast skill of numerical
weather prediction. Three-dimension variational (3DVar; Lorenc, 1986)
is commonly applied in various assimilation systems because of its
simplicity, but its background error covariance is usually isotropic and
homogeneous (Xue et al., 2003). Four-dimension variational (4DVar;
Dimet and Talagrand, 1986) allow the evolution of the background
error covariance, but the development and maintenance of the adjoint
and tangent linear models are quite complicated (Huang et al., 2009).
The flow-dependent background error covariance can be derived from
the ensemble Kalman filter (EnKF; Evensen, 1994) method. None-
theless, EnKF is hampered by rank deficiency, unbalance between

variables in analysis, and sampling errors with limited sample size
(Evensen, 2003).

The hybrid method that incorporates the ensemble-based approach
within the variational assimilation system as an alternative assimilation
technique firstly proposed by Hamill and Snyder (2000). Due to its
great potential, it has been one of the research focuses of assimilation
(Lorenc, 2003; Wang et al., 2008a, 2008b; Zhang et al., 2013; Schwartz
and Liu, 2014; Lorenc et al., 2015; Bannister, 2017). This method takes
advantage of the strength of EnKF and variational methods, and alle-
viates the rank deficiency problem of EnKF caused by sample in-
sufficiency as well as provides flow-dependent covariance instead of
static, homogeneous and isotropic background error covariance in
3DVar. However, the rationality of flow-dependent background error
covariance derived from the hybrid method largely depends on the
sufficient ensemble samples, which requires plenty of computing
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resources.
In order to cut down the computational costs required by the en-

semble samples and introduce the inhomogeneous and anisotropic
background error covariance at the same time, some efforts have been
devoted to this research field recently. For instance, the time-lagged
ensemble method was employed in hybrid data assimilation system to
improve the structure of wind (Wang et al., 2017). The historical
forecasting samples calculated in the past are also utilized to take the
place of ensemble forecasts in hybrid data assimilation system. The
method based on historical forecasting samples costs as much as 3DVar,
but performs better in analysis and forecasts than 3DVar due to the
introduction of inhomogeneous background error covariance (Chen
et al., 2018). However, the background error covariance estimated from
all unselected historical forecasting samples is liable to embody clearly
climatic features of the past period rather than reflect the present
weather condition well.

Nevertheless, it is likely that some of the historical forecasting
samples may represent the current weather situation at the moment of
assimilation (Van den Dool, 1989, 1990). In order to use historical
forecasting samples in a reasonable way, empirical orthogonal func-
tions (EOF) are employed as a tool for dimensionality reduction
(Monahan et al., 2009) to extract the spatial patterns as meteorological
features from three-dimensional variable fields of samples and back-
ground. Then the spatial patterns from historical samples and back-
ground are matched at the time of assimilation to select the samples
which are closer to the synoptic situation of the background. After that,
the selected historical forecasting samples are introduced to combine
with small-size ensemble forecasting samples so as to avoid the com-
putation of full-size ensemble forecasting samples. The combination of
selected historical forecasting samples and ensemble forecasting sam-
ples meets the requirements of introducing flow-dependent features and
reducing computational costs.

The structure of this study is organized as follows, in Section 2, the
methodology of hybrid including the usage of historical forecasting
samples is described. The selection process of historical forecasting
samples by EOFs is explained in detail in Section 3. The single ob-
servation data assimilation experiments are discussed in Section 4. The
cycling data assimilation and forecasting experimental design and
evaluation of results are presented in Section 5. The diagnostic results
for a heavy rainfall case are shown in Section 6. A summary and con-
clusion are given in the final Section 7.

2. Methodology

The cost function of hybrid method is defined as follows (Wang
et al., 2008a, 2008b):
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The first term of Eq. (1) represents the traditional variational as-
similation background term with static background error covariance
(B). The second term represents the background term associated with
flow-dependent background error covariance derived from the en-
semble differences. The vector α is ensemble extended control variable
and A defines the spatial covariance of α. Factors β1 and β2 are the
weights for the static homogeneous covariance and inhomogeneous
covariance respectively, and both of them are constrained by 1/β1 + 1/
β2 = 1. The third term of the right hand is the observation term, of
which R is the observation error covariance, d is the innovation vector,
and H denotes the linearized observation operator. δx is the analysis
increment of the hybrid method, defined as,
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where δx1 is the increment associated with the static background cov-
ariance. The second term represents a local linear combination of en-
semble differences associated with the inhomogeneous ensemble cov-
ariance. α used in Eq. (1) is a vector formed by concatenating vectors αk

(k = 1,…,N). N is the total number of the ensemble members and the
symbol ∘ denotes the product element by element of vectors αk and xke.

In order to reduce the computational burden of ensemble forecasts
as well as retaining the equal full sample size, selected historical fore-
casting samples are introduced to combine with a portion of ensemble
forecasting samples. Therefore, there are two sources of ensemble dif-
ferences xke. One is the real ensemble differences xEke, and the other is
the historical ensemble differences xHke. xEke is normalized by −N 1E

and xHke is normalized by −N 1H as follows:
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In Eq. (3), xEk (k = 1,…,NE) is the kth ensemble member, xE is the
ensemble mean and NE is the number of ensemble differences. In Eq.
(5), xHkdiff (k = 1,…,NH) is defined as the ensemble differences. T1 and
T2 are forecast leading times. In Eq. (4), xH is the mean value of all the
historical ensemble differences, and NH is the number of historical en-
semble differences. xHke is the historical ensemble differences calcu-
lated from the selected historical forecasting samples. The concrete
selection method is presented in Section 3.

3. Selection of history forecasting samples

3.1. Selection process

The empirical orthogonal functions (EOF; Wallace and Gutzler,
1981) method is utilized to select the historical samples that are more
consistent with the current weather conditions at the analysis time, in
order to obtain more reasonable forecast error mentioned in Section 2.
The synoptic-scale weather characteristics can be extracted from all
historical forecasting samples and background, and then better histor-
ical forecasting samples will be picked referring to the matching degree
between the features of background and historical forecasting samples.
As for the indicator, the absolute vorticity is regarded as a referential
variable since it represents the rotation of airflow and plays an im-
portant role in other advanced diagnostic quantities of weather system
(Prezerakos et al., 1997; Ran et al., 2013). There are four specific
procedures for the selection process:

1) At the initial moment of assimilation, the absolute vorticity of all
historical forecasting samples and current-time background are
calculated and then decomposed in the vertical direction by ap-
plying the EOF method. Therefore, the space patterns of the absolute
vorticity extracted from historical samples and background after
dimensionality reduction are obtained and used for selection.

2) In order to utilize the space patterns of historical samples and
background, the correlations between the first modes of the absolute
vorticity derived from each historical forecasting sample and cur-
rent-time background are then calculated.

3) Ranking the historical forecasting samples in descending order ac-
cording to the correlations.

4) The historical forecasting samples are selected according to the
ranking order and then introduced in the hybrid data assimilation
scheme. For example, in this study the top 30 historical forecasting
samples are used in the sample-combined hybrid experiment and the
remaining lower ranking historical samples are discarded.
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3.2. Features of the historical forecasting samples

National Meteorological Center (NMC; Parrish and Derber, 1992)
method is applied to calculate the original historical forecasting sam-
ples which are the difference between 24 h and 12 h forecasts valid at
the same time (i.e., every 0000, 0600, 1200 and 1800 UTC). As a result,
the original 139 pairs of historical forecasting samples are obtained
covering a typical Mei-yu period from 0000 UTC 7 June to 1800 UTC 12
July 2015.

3.2.1. Atmospheric feature of the background
To further discuss the selection method in detail, an instance of the

selection process is analyzed. The 24 h accumulated precipitation from
0600 UTC 01 July 2016 to 0600 UTC 02 July 2016 reported by China
Hourly Merged Precipitation Analysis (CHMPA; Shen et al., 2014) is
displayed in Fig. 1a. As is shown in Fig. 1a, the rain belt lay from
southwest to northeast in the Jianghuai area of eastern China. In this
rainfall process, the accumulated precipitation over the Jianghuai area
reached 584.3 mm and ranked 3th largest since 1951. The anomalously
high precipitation leads to serious flood disasters (Yuan et al., 2017).
The 850 hPa horizontal winds and precipitable water derived from the
Global Forecast System (GFS) analysis are shown in Fig. 1b. It can be
seen that there is a shear line along the rain belt. Warm and moist air is
carried to the Jianghuai area by southwest flow from Bengal Bay. As a
consequence, the heavy precipitation process in the Jianghuai area
occurred due to the cooperation of the gathered water vapor and the
strong ascending motion of the Jianghuai cyclone.

Fig. 2 shows the distribution of absolute vorticity and atmospheric
circulation of the background derived from the Global Forecast System
(GFS) analysis valid at 0600 UTC 01 July 2016. It can be seen that the
distribution of vorticity and atmospheric circulation has a similar pat-
tern (Fig. 2). At 850 hPa, the positive vorticity is distributed along the
wind shear line near 30°N in east China (Fig. 2a), where the Mei-yu
front develops and causes heavy rains (Chen and Tai-Jen, 2004). At
500 hPa, there exists a low-pressure trough in eastern China. In addi-
tion, it shows that northward motion and extension of the West Pacific
subtropical anticyclone (Fig. 2b), which is also important for Mei-yu
precipitation (Gao et al., 2002). At 200 hPa, the anticyclone is domi-
nant in the Jianghuai area, which indicates the eastward-moving of
South Asia high. The absolute vorticity is relatively smaller at 500 hPa
than 850 hPa (Fig. 2c). This configuration of atmospheric flow and

vorticity lead to intensive convection activity, which causes the con-
vergence of moisture and continuous heavy rainfall (Sampe and Xie,
2010). Also, its relatively regular atmospheric pattern during the ty-
pical Mei-yu period makes it possible to introduce the historical fore-
casting samples with similar atmospheric circulation as part of en-
semble samples in the assimilation system.

Although convection strongly depends on the low-level dynamic
factors, it is not solid to elucidate the cause of the Mei-yu system
(Sampe and Xie, 2010). It means that the influences over the rainfall
process are noticeable from both low-level and upper absolute vorticity.
To comprehensively consider the influence of absolute vorticity at
different heights, the EOF method is used to compress the three-di-
mensional variables in the vertical direction into the two-dimensional
spatial patterns with meteorological features. Thus, the background
information of the absolute vorticity on different levels is orthogonally
decomposed and extracted in EOF spatial patterns. The spatial patterns
of the first three leading modes are showed in Fig. 3. In the first leading
mode (Fig. 3a), the pattern between the negative absolute vorticity and
the main rainfall area is more similar than that of the other two modes
(Fig. 3b-c).

More variances such as the potential vorticity (hereafter “PV”) and
temperature in the background are abstracted by the EOF method to be
tested. Fig. 4 shows the horizontal distribution of the PV in 850 hPa,
500 hPa and 200 hPa and the spatial patterns of the first three leading
modes of the decomposed PV and temperature at 0600 UTC 1 July
2016. It can be seen that the distribution of PV (Fig. 4a-c) has sig-
nificant differences from that of the absolute vorticity (Fig. 2) in dif-
ferent levels. The different results of PV could be explained by the
perspective of formulas. In z coordinate system, the PV is defined as

∙ ∇ξ
ρ

θa where ξa is the absolute vorticity, ρ is density, and ∇θ is the
gradient of potential temperature. It means that PV is a variable that
combines the dynamic factor and thermodynamic factor. The results
show that both factors are significant at individual levels. However, in
the EOF space, the spatial patterns of PV (Fig. 4d-f) are completely
different from absolute vorticity (Fig. 3). More horizontally uniform
features can be seen (Fig. 4d) and the contribution rate of the first mode
of PV reaches to 96.7% far more than absolute vorticity's (32.5%,
Fig. 3a). This is because the PV in EOF space is dominated by a large
vertical variation which is horizontally uniform. While it might be
beneficial to try subtracting a horizontally uniform PV distribution
before transforming to EOFs, for the present work the first mode of the

Fig. 1. (a) The distribution of 24 h accumulated precipitation initialized at 0600 UTC 01 July 2016 (shaded; mm) from the China Hourly Merged Precipitation
Analysis (CHMPA), (b) the horizontal wind (vector; m s−1) at 850 hPa and the precipitable water (shaded; mm) derived from Global Forecast System (GFS) analysis
valid at 0600 UTC 01 July 2016.
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absolute vorticity from the background is used as a reference standard
for selection in subsequent research.

3.2.2. Analysis of the selection results
The rankings of the first modes in the 139 historical forecasting

samples are displayed in Fig. 5. They are arranged according to the
correlations calculated with background valid at 0600 UTC 1 July
2016. The first modes with the highest and lowest correlation coeffi-
cients are shown in Fig. 5a and Fig. 5o respectively, and others are
displayed at an interval of ten rankings (Fig. 5b-n). It can be seen that
the first modes of historical forecasting samples sorted in the first 30th
are closer to the first mode of background (Fig. 5a-d). Basically, a strip-
shaped negative area in the Mei-yu area can be seen in the first 50th
ranking (Fig. 5a-f). For the historical forecasting samples with the lower
correlation coefficients after 100th, the features of the absolute vorti-
city are more southward out of the Mei-yu area. Some modes show
weaker vorticity features, or even some characteristics of a typhoon
(Fig. 5k-o), which is obviously inconsistent with the referential weather
system in the background. Those historical forecasting samples that are
clearly different from the atmospheric conditions at the time of

assimilation should be discarded.
The results indicate that the historical forecasting samples posses-

sing similar features with the background atmospheric circulation could
be selected by calculating the correlation coefficients between the ab-
solute vorticity of historical forecasting samples and background at the
assimilation time. Therefore, more reasonable selected historical fore-
casting samples can be introduced into the hybrid data assimilation
system.

4. Single observation tests

Single observation tests are carried out to investigate the structure
of analysis increments of 3DVar and hybrid experiments base on dif-
ferent samples. According to the ranking order described above, single
observation tests of selected historical forecasting samples, ensemble
forecasting samples, and their combinations are listed as follows:

H50: top 50 selected historical forecasting samples according to the
ranking list from high to low;
E50: 50 initial ensemble samples are constructed by adding

Fig. 2. The horizontal distribution of atmospheric circulation (vector; m s−1) and absolute vorticity (shaded; 10−5 s−1) at (a) 850 hPa, (b) 500 hPa, (c) 200 hPa
derived from GFS analysis at 0600 UTC 1 July 2016.

Fig. 3. Spatial patterns for the (a) first, (b) second and (c) third EOF mode of absolute vorticity in the background at 0600 UTC 1 July 2016.
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Gaussian random noise to analysis in the control variable space
depending on static background error (known as “RandomCV” in
WRFDA; Barker, 2005; Torn et al., 2006) and then updated by ETKF
(ensemble transform Kalman filter technique to update the ensemble
perturbations in WRFDA; Bishop et al., 2001; Wang and Bishop,
2003) scheme every 6 h in following two-day partial cycle referring
to Chen et al. (2018);
E20: 20 ensemble forecasting samples picked up randomly from
E50;
E20H30: 20 ensemble forecasting samples from E20 combined with

the top 30 selected historical forecasting samples according to the
ranking list from high to low.

The domain is configured with 41 vertical levels up to 50 hPa. A
pseudo zonal wind (U) observation is placed at position (33°N, 116°E)
on the 26th model level. The innovation (i.e. observation minus back-
ground) of U is 1.0 m s−1; the observation error is 1.0 m s−1; the
horizontal localization length scale which determines the degree of
ensemble covariance localization is 200 km; and the ensemble
weighting coefficient factor is set to 0.75, which are the optimal

Fig. 4. The same as Figs. 2 and 3, but for the potential vorticity (a–f) and temperature (g–i) in the background at 0600 UTC 1 July 2016.
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Fig. 5. The interval display for the first modes of the decomposed absolute vorticity fields of the 139 historical forecasting samples. The order is arranged according
to the correlation coefficient from the highest (a) to lowest (o). The first modes ranking from 10 to 130 at ten intervals after sorting in descending order of correlation
coefficient are shown in (b–n).
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configurations referring to Chen et al. (2018). The background forecasts
and ensembles in the single observation tests are taken from 0000 UTC
2 July 2016.

Analysis increments of wind after assimilating the single U ob-
servation are shown in Fig. 6. The wind analysis increments of 3DVar
show the isotropic and homogeneous structure (Fig. 6a). Different from
3DVar, the wind increments of H50 (Fig. 6b) are anisotropic and in-
homogeneous because of the historical forecast differences obtained via
selected historical forecasting samples. The increments of H50 (Fig. 6b)
show the similar flow-dependent feature with E50 (Fig. 6c) due to the
selected historical forecasting samples based on the current atmo-
spheric state, while Fig. 6b presents broader correlations than Fig. 6c.
However, the increments of E20 (Fig. 6d) are different from those in
E50, which fails to display the reasonable flow-dependent feature be-
cause of the limited samples. Fig. 6e shows that the increments of
sample-combined experiment E20H30 present some of common fea-
tures of E50 and H50, which means the flow-dependent information can
also be derived from the combination of those two types of samples.

5. Cycling data assimilation and forecasting experiments

5.1. Model and experiments design

The study is based on the Advanced Research Weather Research and
Forecasting Model (ARW-WRF, hereafter “WRF”; Skamarock and
Klemp, 2008) on version 3.9.1. All experiments are conducted over a
single domain (Fig. 7). The horizontal grid resolution is 9 km with
271 × 271 mesh grid points and the domain is configured with 41
vertical levels up to 50 hPa. The Global Forecast System (GFS)
0.25° × 0.25° analyses and forecasts are used for the initial and

boundary conditions. The physical parameterizations are adopted as
follows: the WRF Single-Moment 5-class microphysics scheme (WSM-5;
Hong et al., 2004), the Yonsei University boundary layer scheme (YSU;

Fig. 6. Analysis increments of wind (vector, shaded; m s−1) at the 26th (~200 hPa) level after assimilating the single U observation (red dot) with the weighting
factor 0.75, (a) 3DVar, (b) H50, (c) E50, (d) E20 and (e) E20H30. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. The distributions of the observations assimilated at 0000 UTC 1 July
2016.
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Hong et al., 2006), the Kaine-Fritsch cumulus parameterization scheme
(Kain and Fritsch, 1990), the Dudhia shortwave radiation scheme
(Dudhia, 1989) and the Rapid Radiative Transfer Model (RRTM)
longwave radiation scheme (Mlawer et al., 1997).

The Global Telecommunication System (GTS) observations assimi-
lated by WRFDA are also shown in Fig. 7. A variety of surface and
upper-air meteorological observations are used from conventional ob-
servations and satellite products. The GTS observations pre-processing
procedures such as data acquisition, decoding and quality control for all
experiments are performed in the modules of WRFDA.

The static background error covariance for the variational system is
estimated by the National Meteorological Center (NMC) method
(Parrish and Derber, 1992). The NMC method is applied to calculate the
difference between 24 h and 12 h forecasts valid at the same time (i.e.,
every 0000 and 1200 UTC) during the one-monthly period from 0000
UTC 1 July to 1800 UTC 31 July in 2015. The option 5 of control
variables (known as “CV5” in WRFDA; Barker, 2005) are chosen to
formulate the background error covariance in this study. With CV5, the
control variables are in eigenvector space including stream function
(ψ), unbalanced velocity potential (χu), unbalanced temperature (Tu),
pseudo relative humidity (RHs,u), and unbalanced surface pressure
(Ps,u).

To compare and test the effects of different samples and their
combinations in the WRFDA system, five groups of experiments are
designed as follows: 3DVar, Hybrid-H50, Hybrid-E50, Hybrid-E20,
Hybrid-E20H30. The experiment 3DVar is the control run using the
three-dimension variational method, and others are all sample-based
experiments in the hybrid data assimilation system.

The sample selection and combination configurations are consistent
with the experimental settings in section 4. The experiments of Hybrid-
H50, Hybrid-E50 and Hybrid-E20H30 are designed and compared to
display the effects with the proportion change between the ensemble
forecasting samples and the historical forecasting samples with 50 total
samples. Hybrid-E20 and Hybrid-E20H30 are designed to show the
impacts of extra 30 selected historical forecasting samples.

The ensemble samples in this study are initialized with the
RandomCV method that works by adding random noise to the initial
conditions (Barker, 2005; Torn et al., 2006) and updated by ETKF with
the following cycle. The ensemble weighting factor is set to 0.75 and
the covariance localization length scale is set to 200 km same as the
configurations in Section 4. 19-day cycling data assimilation and fore-
casting experiments from 0000 UTC 19 June to 0000 UTC 7 July cov-
ering the Mei-yu period in 2016 are conducted. The assimilation fre-
quency is 6 h, so totally 75 assimilation cases are tested.

5.2. Computational costs

Saving computation resources comes to one of the most important
reasons for combining ensemble forecasting samples with historical
forecasting samples. Table 1 lists the computing time consumption of
3DVar and other hybrid experiments with differential sample config-
uration. All of the experiments are carried out on large high-perfor-
mance computing shared service platform supported by Nanjing Uni-
versity of Information Science and Technology (NUIST) with 56
processors. The CPU is Intel(R) Xeon(R) CPU E5–2680 v4, and running
memory is 128G. The Operating system is Lenovo Flex System

enterprise server CentOS 7.3.
It can be seen that 3DVar takes 712 min for 19-day cycling, which is

4.67% of Hybrid-E50. The computing time consumption of Hybrid-H50
is comparable with 3DVar. It requires slightly extra 125 min due to the
use of extended control variables in the analysis step. The computing
time consumption of Hybrid-E20H30 is close to Hybrid-E20, both are
around 43% of Hybrid-E50. It is clear that computational consumption
for each experiment results mainly from ETKF-based ensemble fore-
casting processes. By combining the selected historical forecasting
samples, the samples of Hybrid-E20H30 are extended on the premise of
taking approximate computing resources of Hybrid-E20.

5.3. Results of cycling data assimilation and forecasts

5.3.1. Verification against GFS analysis
To evaluate the performance of five experiments during the rainfall

period, the average root-mean-square errors (RMSEs) of horizontal
winds (U, V), temperature (T), and specific humidity (Q) between the
five experiments and the GFS analyses at 0.25° × 0.25° resolution are
calculated. The GFS analysis as a reference has the advantages of using
the 4DVar-based EnKF-variational hybrid data assimilation system and
assimilating multiple observations (Kleist and Ide, 2015; Zhou et al.,
2016). And the RMSEs are calculated against GFS analyses for verifying
large-scale information of the model forecasts.

Fig. 8 displays the vertical profiles of mean RMSEs between the
analyses of the five experiments and GFS over 19 days from 0600 UTC
19 June to 0000 UTC 7 July 2016. The experiment 3DVar appears to
yield the largest RMSEs, while the experiment Hybrid-E50 shows the
best performance. Compared with 3DVar, the improvements of Hybrid-
H50 are slightly limited partly because of some of the low-ranking
historical forecasting samples in Hybrid-H50 are not able to estimate
the background error covariance well during the whole process of cy-
cling assimilation and forecasting. The RMSEs performance of Hybrid-
E20H30 is clearly greater to Hybrid-E20 for the variables (i.e. U, V, T,
Q), although both of them are better than Hybrid-H50. Furthermore,
the experiment Hybrid-E20H30 performs close to the best performing
Hybrid-E50. It should be noted that the experiment Hybrid-E20H30
consumes less than half of the computational resources of experiment
Hybrid-E50, slightly more than Hybrid-E20 (Table 1). The results in-
dicate the positive impact of combining the 30 selected historical
forecasting samples, which is because flow-dependent background error
covariance features are introduced in the assimilation.

Fig. 9 displays the vertical profiles of mean RMSEs of 6 h and 24 h
experimental forecasts and related GFS forecasts against the GFS ana-
lyses over the same area. It should be noted that the continuous cycling
assimilation and forecasting experiments are carried out with 6 h spin-
up and two-day partial cycles mentioned above. Therefore, the aver-
aged RMSEs of equivalent 6 h GFS forecasts are actually calculated from
the T + 12, T + 18, …, T + 54 GFS forecasts at the initial time (T) of
each cycling experiments. Similarly, the RMSEs of 24 h GFS forecasts
are calculated from the T + 30, T + 36, …, T + 72 GFS forecasts. It
shows that the equivalent GFS forecasts perform obviously larger
RMSEs in general (purple line), due to the GFS forecasts forecasting
without assimilating observations. Compared with it, the cycling as-
similation and forecasting experiments have benefits from the available
observations and lead to improved estimation of the atmospheric state

Table 1
The sample configuration and computational cost of the assimilation experiments.

Experiments 3DVar Hybrid-H50 Hybrid-E50 Hybrid-E20 Hybrid-E20H30

Ensemble forecasting samples / 0 50 20 20
Selected historical forecasting samples / 50 0 0 30
Cost (min) 712 837 15,256 6614 6671
Percent (%) 4.67 5.49 100.00 43.35 43.73
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(Barker et al., 2004). As the forecast errors accumulate along the
leading time, it can be seen that the experimental RMSEs become
larger, and the differences of errors between the experiments are small
by T + 24 (Fig. 9). The reason is that the boundary conditions are the
same for these experiments and the influences of initial conditions are
reduced. The improvements of all hybrid experiments also decrease in
four fields (i.e. U, V, T, Q) from 6 h to 24 h forecasts. The performance
of Hybrid-E20H30 is still close to that of Hybrid-E50 and better than
other experiments especially in variables of U/V (Fig. 9a-b). These
improvements from the Hybrid-E20H30 are likely to be associated with
the effects of selected historical forecasting samples.

The results of RMSEs indicate that the Hybrid-E20H30 based on the
combination of ensemble forecasting samples and selected historical
forecasting samples performs better than the experiment 3DVar and
Hybrid-E20 overall. The improvements can be seen through four basic

variables (i.e. U, V, T, Q) in both analyses (Fig. 8) and forecasts (Fig. 9),
especially through U/V variables (Fig. 8a-b, Fig. 9a-b). And the ex-
periment Hybrid-E20H30 has the advantage of using computing re-
sources more efficiently than other ETKF-based hybrid experiments,
which is mentioned above in Section 5.2 (Table. 1).

5.3.2. Precipitation forecast skill
To quantify the performance of precipitation of all five different

experiments, Fractions Skill Score (FSS, Roberts and Lean, 2008) and
Equitable Threat Score (ETS; Clark et al., 2010) are used to evaluate the
precipitation forecast skill. FSS varies from 0 to 1, with 0 representing
no overlap between observation and prediction field, and 1 re-
presenting complete overlap (Roberts and Lean, 2008). The ETS ranges
from −1/3 to 1, where −1/3 is the lower limit. For ETS, 0 indicates no
skill and 1 indicates a perfect skill (Clark et al., 2010). The observed

Fig. 8. Vertical profiles of the analyses RMSEs of (a) U (m s−1), (b) V (m s−1), (c) T (K) and (d) Q (g/kg) against the GFS analyses from 0600 UTC 19 June to 0000
UTC 7 July in 2016.
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precipitation products are the China Hourly Merged Precipitation
Analysis (CHMPA) with 0.1° latitude×0.1° longitude spatial resolution
(Shen et al., 2014). The scoring area covering the rainfall procession is
set to (114°E-121°E, 28°N-32°N), and the horizontal scale of FSSs is
18 km in this study.

The time series of FSSs and ETSs with the threshold of 1 mm h−1

averaged from 75 forecasts are presented in Fig. 10. It can be seen that
all the hybrid experiments are clearly superior to 3DVar experiment，
and the Hybrid-E50 experiment performed best in general. Although
better than 3DVar experiment, the Hybrid-H50 experiment is still
scored lower than those hybrid experiments using ensemble forecasting

samples. In the first 6 h, the FSS and ETS of Hybrid-E20H30 are close to
Hybrid-E50 and it is superior to Hybrid-E20 in most forecasts. Note that
both experiments of Hybrid-E20H30 and Hybrid-E20 use the same en-
semble forecasting samples and require roughly equal computational
costs, but the sample size of the Hybrid-E20H30 is larger. The increase
of the precipitation forecast skill in the Hybrid-E20H30 experiment
could be attributed to the utility of 30 selected historical forecasting
samples, which provide more available samples and alleviate the de-
fects due to the limited sample size.

Fig. 9. The same as Fig. 8, but the 6 h forecast (solid line) and 24 h forecast (dotted line) RMSEs of (a) U (m s−1), (b) V (m s−1), (c) T (K) and (d) Q (g/kg) against the
GFS analyses.
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6. Diagnostics for a heavy rainfall event

6.1. Accumulated precipitation

In early July, there was a continuous heavy rainfall event over
Yangtze-Huai River Basin. The 24 h accumulated precipitation in-
itialized at 0000 UTC 2 July 2017 is presented in Fig. 11. It can be seen
that the observed 24 h accumulated precipitation derived from CHMPA
roughly extends along the Southwest-Northeast direction, with the
maximum value exceeding 120 mm (Fig. 11a). The 3DVar experiment
obviously underestimates the maximum value (Fig. 11b), while the

precipitation intensity is enhanced in all the hybrid experiments
(Fig. 11c-f). However, it shows that the precipitation of Hybrid-H50
produces a discontinuous rain-belt distribution (Fig. 11c). The Hybrid-
E20 overestimates the precipitation at east coast area and has some
deviations from the observation position (Fig. 11e). Compared with
other methods, Hybrid-E20H30 and Hybrid-E50 show better prediction
in terms of precipitation location and intensity (Fig. 11d, Fig. 11f).
Furthermore, Hybrid-E20H30 occupies less than half of the computing
resources of Hybrid-E50.

Fig. 10. (a) Fractions skill scores with 18-km radius and (b) Equitable threat scores for the 6 h accumulated precipitation threshold of 1 mm h−1 along the forecast
time from 0600 UTC 19 June to 0000 UTC 7 July in 2016. The precipitation observation used in the score are from the China Hourly Merged Precipitation Analysis
(CHMPA) with 0.1° latitude× 0.1° longitude spatial resolution.

Fig. 11. The distribution of 24 h accumulated precipitation beginning at 0000 UTC 2 July 2016 for (a) the precipitation observation, (b) 3DVar, (c) Hybrid-H50, (d)
Hybrid-E50, (e) Hybrid-E20 and (f) Hybrid-E20H30.
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6.2. Vertical velocity and water vapor

The vertical cross sections of the vertical velocity of 18 h forecasts
along 117.5°E in the center of heavy precipitation at 0018 UTC 02 July
are presented in Fig. 12. It shows that there is no strong vertical uplift
flow support at the heavy rainfall area in the 3DVar experiment
(Fig. 12a). Compared to the 3DVar, the vertical velocity of Hybrid-H50
(Fig. 12b) is intensified, but it is still relatively weaker than Hybrid-E50
(Fig. 12c). The experiment of Hybrid-E20H30 is capable of simulating
deepest vertical lift movements concentrated at 30°N (Fig. 12e), which
contributes to the improvement of precipitation simulation.

The vertical cross sections of the relative humidity of 18 h forecasts
along 117.5°E valid at 0018 UTC 02 July are presented in Fig. 13 to
indicate the convergence of moisture. The strong rainfall mainly ap-
pears near 29°N ~ 31°N. The 3DVar experiment yields weaker relative
humidity in the precipitation area between 500 hPa and 700 hPa
(Fig. 13a). Insufficient conditions of water vapor and weak uplift flow
result in the deviation of precipitation forecast in this region. The
sample-based hybrid methods strengthen the moisture condition
(Fig. 13b-e). It can be seen that the relative humidity of Hybrid-E20
(Fig. 13d) is still inadequate compared with Hybrid-E50 (Fig. 13c). The
experiment of Hybrid-E20H30 is capable of simulating stronger wide-
spread relative humidity bands with good continuity (Fig. 13e), which
favors the water vapor conditions for the rainfall process.

7. Summary

To reduce the computational burden of ensemble forecast and in-
troduce the inhomogeneous and flow-dependent background error
covariance to hybrid data assimilation system, the historical forecasting
samples selected by the EOF method are utilized to combine with the

ensemble forecasting samples. The impact of selected historical fore-
casting samples is assessed by single observation tests and 19-day
continuous cycling data assimilation and forecasting experiments of the
Mei-yu period in 2016.

The selection process shows that the selected historical forecasting
samples with high rankings show similar dynamical feature to the
background, while those samples with low rankings are obviously dif-
ferent from the weather situation at the time of assimilation. Thus the
historical forecasting samples which are closer to the atmospheric si-
tuation can be selected effectively from all historical samples for hybrid
assimilation experiments by EOF method.

Single observation tests show the wind increments of the experi-
ment with 20 ensemble forecasting samples fails to display the rea-
sonable flow-dependent feature due to limited samples. The anisotropic
and inhomogeneous wind increments are obtained by using 50 selected
historical forecasting samples, which are similar to the increments of
the experiment with 50 ensemble forecasting samples. Wind increments
of the sample-combined experiment has some of common features of
experiments with 50 ensemble forecasting samples and 50 selected
historical forecasting samples.

Compared with the experiment of 20 ensemble forecasting samples,
the wind increments of experiment with combining samples are more
similar to those with 50 ensemble forecasting samples. The results of
single observation tests show that the use of selected historical fore-
casting samples is able to provide reasonable flow-dependent back-
ground error covariance for the data assimilation system.

Results from the cycling experiments show that analyses and fore-
casts skills in the hybrid experiments with the selected historical fore-
casting samples are improved compared to 3DVar in terms of the
RMSEs as well as the precipitation forecasts. Although using only his-
torical forecasting samples in hybrid experiment performs slightly

Fig. 12. Cross sections of vertical velocity of 18 h forecast (shaded; 10−2 m s−1) along the rainfall center of 117.5°E at 0018 UTC 2 June 2016. (a) 3DVar, (b) Hybrid-
H50, (c) Hybrid-E50, (d) Hybrid-E20, and (e) Hybrid-E20H30.
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better than 3DVar at the analysis time and gives inferior results of
forecasts, the advantages of historical samples are demonstrated clearly
through the results of sample-combined hybrid experiment. The per-
formance is improved by introducing the selected historical samples on
the premise of the same ensemble forecasting samples and close to the
ensemble forecasting samples experiment with the full sample size.
These results could be attributed to the optimal selected historical
forecasting samples by the EOF method, because the selected historical
forecasting samples are efficiently utilized to enrich the available en-
sembles and introduced to provide flow-dependent background error
covariance.

Besides, the computational efficiency analysis further explains the
advantage of cost-saving of computation using selected historical
forecasting samples. The computing resources spent on the sample-
combined hybrid experiment are roughly equal to the hybrid experi-
ment with 20 ensemble forecasting samples, much less than the ex-
periment with 50 ensemble forecasting samples. Such cost-saving is
necessary for departments with tight computing resources.

It should be noted that there are only 139 alternative historical
forecasting samples used in the study. The performance of historical-
sample-based hybrid experiments could be further improved when
better samples are selected from the storage of more historical fore-
casting samples. Furthermore, the absolute vorticity is regarded as the
only selection index in this study. More synthetical indicator could be
considered for more rational selection.
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