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Tensor Oriented No-Reference Light
Field Image Quality Assessment

Wei Zhou , Student Member, IEEE, Likun Shi, Zhibo Chen , Senior Member, IEEE, and Jinglin Zhang

Abstract— Light field image (LFI) quality assessment is becom-
ing more and more important, which helps to better guide
the acquisition, processing and application of immersive media.
However, due to the inherent high dimensional characteristics of
LFI, the LFI quality assessment turns into a multi-dimensional
problem that requires consideration of the quality degradation
in both spatial and angular dimensions. Therefore, we propose
a novel Tensor oriented No-reference Light Field image Quality
evaluator (Tensor-NLFQ) based on tensor theory. Specifically,
since the LFI is regarded as a low-rank 4D tensor, the prin-
cipal components of four oriented sub-aperture view stacks
are obtained via Tucker decomposition. Then, the Principal
Component Spatial Characteristic (PCSC) is designed to measure
the spatial-dimensional quality of LFI considering its global
naturalness and local frequency properties. Finally, the Tensor
Angular Variation Index (TAVI) is proposed to measure angular
consistency quality by analyzing the structural similarity distri-
bution between the first principal component and each view in
the view stack. Extensive experimental results on four publicly
available LFI quality databases demonstrate that the proposed
Tensor-NLFQ model outperforms state-of-the-art 2D, 3D, multi-
view, and LFI quality assessment algorithms.

Index Terms— Light field, image quality assessment, objective
model, tensor theory, angular consistency.

I. INTRODUCTION

AS AN important medium for human visual perception,
light enables humans to effectively perceive the spa-

tial, color, form and dynamic changes of our environment.
Conventional media modalities such as 2D images mainly
consider the intensity information of radiance, which can only
provide a two-dimensional (2D) sense of presence. Different
from traditional image capturing formats, light field content
records both radiation intensity and direction information of
light rays in the free space, thus providing an enhanced immer-
sive experience. Considering the abundant spatial and angular
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information of the light field, its processing and application
have attracted widespread attention in past decades. However,
these operations inevitably introduce heterogeneous artifacts,
resulting in the degradation of the perceptual quality for
light field content [1]. Therefore, monitoring the perceptual
quality of light field content is critical to better guiding the
procedure of light field acquisition, processing and application
techniques.

To facilitate the recording and processing of light field
content, a 4D function based on the assumption that the
light ray radiance is monochromatic, time-invariant and con-
stant along a straight line is adopted to represent light field
data [2], [3]. Specifically, light field is parameterized by four
coordinates L(s, t, x, y), where the s, t dimensions are angular
dimensions and x, y dimensions denote spatial dimensions.
When a 4D light field image (LFI) is captured by Lytro
Illum [4], each view in the LFI is called a sub-aperture image
(SAI). Due to the high dimensional characteristics of LFI, its
quality is influenced by different dimension of impairments
than that of traditional media. Therefore, it is necessary to
analyze the specific factors in LFI quality assessment. The
existing research works based on subjective evaluation [5]–
[9] found that the LFI quality assessment needs to con-
sider from these three aspects, namely spatio-angular reso-
lution, spatial quality, and angular consistency. Specifically,
spatio-angular resolution refers to the number of SAIs in a
LFI and the resolution of a SAI. Spatial quality indicates
the quality of SAIs and angular consistency measures the
visual coherence between SAIs. Since the spatio-angular res-
olution is usually determined by the acquisition devices, this
paper focuses on the effects of spatial quality and angular
consistency.

Although subjective evaluation is an effective way to
understand human behavior and provides reliable image
quality scores, it is resource and time consuming with-
out the possibility to be applied for practical applications.
Therefore, an effective objective LFI quality assessment
model is necessary. Conventionally, image quality assess-
ment (IQA) models can be roughly classified into three cat-
egories based on the availability of original reference image
information: full-reference (FR), reduced-reference (RR) and
no-reference (NR).

However, most of these objective models ignore the intrinsic
high dimensional characteristics of LFI. In recent works,
the tensor theory has been successfully applied to many fields
of computer vision, such as compression and recognition [10].
Mathematically, a LFI belongs to a 4D tensor. Therefore,
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the tensor theory can effectively describe the characteristics
and distributions in the high-dimensional space. Moreover,
these aforementioned methods are designed to extract features
in the luminance domain. Although luminance is considered as
a dominant factor for understanding the human visual percep-
tion [11], luminance-based IQA methods may be sub-optimal
because they underestimate visual interference caused by color
distortion, especially the significant differences in the colors
of different SAIs. In addition, existing methods neglect the
impact of angular consistency in diverse orientations [12], [13]
or only consider horizontal angular consistency [14], [15].
Since the LFI is an image array, the relationship between each
SAI and the adjacent SAI can reflect the LFI angular consis-
tency. Generally, a SAI has eight adjacent SAIs that correspond
to angular consistency in four orientation, namely horizontal,
vertical, left diagonal, and right diagonal orientations.

In this paper, based on the tensor theory, we proposed a
novel Tensor oriented No-reference Light Field image Quality
evaluator (Tensor-NLFQ), which considers both luminance
and chrominance effects, as well as the impact of angular con-
sistency in diverse directions on the LFI quality. Specifically,
the SAIs in RGB are first converted into CIELAB color space,
which contains one luminance and two chrominance channels.
Second, to comprehensively capture the degradation of LFI
angular consistency, view stacks are generated along four
orientations. Third, the Tucker decomposition is employed to
reduce the angular dimensional of view stacks and obtain the
first principal component as the most important dimensionality
reduced image. Fourth, considering that the LFI quality is
affected by both the spatial quality and angular consistency,
we propose the Principal Component Spatial Characteris-
tics (PCSC) for measuring the spatial quality including two
key aspects: i) the naturalness distribution of individual and
mutual color channels is extracted to measure the global
distortion; ii) local frequency distribution is used to capture
local spatial quality degradation. In addition, we propose the
Tensor Angular Variation Index (TAVI) to measure the angular
consistency, which is computed by analyzing the structural
similarity distribution between the first principal component
and each view in the view stack. Our experimental results
show that the performance of our proposed model correlates
well with human visual perception and achieves the state-of-
the-art performance. The source codes of Tensor-NLFQ will
be available online for public research usage.1

The remainder of this paper is organized as follows.
Section II introduces the related work. In Section III,
we present the details of the proposed model. We then illustrate
the experimental results in Section IV. Finally, Section V
concludes our paper.

II. RELATED WORK

The FR IQA approaches utilize the complete reference
image information and measure the difference between ref-
erence and distorted images. Among a variety of 2D FR
IQA methods, structure similarity between reference and dis-
torted images is measured in structural similarity (SSIM) [16],

1http://staff.ustc.edu.cn/~chenzhibo/resources.html

and several of its variants have been proposed, i.e. multi-scale
SSIM (MS-SSIM) [17], feature similarity (FSIM) [18], infor-
mation content weighted SSIM (IW-SSIM) [19], and so
on [20]–[22]. The information fidelity criterion (IFC) [23]
and visual information fidelity (VIF) [24] measure the degree
of information loss of the distorted images relative to the
reference image. Moreover, the noise quality measure (NQM)
[25] and visual signal-to-noise ratio (VSNR) [26] consider
the sensitivity of the human visual system (HVS) to different
visual signals. Chen et al. [27] proposed a 3D FR IQA
algorithm that models the influence of binocular rivalry. For
multi-view FR IQA, morphological pyramid decomposition
and morphological wavelet decomposition are employed in
morphological wavelet peak signal-to-noise ratio (MW-PSNR)
[28] and morphological pyramid PSNR (MP-PSNR) [29], [30],
respectively. The 3D synthesized view image quality metric
(3DSwIM) [31] is based on the comparison of statistical
features from wavelet subbands.

The RR IQA algorithms utilize partial information of the
reference image for quality assessment, which is exploited
when the reference information is transmitted at low band-
width, such as [32]–[34]. The NR IQA methods measure
distorted image quality without needing the original image,
which is more applicable in most real-world scenarios. For
example, natural scene statistics from different domains are
extracted to predict 2D image quality [35]–[39]. For 3D NR
IQA, binocular vision theory and depth perception are adopted
in several methods [40]–[42]. Gu et al. [43] proposed a
multi-view NR IQA algorithm named autoregression (AR)-
plus thresholding (APT) that employs the AR-based local
image description. However, none of the aforementioned
schemes consider the intrinsic high dimensional characteristics
of LFI, especially the distortion caused by angular consistency.
Therefore, it is important and necessary to design a new light-
field-specific metric.

In the literature, several LFI quality assessment models
have been proposed. Fang et al. [14] proposed a FR LFI
quality assessment method that measures the gradient mag-
nitude similarity of reference and distorted epipolar plane
images. Huang et al. [15] also proposed a FR LFI quality
assessment algorithm, which is based on dense distortion
curve analysis and scene information statistics. The light field
image quality assessment metric (LF-IQM) [12] is a RR
LFI quality assessment metric that assumes the depth map
quality is closely related to the LFI overall quality and mea-
sures the structural similarity between original and distorted
depth maps to predict the perceived LFI quality. However,
Fang [14] and LF-IQM [12] ignore the texture information of
SAI, which result in the insufficient measurement of the LFI
spatial quality. Furthermore, the performance of the LF-IQM
is significantly affected by the adopted depth estimation algo-
rithms. Additionally, in most cases, the pristine image is not
available, thus NR LFI quality assessment methods are desired.
To the best of our knowledge, our previous work [13] propose
the only NR LFI quality assessment metric called blind
quality evaluator of light field image (BELIF), which utilizes
binocular vision features for measuring the spatial quality
and angular consistency. The differences between BELIF and
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Fig. 1. Flow diagram of the proposed Tensor-NLFQ model.

our proposed Tensor-NLFQ are: 1) The BELIF ignores the
effect of chrominance information. However, the proposed
Tensor-NLFQ method jointly considers both the influence of
luminance and chrominance on perceptual quality; 2) The
BELIF neglects the effect of local changes in the angular con-
sistency of each direction, while our proposed Tensor-NLFQ
exploits the angular consistency of each direction to evaluate
the light field image quality.

III. PROPOSED METHOD

The framework of Tensor-NLFQ algorithm is illustrated
in Fig. 1. First, we convert SAIs in RGB into CIELAB
color space. Second, we exploit Tucker decomposition along
angular dimension to generate the principal components of
view stacks in diverse orientations. Third, the PCSC and TAVI
are extracted to measure the degradation of spatial quality
and angular consistency, respectively. Finally, we utilize the
regression model to predict the perceptual LFI quality.

A. Color Space Conversion

As an important and dense natural visual cue, color infor-
mation helps the human brain to achieve both low-level
and high-level visual perception. Extensive research works
have been conducted towards understanding the effects of
luminance and chrominance on image quality [39], [44]–[46].
These works prove that the chrominance information has a
promising gain for image quality evaluation. Therefore, it is
reasonable to use the color space information to evaluate
LFI spatial quality. Furthermore, in our previous work [8],
we have found that if there exists a significant difference
in the color of different SAIs, this may destroy LFI angular
consistency. Fig. 2 shows two horizontal adjacent SAIs with
reconstruction artifacts selected from Win5-LID database [8]
and the corresponding two chrominance components. We can
see that there exist color differences in the SAIs and the two

Fig. 2. (a-b) Two horizontal adjacent distorted SAIs from Win5-LID
database [8]; (c-d) The corresponding chrominance a∗ of (a-b); (e-f) The
corresponding chrominance b∗ of (a-b).

chrominance components are differentiable, which indicate
that color information can measure the deterioration of LFI
angular consistency.

To better approximate color perception in the HVS, the color
SAIs of each LFI are transformed into the perceptually rele-
vant CIELAB color space with one luminance (L∗) and two
chrominance (a∗ and b∗) channels optimized for quantifying
perceptual color difference and more compatible with human
perception [47]. Specifically, the luminance L∗ represents
color lightness from black to white. Moreover, a∗ indicates
the position between red/magenta and green, while b∗ repre-
sents the position between yellow and blue. Therefore, one
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luminance map array (C1) and two chrominance map arrays
(C2 and C3) can be obtained, as shown in the yellow box
in Fig. 1. Meanwhile, C1, C2 and C3 have the same spatial
resolution and angular resolution as the original LFI.

B. View Stack

In natural, the distribution of light is continuous. However,
for practical usage, the LFI is represented as L(s, t, x, y),
where (s, t) indicates the view index and is an integer. There-
fore, except for the corner and boundary SAIs, the remaining
SAIs have eight adjacent views. Generally, based on the
assumption that the angular resolution of LFI is S × T , each
SAI has an angular consistency of four orientations, i.e. 0◦,
45◦, 90◦, and 135◦. As shown in the blue box in Fig. 1, these
angles represent horizontal (0◦), left diagonal (45◦), vertical
(90◦), and right diagonal (135◦) orientations. We then stack
the SAIs along four orientations to generate view stack as
follows:

C0◦
n,s = {Cn(s, 1, :, :), Cn(s, 2, :, :),. . ., Cn(s, T, :, :)}, (1)

C90◦
n,t = {Cn(1, t, :, :), Cn(2, t, :, :), . . . , Cn(S, t, :, :)}, (2)

C45◦
n,s+t−1 = {Cn(s, t, :, :), Cn(s + 1, t + 1, :, :), ...,

Cn(s + min{S − s, T − t},
t + min{S − s, T − t}, :, :)}, (3)

C135◦
n,s+t−1 = {Cn(s, t, :, :), Cn(s + 1, t − 1, :, :), . . . ,

Cn(s + min{S − s, T − 1},
t − min{S − s, T − 1}, :, :)}, (4)

where s = 1, 2, ..., S and t = 1, 2, ..., T represent the
angular coordinate. n = 1, 2, 3 indicate the luminance and
two chrominance channels. For the light field image with
an angular resolution of S × T , we extract the view stack
in four directions as: 1) Containing S horizontal stacks, and
the angular resolution of each stack is T ; 2) Containing
T vertical stacks, and the angular resolution of each stack
is S; 3) Containing (S + T − 1) left diagonal stacks, and
the angular resolution of each stack increases from 1 to
min{S, T }; 4) Containing (S + T − 1) right diagonal stacks,
and the angular resolution of each stack increases from 1 to
min{S, T }. For example, the angular resolution is 9 × 9 in
Win5-LID database, including 9 horizontal stacks, 9 vertical
stacks, 17 left diagonal stacks and 17 right diagonal stacks.

C. Tucker Decomposition

The view stack is a 3D signal that includes two spatial
coordinates and one angular coordinate. We discover that there
exists a high texture similarity between different images of
the view stack, indicating that there exists a large redundancy
in the angular dimension. To alleviate this problem, we first
adopt tensor decomposition to remove redundant information
from the angular dimension. It should be noted that there exist
significant differences between Tucker decomposition and
principal component analysis (PCA). According to [10], [48],
the Tucker decomposition can be taken as the higher-order
generalizations of PCA or singular value decomposition
(SVD). Moreover, the PCA operates on two-dimensional (2D)

matrices, which vectorizes the image and destroys the spatial
structure information of the image. However, the Tucker
decomposition decomposes tensors in high-dimensional space
that can retain the spatial structure information of the image.
Therefore, the Tucker decomposition is used to achieve dimen-
sionality reduction [10]. It decomposes a tensor into a core
tensor multiplied by a matrix along each dimension. In other
words, we decompose the three-dimensional (3D) light field
signal into the core tensor and the principal components of
spatial and angular dimensions. For horizontal view stack C0◦

n ,
we thus have:

C0◦
n ≈ G ×1 U1 ×2 U2 ×3 U3, (5)

where G ∈ R
R1×R2×R3 is the core tensor whose entries

illustrate the level of interaction between different components.
U1 ∈ R

K1×R1 and U2 ∈ R
K2×R2 are the factor matrices in

the spatial dimension. U3 ∈ R
K3×R3 is the angular dimension

factor matrix. These matrices are usually orthogonal. In our
model, we set Kn = Rn , where n = 1, 2, 3. The core tensor
is trained from each distorted SAI.

Then, for C0◦
n , the angular decomposition components can

be obtained by multiplying the core tensor with the factor
matrices U1 and U2 along each mode in the spatial dimension,
which can be given by:

C 0◦
n = G ×1 U1 ×2 U2, (6)

where C0◦
n ≈ C 0◦

n ×3 U3. That is, we apply the mode
product to the core tensor and the principal components of
the spatial dimension, which can obtain angular decomposition
components. The purpose of removing U3 is to realize the
reconstruction of spatial information and obtain the decom-
position components of angular dimension. Similar to the
computation process of C 0◦

n , we obtain the angular decom-
position components C 45◦

n , C 90◦
n and C 135◦

n of view stacks in
other orientations. Specifically, we utilize the alternating least
squares method provided by the tensor toolbox [49] to imple-
ment the Tucker decomposition. Note that the tensor n-mode
product represents different modes of tensor multiplication,
which is essentially the multiplication of tensors with different
dimensions [10].

In addition, here the factor matrices in Tucker decompo-
sition, which are defined as the principal components [10],
represent the stacks in the angular dimension for the decom-
posed three-dimensional (3D) tensor, where the first principal
component is the highest energy component and contains
fundamental texture information. We select a sample of LFI
from Win5-LID database to show the energy distribution
of principal components in Fig. 3, where (a)-(c) illustrates
the first three principal components of C 0◦

1 , C 0◦
2 and C 0◦

3 .
Fig. 3 (d) shows the energy histogram distribution of the
corresponding decomposition components. Here, the top, mid-
dle and bottom rows denote the components of C 0◦

1 , C 0◦
2

and C 0◦
3 , respectively. Obviously, the texture information and

energy mainly concentrate on the first principal component,
which represents the basic texture information of the view
stack. By quantitative calculation, we find the first principal
component contains more than 70% energy, we thus treat it as
the most important dimensionality reduced image. We define
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Fig. 3. Tucker decomposition components and their energy histograms. The horizontal view stack is taken as an example, which contains 9 horizontal
stacks. And the angular resolution of each stack is 9. The top, middle and bottom rows denote the components of C 0◦

1 , C 0◦
2 and C 0◦

3 , respectively. (a) the
first principal component; (b) the second principal component; (c) the third principal component; (d) energy distribution of the corresponding decomposition
components.

the first principal component of C d
n as Md

n , where n = 1, 2, 3
and d = 0◦, 45◦, 90◦, 135◦.

D. Feature Extraction and Quality Regression

Since the first principal component contains the basic infor-
mation about each view stack, it is reasonable to extract
features from the first principal component to measure the
degradation of LFI spatial quality. Specifically, we first extract
the PCSC from the first principal component that utilizes
global naturalness and local frequency distribution character-
istics to evaluate the distortion in spatial quality. In addition
to spatial quality, angular consistency also affects LFI quality.
Then, the TAVI is proposed to capture angular consistency
distortion by computing the structural similarity between the
first principal component and each view in the view stack.

1) Principal Component Spatial Characteristic (PCSC):
In general, the naturalness of an image can be effectively
measured by modeling the locally mean subtracted and con-
trast normalized (MSCN) coefficients [35]–[37]. The MSCN
has been successfully employed for image processing tasks
and can be used to model the contrast-gain masking process
in early human vision [37], [50]. In our model, MSCN
coefficients can be calculated by:

Î (x, y) = I (x, y) − μ(x, y)

σ (x, y) + 1
, (7)

where Î (x, y) and I (x, y) are the MSCN coefficients and input
image (i.e. Md

n ) values at the spatial position (x, y). μ(x, y)

and σ(x, y) stand for the local mean and standard deviation
in a local patch centered at (x, y). They are computed as:

μ(x, y) =
K∑

k=−K

L∑
l=−L

zk,l Ik,l (x, y) (8)

σ(x, y) =
√√√√ K∑

k=−K

L∑
l=−L

zk,l (Ik,l (x, y) − μ(x, y))2, (9)

where z = {zk,l |k = −K , . . . , K , l = −L, . . . , L} denotes
a 2D circularly-symmetric Gaussian weighting function with
sampled out 3 standard deviations and rescaled to unit volume.
Inspired by [37], we set K = L = 3 in our implementation.

To measure the LFI spatial quality, we first consider the
naturalness distribution of the principal components of lumi-
nance and chrominance (i.e. M̂d

1 , M̂d
2 and M̂d

3 ). Fig. 4
presents the distribution of MSCN coefficients for luminance
and chrominance principal components with several high
efficiency video coding (HEVC) compression levels. The
HEVC is the video coding standard promoted by the Joint
Collaborative Team on Video Coding in 2013, and it is also
named H.265 [51]. The results show that the distribution of
MSCN coefficients are very indicative when the LFI suffers
from artifacts. Here, the sample of LFI is selected from the
Win5-LID database [8]. Since the distribution of MSCN coeffi-
cients approximates Gaussian distribution and the asymmetric
generalized Gaussian distribution (AGGD) further generalizes
the GGD [37], [52], we then utilize the zero-mean AGGD
model to qualify the distribution of MSCN coefficients, which
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Fig. 4. MSCN coefficients for different HEVC compression levels. The HEVC-QP denotes using HEVC standard with specific quantization parameter

(QP), where QP = 24, 29, 34, 39, and 44. Higher QP represents lower visual quality. (a) luminance MSCN coefficients ̂M0◦
1 ; (b) chrominance MSCN

coefficients ̂M0◦
2 ; (c) chrominance MSCN coefficients ̂M0◦

3 ;.

can fit the distribution by:

f (χ; α, σ 2
l , σ 2

r ) =

⎧⎪⎪⎨
⎪⎪⎩

α

(βl + βr )�( 1
α )

ex p(−(
−x

βl
)α) χ < 0

α

(βl + βr )�( 1
α )

ex p(−(
−x

βr
)α) χ � 0,

(10)

where

βl = σl

√√√√�( 1
α )

�( 3
α )

and βr = σr

√√√√�( 1
α )

�( 3
α )

, (11)

and α is the shape parameter controlling the shape of the
statistic distribution, while σl and σr are the scale parameters
of left and right sides, respectively. Moreover, we compute η
as another feature by:

η = (βr − βl)
�( 2

α )

�( 1
α )

(12)

In addition, human visual perception is also affected by
the combination of luminance and chrominance channels.
Therefore, the joint statistics of MSCN coefficients for the
principal components under different channels can also be
used to measure the deterioration of image quality. There-
fore, we utilize multivariate generalized Gaussian distribution
(MGGD) [53], [54] to fit the joint distribution, which is defined
as:

f (x|M, γ , ϕ) = 1

|M| 1
2

gγ,ϕ

(
xT M−1x

)
, (13)

where x ∈ R
N and M is an N × N symmetric scatter matrix.

γ and ϕ indicate the scale and shape parameters, respectively.
gγ,ϕ() is the density generator:

gγ,ϕ(χ) = ϕ�
( N

2

)
(

2
1
ϕ πγ

) N
2

�
(

N
2ϕ

)e
− 1

2

(
χ
γ

)ϕ

, (14)

where χ ∈ R
+ and � is the digamma function. We adopt

the method proposed by Pascal et al. [55] to estimate the
parameters of the MGGD model.

Considering that the degradation of LFI spatial quality
induces the change in the local distribution of principal com-
ponents. We extract the local features of principal components
for each color channel. Inspired by [36], block-based discrete
cosine transform (DCT) is utilized to measure the distribution
of local information. Specifically, we adopt the entropy of
DCT coefficients without DC value as:

E = −
L∑
l

H∑
h

(plhlog(plh)), (15)

where L and H represent the width and height of DCT block,
respectively. plh is the DCT coefficient located in (l, h). Note
that we compute the entropy from three aspects, namely the
whole DCT block, three frequency bands, and three orienta-
tions of the DCT block as [36]. Therefore, fPC SC is obtained
by concatenating the fitting parameters of AGGD and MGGD
as well as three averaged entropy features. Furthermore,
the feature dimension of PCSC is 57, where the entropy feature
contains 15 dimensions and the feature dimensions for the
MSCN based AGGD parameters as well as MGGD parameters
are 36 and 6, respectively. There exists significant differences
between traditional spatial features such as BRISQUE [37]
and our proposed fPC SC . Specifically, the BRISQUE [37] only
considers the information distribution of a single luminance
space. In addition to the luminance information, we also
calculate the distribution of chrominance space. Considering
the interaction between luminance and chroma information,
we calculate the joint distribution MGGD.

2) Tensor Angular Variation Index (TAVI): In addition
to spatial quality, angular consistency also affects the LFI
quality. Usually, angular reconstruction operations, such as
interpolation, may break angular consistency. To measure the
degradation of angular consistency, we propose the tensor
angular variation index. Specifically, we first compute the
structural similarity between each view in the view stack and
its corresponding first principal component:

ssd
n(i) = F(Cd

n (i), Md
n ), (16)

where Cd
n is the input view stack and Md

n represents the
corresponding first principal component. i indicates the angu-
lar coordinate of C . n = 1, 2, 3 and d = 0◦, 45◦, 90◦, 135◦
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Fig. 5. Structure similarity distribution of horizontal view stack. The top row represents the ss0◦
1 of luminance L channel, while the middle and bottom

rows indicate the ss0◦
2 and ss0◦

3 of chrominance a and b channels. (a) Different DQ distortion levels; (b) Different LINEAR distortion levels; (c) Different
NN distortion levels; (d) Different OPT distortion levels.

represent the index of three color channels and four orienta-
tions, respectively. F is the function to calculate the structural
similarity between Cd

n (i) and Md
n . In our paper, we use the

SSIM [16].
The structure similarity distribution of LFI selected from

MPI-LFA [7] is illustrated in Fig. 5. For information with only
horizontal direction, we only use horizontal direction features
and the weight of other directions feature is 0. As shown
in Fig. 5, the horizontal view stack can also reflect the change
of angular consistency. In other words, since the MPI-LFA
database contains only horizontal LFIs, Fig. 5 only presents the
structure similarity distribution of the horizontal view stack.
The top row represents the ss0◦

1 of luminance L channel, while
the middle and bottom rows indicate the ss0◦

2 and ss0◦
3 of

chrominance a and b channels, respectively. Fig. 5(a-d) show
the structure similarity distribution of original LFI and the dis-
tribution of different distortion levels for quantized depth maps
(DQ), linear interpolation (LINEAR), nearest interpolation
(NN), and image warping using optical flow estimation (OPT)
artifacts. It can be seen that when the angular consistency is not
destroyed, the distribution of structural similarity is smooth,
as shown the cyan curve in Fig. 5. However, when the angular
consistency is degraded by interpolation distortion, the distrib-
ution of structural similarity changes significantly. Specifically,
as the angular consistency deteriorates, the variation degree
in the structural similarity distribution of the LFI increases
gradually. Moreover, different distortions types have different
wave shapes. For example, the NN distortion is stepped and the

LINEAR distortion has more peaks. These demonstrate that
the structure similarity distribution is good at distinguishing
various distortion types and levels.

Then, inspired by Fig. 5, we employ a second-order poly-
nomial to fit the structure similarity distribution as follows:

ssd
n (i) = f1i2 + f2i + f3, (17)

where i is the angular coordinate. f1, f2 and f3 are fitting
parameters modeling variation of angular consistency.

To further characterize the structure similarity properties,
we extract several complementary features including con-
trast, angular second moment, entropy and inverse differ-
ent moment [57] to represent the deterioration information.
Specifically, the contrast is the amount of local variation
presented in structure similarity. The angular second moment
and inverse different moment measure the homogeneity. Thus,
fT AV I is obtained by concatenating the fitting parameters
(i.e. f1, f2, f3) and the complementary features. The dimen-
sion of feature TAVI is 30.

3) Direction Pooling: For a LFI with an angular resolution
of S × T , we have S horizontal view stacks, T vertical view
stacks, S + T − 1 main-diagonal view stacks and S + T − 1
secondary-diagonal view stacks. Since we extract the features
of the view stack in each orientation and average the features
from the stack in the same orientation, the fd is first obtained
by concatenating fPC SC and fT AV I in the same orientation and
d = 0◦, 45◦, 90◦, 135◦. We then model the final features by:

f f inal = w1f0◦ + w2f45◦ + w3f90◦ + w4f135◦, (18)
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where w1, w2, w3 and w4 indicate the corresponding weights
of four orientations. In our model, we set w1 = w2 = w3 =
w4 = 1

4 . The final results are trained with the average features
from each stack in the same orientation, and then all directions
are weighted.

Finally, in this model, we train a regression model to
map the final feature vector f f inal space to quality scores.
In our implementation, we adopt the well-known support
vector regression (SVR), which has been effectively applied
to many image quality assessment problems [41], [42], [58].
Specifically, the LIBSVM package [59] is utilized to imple-
ment the SVR with a radial basis function kernel.

IV. EXPERIMENTAL RESULTS

To validate our proposed Tensor-NLFQ model, we conduct
experiments on four publicly available databases, namely
Win5-LID [8], MPI-LFA [7], SMART [5] and VALID [60].

As shown in Fig. 6(a) and Fig. 6(b), the Win5-LID database
contains 6 real scenes captured by Lytro illum and 4 synthetic
scenes as original images which cover various spatial percep-
tual information (SI) and colorfulness (CF) [61]. There exist
220 distorted LFIs by introducing 6 distortion types, including
HEVC, JPEG, LINEAR, NN and two CNN models. Moreover,
more than 20 observers are invited to provide subjective
ratings for the 220 distorted LFIs under the double-stimulus
continuous quality scale on a 5-point discrete scale. Therefore,
each LFI has the overall mean opinion score (MOS) value,
which is a statistical concept as the ground truth image quality
measurement. The MOS is calculated by the mean subjective
ratings of each LFI.

As we can see from Fig. 6(c) and Fig. 6(d), the MPI-LFA
database consists of 14 pristine LFIs captured by the TSC
system, which also cover various SI and CF. The 336 dis-
torted LFIs are produced with 6 distortion types, i.e. HEVC,
DQ, OPT, LINEAR, NN and GAUSS. In order to assess
the LFI quality, the pair-wise comparison (PC) method with
a two-alternative-forced-choice is carried out and the just-
objectionable-differences value is provided, which is similar
to the difference-mean-opinion-score value.

Fig. 6(e) and Fig. 6(f) shows the original images and
their distribution of SI and CF for the SMART database.
This database is composed of 16 original LFIs and 256 dis-
torted sequences are obtained by introducing 4 compression
distortions which include HEVC Intra, JPEG, JPEG2000 as
well as Sparse Set and Disparity Coding. Similarly, the PC
method is exploited to collect the subjective ratings and the
Bradley-Terry scores are provided.

The VALID database has 5 reference LFIs and 40 distorted
LFIs under 5 compression artifacts. Fig. 6(g) and Fig. 6(h)
shows the original images and the corresponding SI and CF
distribution. Note that the VALID database includes both 8bit
and 10bit LFIs. The comparison-based adjectival categorical
judgement methodology is used to 8bit images, while the
double stimulus impairment scale is performed for 10bit
images. In addition, the MOS values are provided for the LFIs.

To evaluate the model performance on these databases,
we choose four evaluation criteria, including Spearman

Fig. 6. Database descriptions. (a) Center view of source images for
Win5-LID; (b) Distribution of SI and CF for Win5-LID; (c) Center view
of source images for MPI-LFA; (d) Distribution of SI and CF for MPI-LFA;
(e) Center view of source images for SMART; (f) Distribution of SI and CF
for SMART; (g) Center view of source images for VALID; (h) Distribution
of SI and CF for VALID.

rank-order correlation coefficient (SRCC), linear correlation
coefficient (LCC), root mean square error (RMSE) and outlier
ratio (OR). The SRCC measures the monotonicity, while
LCC focuses on the linear relationship. The RMSE and OR
provide the measure of prediction accuracy and consistency,
respectively. Higher SRCC and LCC values as well as lower
RMSE and OR values represent better performance. Before
computing LCC, RMSE and OR, a nonlinear function is
adopted as:

f (q) = β1{1

2
− 1

1 + ex p[β2(q − β3)] } + β4q + β5 (19)

where q is the output of a specific objective metric. The para-
meters β1···5 are optimized to minimize the given goodness-
of-fit measure.
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TABLE I

PERFORMANCE COMPARISON ON WIN5-LID, MPI-LFA, AND SMART DATABASES

Additionally, each database is randomly divided into 80%
for training and the remaining 20% for testing. We perform
1000 iterations of cross validation on each database. We also
provide the median SRCC, LCC, RMSE and OR values as the
final measurement.

A. Comparison With Other Objective Metrics

In order to prove the effectiveness of our proposed
Tensor-NLFQ model, we conduct fully experiments by using
existing 2D, 3D image, multi-view and LFI quality assessment
algorithms. Specifically, we compare with ten 2D FR IQA
metrics [16]–[19], [23]–[26], [56], three 2D NR IQA metrics
[37]–[39], one 3D FR IQA metric [27], two 3D NR IQA
metrics [41], [42], five multi-view FR IQA metrics [28]–[31],
one multi-view NR IQA metric [43], one RR LFI quality
assessment metric [12], and one NR LFI quality assessment
metric [13].

TABLE I shows the overall performance of state-of-the-art
objective models on the Win5-LID, MPI-LFA and SMART
databases, where bold values indicate the best performance
results. In TABLE I, the FR approaches are modeled by for-
mulas, while NR methods are supervised learning algorithms
except for NIQE [38]. Furthermore, all these learning-based
methods are trained by the same percentages with the pro-
posed algorithm on each database. As shown in this table,
our proposed Tensor-NLFQ achieves superior performance
compared with state-of-the-art algorithms. One possible expla-
nation is that existing 2D and 3D IQA approaches only focus
on spatial quality rather than angular consistency. Although

multi-view IQA metrics consider distortion caused by angu-
lar interpolation, they aim to deal with the hole distortion
caused by the synthesis. Thus, it is not possible to effectively
measure LFI artifacts, such as compression distortion. The
LFI-IQM [12] method ignores the spatial texture information.
Moreover, the LFI-IQM [12] is influenced by depth map
estimation, while BELIF [13] cannot take into account the
chrominance effects and diverse directions of LFIs. There-
fore, their performance is worse than that of the proposed
method.

Further, we provide the performance comparison on the
VALID database which includes both 8bit and 10bit LFIs.
The VALID database only has 5 original LFIs, whose SI
and CF distribution is relatively concentrated. As we can see
from TABLE II, the proposed Tensor-NLFQ delivers good
performance values and especially outperforms state-of-the-art
NR IQA algorithms for 10bit LFIs.

To illustrate the prediction results more clearly, the scatter
plots of two existing metrics and the proposed model on
the Win5-LID and MPI-LFA databases are shown in Fig. 7.
Since the points of our proposed method are more centralized
than that of the other metrics, the predictions of our proposed
Tensor-NLFQ are more consistent with subjective quality
scores. In addition, Fig. 8 shows the change of performance
results for our proposed Tensor-NLFQ method with respect
to the training and testing percentages. We can observe that
a large number of training data generally bring about the
increase of SRCC and LCC performance on both Win5-LID
and MPI-LFA databases, which is consistent with [42].
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TABLE II

PERFORMANCE COMPARISON ON VALID DATABASE

Fig. 7. Scatter plots of predicted quality scores by three methods against the
MOS values on the Win5-LID and MPI-LFA databases. The horizontal and
vertical axes in each figure represent the predicted quality scores and MOS
values, respectively. The red line is the fitted curve. The top, middle and
bottom rows are the results of IW-SSIM, BELIF and the proposed model,
respectively. (a) Scatter plots on Win5-LID database; (b) Scatter plots on
MPI-LFA database.

Moreover, we choose 80%-20% for the training-testing
split since this is a common practice in quality
assessment [35], [36].

Besides direct performance comparisons, we also quantita-
tively evaluate the statistical significance using the t-test [37]

Fig. 8. The change of performance results for Tensor-NLFQ with different
training and testing percentages. (a) Run on Win5-LID database; (b) Run on
MPI-LFA database.

based on the SRCC values obtained from 1000 train-test trials.
Here, the null hypothesis is that the mean correlation for the
proposed method is equal to that for the compared state-of-
the-art algorithm with a confidence of 95%. The experimental
results demonstrate that our proposed Tensor-NLFQ signifi-
cantly outperforms state-of-the-art objective IQA algorithms.

B. Robustness Against Distortion and Data Types

Since the Win5-LID and MPI-LFA involve various dis-
tortion types, it is interesting to know how our proposed
model performs for individual distortion types. The perfor-
mance results for each separate distortion type are listed in
TABLE III. Due to the space constraints, we only show
RMSE results. It can be seen that our proposed Tensor-NLFQ
method outperforms existing objective metrics for most dis-
tortion types. Moreover, the proposed model achieves the best
performance for typical reconstruction distortions because the
reconstruction distortion mainly destroys angle consistency
and usually has little influence on spatial quality. Therefore,
existing IQA models are difficult to handle such distortions.

Although HEVC compression distortion and Gaussian
blur mainly cause the degradation of spatial quality, our

Authorized licensed use limited to: University of Exeter. Downloaded on May 07,2020 at 12:48:06 UTC from IEEE Xplore.  Restrictions apply. 



4080 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE III

RMSE PERFORMANCE OF DIFFERENT DISTORTION TYPES ON WIN5-LID AND MPI-LFA DATABASES

TABLE IV

PERFORMANCE RESULTS OF SYNTHETIC AND REAL SCENES

FOR TENSOR-NLFQ ON WIN5-LID DATABASE

Tensor-NLFQ is still very competitive and has a good per-
formance. The JPEG distortion in Win5-LID is introduced
based on lenslet, and it affects both spatial quality and angu-
lar consistency of LFI. The proposed method considers the
effects of both two factors, it is thus not surprising that our
model obtains the best performance for JPEG distorted LFIs.
Overall, the proposed Tensor-NLFQ can achieve promising
performance against existing objective evaluation algorithms
regarding to various distortion types.

In addition to different distortion types, we test the perfor-
mance of our proposed Tensor-NLFQ method on synthetic and
real scenes separately. As shown in TABLE IV, the proposed
Tensor-NLFQ can handle both synthetic and real scenes.

C. Validity of Tucker Decomposition

According to [10], [48], the Tucker decomposition can be
regarded as the higher-order generalizations of PCA or SVD.
Since the SVD operation generates huge matrices that make
computation difficult, we thus adopt the PCA for performance
comparison. Specifically, we reshape LFIs as matrices and then
use PCA. The experimental results are shown in TABLE V.

TABLE V

COMPARISON RESULTS OF TUCKER DECOMPOSITION

AND PCA ON WIN5-LID DATABSE

From TABLE V, we can see that our proposed Tucker decom-
position outperforms PCA. This is because the tensor-based
approach preserves the correlation of spatial information.

D. Validity of Individual Color Channel

Since the luminance and chrominance features of LFI are
utilized in the proposed model, it is necessary to know how
much contribution each color channel has. TABLE VI exhibits
the performance of individual color channels on Win5-LID
and MPI-LFA databases. It can be seen that the luminance
channel achieves the best performance among three color
channels, which proves that the luminance has the most
important influence on LFI quality. Moreover, it is observed
that two chrominance channels deliver good performance on
two databases, which demonstrates that chrominance also has
a significant impact on LFI quality.

E. Validity of Single Orientation View Stack

In the proposed Tensor-NLFQ method, we weight the
extracted features of four orientation view stacks to predict the
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TABLE VI

PERFORMANCE OF INDIVIDUAL COLOR CHANNELS
ON WIN5-LID AND MPI-LFA DATABASES

TABLE VII

PERFORMANCE OF FOUR DIRECTION VIEW

STACKS ON WIN5-LID DATABASE

TABLE VIII

PERFORMANCE OF DIFFERENT STRUCTURE SIMILARITY
METHODS ON WIN5-LID AND MPI-LFA DATABASES

LFI overall quality. It is meaningful to verify the performance
of the view stack in each orientation. Since the MPI-LFA
database only includes the horizontal view stack, we present
the results on the Win5-LID database, as shown in TABLE VII.
We can observe that for 4D LFIs, the view stack in each
direction has a good performance, which indicates that the
characteristics of each orientation can reflect the LFI quality
to some extent. Meanwhile, the performance of the final
model with four directional feature weighting is significantly
improved.

F. Different Structure Similarity Methods

In the TAVI measurement, we use SSIM [16] as an
algorithm for measuring structure similarity. Except for SSIM,
several variants of SSIM have been proposed, such as
MS-SSIM [17], FSIM [18] and IW-SSIM [19]. Therefore,
we wonder how the proposed method performs when we adopt
these algorithms. TABLE VIII illustrates the results of our
proposed model using different structure similarity methods on
Win5-LID and MPI-LFA databases, which indicates that our
Tensor-NLFQ model does not rely much on specific structural
similarity algorithms.

TABLE IX

PERFORMANCE OF PROPOSED QUALITY COMPONENTS
ON WIN5-LID AND MPI-LFA DATABASES

TABLE X

CROSS VALIDATION RESULTS. WE TRAIN OUR PROPOSED

MODEL ON WIN5-LID AND TEST ON MPI-LFA

G. Validity of Individual Proposed Feature

In this section, we explore the validity of two proposed
features (i.e. fPC SC and fT AV I ) of our model. The performance
values of these two features are shown in TABLE IX. It can
be seen that fPC SC has a good performance on both databases
due to the effectiveness of measuring spatial quality, especially
on the MPI-LFA database. The reason may be that some
interpolation operations in the MPI-LFA database can also
cause the degradation of spatial quality. Therefore, in addition
to capture the deterioration of spatial quality, fPC SC can also
measure a certain degree of angular distortion. Furthermore,
fT AV I delivers the slightly lower performance on the MPI-LFA
database. Since the MPI-LFA database contains many angular
distorted LFIs with low distortion levels and the quality
difference is small, human is insensitive to these sequences.
However, the proposed fT AV I can capture the degradation
of angular consistency effectively. This phenomenon can be
shown in Fig. 5, where the curve of distortion sequences
are significantly different. Overall, the results validate our
proposed features and the performance is improved after the
feature combination.

H. Model Generality and Time Complexity

To validate the model generality, we choose the same
distortion in the MPI-LFA and Win5-LID databases to conduct
experiments. Specifically, we train the proposed Tensor-NLFQ
on the Win5-LID database, and then test it on the LFIs with
the same distortion in the MPI-LFA database. The results are
shown in TABLE X. We can observe that the proposed model
is independent for the adopted database.

In addition, we compare the proposed Tensor-NLFQ method
with state-of-the-art quality assessment approaches for com-
putational complexity on the Win5-LID database. It should
be noted that we also list the SRCC, LCC, RMSE and OR
for fair comparison. As shown in TABLE XI, our proposed
Tensor-NLFQ is demonstrated to have lower computation
time compared to LF-IQM [12]. The reason may be that
different from conventional LFI quality assessment metrics,
our proposed approach relieves the complex computation for
estimating depth maps. In general, our proposed Tensor-NLFQ
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TABLE XI

PERFORMANCE COMPARISON OF THE COMPUTATION TIME AGAINST SRCC, LCC, RMSE AND OR ON WIN5-LID DATABASE

TABLE XII

PERFORMANCE RESULTS OF THE COMPUTATION TIME FOR

TENSOR-NLFQ WITH DIFFERENT LFI DIMENSIONS

ON WIN5-LID DATABASE

method is in the same level of time complexity compared with
state-of-the-art 3D quality assessment metrics and demon-
strates the best SRCC, LCC, RMSE and OR performance
among all algorithms. Further, we analyze the effects of
different angular and spatial dimensions on time complexity.
Specifically, we sample the LFI in angular and spatial dimen-
sions by 1/2 and 1/3 times separately. The LFI is also sampled
in angular and spatial dimensions by 1/2 times simultaneously.
The performance results are shown in TABLE XII. We can
see that the time complexity of our proposed Tensor-NLFQ
is affected by the angular and spatial dimensions of LFIs.
The reduction of angular and spatial dimensions significantly
reduces the computation time.

V. CONCLUSION

In this paper, we present a novel Tensor oriented
No-reference Light Field image Quality evaluator (Tensor-
NLFQ). According to the existing research and our previous

work, color information has a significant impact on the per-
ceived LFI quality. We thus introduce luminance and chromi-
nance information in our proposed model. Since the LFI can
be regarded as a high-dimensional tensor signal, we exploit the
tensor decomposition to extract the principal components of
LFI, which can effectively reflect the LFI quality. The angular
consistency of diverse directions is considered in the proposed
method, including horizontal, diagonal, vertical and right
diagonal orientations. As the LFI quality is affected by both
spatial quality and angular consistency, we propose principal
component spatial characteristic and tensor angular variation
index to measure the degradation of spatial quality and angular
consistency, respectively. We conduct extensive experiments
to compare the proposed Tensor-NLFQ with existing 2D, 3D
image, multi-view and LFI quality assessment algorithms. The
results demonstrate that our approach outperforms state-of-the-
art metrics and can handle the typical distortions of LFI.

In the future, we will extend the proposed model to light
field video quality assessment. Moreover, how to apply our
proposed method to the optimization of existing image com-
pression and reconstruction algorithms could also be further
explored.
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