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Abstract. Accurate subseasonal-to-seasonal (S2S) atmo-
spheric forecasts and hydrological forecasts have consider-
able socioeconomic value. This study conducts a multimodel
comparison of the Tibetan Plateau snow cover (TPSC) pre-
diction skill using three models (ECMWF, NCEP and CMA)
selected from the S2S project database to understand their
performance in capturing TPSC variability during winter-
time. S2S models can skillfully forecast TPSC within a lead
time of 2 weeks but show limited skill beyond 3 weeks. Com-
pared with the observational snow cover analysis, all three
models tend to overestimate the area of TPSC. Another re-
markable issue regarding the TPSC forecast is the increas-
ing TPSC with forecast lead time, which further increases
the systematic positive biases of TPSC in the S2S models
at longer forecast lead times. All three S2S models consis-
tently exaggerate the precipitation over the Tibetan Plateau.
The exaggeration of precipitation is prominent and always
exists throughout the model integration. Systematic bias of
TPSC therefore occurs and accumulates with the model inte-
gration time. Such systematic biases of TPSC influence the
forecasted surface air temperature in the S2S models. The
surface air temperature over the Tibetan Plateau becomes
colder with increasing forecast lead time in the S2S models.
Numerical experiments further confirm the causality.

1 Introduction

Anomalous weather- and climate-related natural disasters are
among the most common disasters and are associated with
severe socioeconomic consequences. Reliable forecasts of
such weather and climate anomalies with sufficient lead time
have significant benefits for decision-makers (White et al.,
2017). Traditionally, weather forecasts cover a time range of
up to 2 weeks, while climate forecasts begin at the seasonal
timescale and extend outward. Demands are growing rapidly
in operational forecasts in the subseasonal-to-seasonal (S2S)
range (from 2 weeks to a season). The primary basis for
longer lead forecasts beyond 2 weeks is the interaction of
the atmosphere with other, more slowly varying earth sys-
tem components, such as the ocean or land, that evolve over
timescales of weeks and months rather than days as in the at-
mosphere (Mariotti et al., 2018). Land–atmosphere coupling
is one of the key physical processes for S2S prediction but
is not well simulated and may reduce S2S prediction skill
(Robertson et al., 2014; Dirmeyer et al., 2019).

Snow cover is a crucial component in both the climate sys-
tem and the cryosphere. The radiative and thermal proper-
ties of snow cover significantly influence the ground ther-
mal regime (Zhang, 2005). As the lower boundary condi-
tion of the atmosphere, snow cover forces the regional and
global atmosphere and can serve as an indicator of the atmo-
sphere (Barnett et al., 1989; Bamzai and Shukla, 1999; Wu
and Kirtman, 2007; Henderson et al., 2018). Snow cover can
vary rapidly within a season over discontinuous or sporadic
permafrost zones (Wang et al., 2015; Suriano and Leathers,
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2018; Song et al., 2019; Li et al., 2020a) and rapidly influ-
ence the atmosphere (Clark and Serreze, 2000; Zhang et al.,
2019). Snow cover may provide a potential source of S2S
predictability via its variability and atmospheric effects at the
subseasonal timescale (F. Li et al., 2019; Diro and Lin, 2020).

The Tibetan Plateau is the highest plateau in the world and
is known as the “third pole”. Due to its high elevation and
cold climate, the Tibetan Plateau has much more snow cover
than the other regions at the same latitude. Tibetan Plateau
snow cover (TPSC) is a key component of the climate sys-
tem. TPSC influences land surface thermal conditions (Chen
et al., 2017; Li et al., 2018) and thus influences atmospheric
circulations and monsoons over Asia and beyond (Wu and
Qian, 2003; Lin and Wu, 2011; Xiao and Duan, 2016; Wang
et al., 2017; You et al., 2020). TPSC shows variations at mul-
tiple timescales, including the subseasonal scale (Li et al.,
2016; Song and Wu, 2019; Li et al., 2020a). The subseasonal
variations in TPSC influence the atmosphere over East Asia
(Li et al., 2018; Li et al., 2020b). A better TPSC simulation
and forecast may favor a better forecast for weather and cli-
mate at the S2S timescale.

Snow cover also affects the hydrologic cycle. The accu-
mulation of precipitation in the form of snow and its release
through snowmelt runoff is an important component of the
hydrologic cycle (Jeelani et al., 2012; Fayad et al., 2017).
TPSC plays an important role in hydrological systems, pro-
viding a reservoir of water and acting as a buffer that controls
river discharge. Rivers including the Yangtze River, Yellow
River, Yarlung Zangbo River and Mekong River have head-
waters over the Tibetan Plateau. Studies on the variability
in TPSC are critical for water management in downstream
regions (Immerzeel et al., 2009; Zhang et al., 2012, 2013).
Skillful predictions of TPSC with sufficient lead time are thus
of great societal importance for hydrologic prediction.

Since the implementation of the S2S prediction project
database (Vitart et al., 2016), many studies have evaluated the
skill of S2S models for atmospheric elements and variables,
such as the Madden–Julian Oscillation (Vitart, 2017), sur-
face air temperature (Yang et al., 2018; Wulff and Domeisen,
2019) and precipitation (de Andrade et al., 2019). Some
works also focus on the skill of S2S models for hydrologi-
cal elements (W. Li et al., 2019; Schmitt Quedi and Mainardi
Fan, 2020). However, we still know little about the skill of
S2S models for TPSC. Understanding the forecasting skills
of the S2S model on the TPSC is the first step to apply-
ing the S2S model to hydrological forecasts over the Tibetan
Plateau. Moreover, considering the influence of TPSC on the
atmosphere, clarifying the issue of the S2S model for TPSC
helps improve the ability of the S2S model for atmospheric
forecasting.

This study conducts a multimodel comparison of the
TPSC prediction skill using selected models from the S2S
project database to learn about their performance in captur-
ing TPSC variability. Our main goal is to use the state-of-
the-art S2S prediction systems of these operational centers to

demonstrate why models exhibit systematic biases of TPSC
and whether such systematic biases influence the regional
air temperature forecasted in S2S models. The remainder of
this paper is organized as follows. Details on the dataset and
method used in this study are described in Sect. 2. The sys-
tematic bias of TPSC in S2S models and its effect on lo-
cal temperature during wintertime are presented in Sects. 3
and 4, respectively. The conclusions and a discussion are pre-
sented in Sect. 5.

2 Data and method

2.1 S2S forecast models

The reforecasts considered for this study are taken from three
operational forecast systems that are part of the S2S project
database: the European Centre for Medium Range Weather
Forecasts (ECMWF), the US National Centers for Environ-
mental Prediction (NCEP) and the China Meteorological Ad-
ministration (CMA). These models share a common refore-
cast period of 1999–2010 with a reforecast initialized fre-
quency that is equal to or greater than once a week. This
study only used reforecasts produced by the control forecast
(using a single unperturbed initial condition). Details of the
S2S database can be found in Vitart et al. (2016). Daily re-
forecast data were averaged for each 7 d period starting every
1 January to create a total of 52 weeks per year (31 Decem-
ber was excluded). The reforecasts that initialized on the first
day of these weeks were selected. Forecast lead times were
defined here as 1 week (1–7 d), 2 weeks (8–14 d), 3 weeks
(15–21 d), 4 weeks (22–28 d) and 5 weeks (29–35 d).

For the ECMWF model, the reforecasts initialization is
based on ERA-Interim and ERA-Interim/Land datasets. The
daily Interactive Multisensor Snow and Ice Mapping System
(IMS) snow cover product has been used to constrain the
ERA-Interim snow analysis (Dee et al., 2011). The NCEP
model also initialized realistic snow in the forecasts. The
snow initialization comes from the Climate Forecast Sys-
tem Reanalysis snow analysis using IMS and the Air Force
Weather Agency snow depth analysis. Snow in the CMA
model was not directly initialized in the forecasts. The initial
conditions of the snow in the CMA model are from a bal-
anced state produced by long-term air–sea initialization inte-
gration. See the details on snow initialization in the S2S mod-
els at https://confluence.ecmwf.int/display/S2S/Models (last
access: October 2020).

The land surface models used for ECMWF, NCEP and
CMA are the Hydrology Tiled ECMWF Scheme for Surface
Exchanges over Land (HTESSEL; Balsamo et al., 2009),
Noah (Ek et al., 2003) and BCC_AVIM2 (Wu et al., 2014),
respectively. All these land surface models contain snow
schemes. According to the snow scheme in each land sur-
face model, we obtain the snow cover fraction, which is a
diagnostic variable in this study.
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The snow cover fraction (fsnow) in the ECMWF model is
parameterized as follows:

fsnow =min[1,S/(0.1× ρ)], (1)

where min indicates the minimum function, S is the snow
water equivalent (unit is kg m−2) and ρ is the snow density
(unit is kg m−3) (Dutra et al., 2010).

The fsnow in the NCEP model is parameterized as follows:

fsnow =min
[
1,1− (e−0.001× 2.6× S/SNUP

−0.001× S/SNUP× e−2.6)
]
, (2)

where e is the natural logarithm, and SNUP is the vegeta-
tion parameter, which indicates the threshold snow depth (in
water equivalent meters) that implies 100 % snow cover (Ko-
ren et al., 1999; Ek et al., 2003). The SNUP ranges from
0.01 to 0.08 for different vegetation types. Details on the
Noah code and vegetation parameters can be accessed at
https://ral.ucar.edu/solutions/products/unified-noah-lsm (last
access: October 2020).

The fsnow in the CMA model is parameterized as follows:

fsnow =min
[
1,1.77× d/(d + 10.6)

]
, (3)

where d is the snow depth (unit is cm), which is calculated
from the snow water equivalent and snow density (Wu and
Wu, 2004).

The surface air temperature (SAT) in these S2S models
is also used. All variables are at a 1◦× 1◦ horizontal spatial
resolution.

2.2 Validation data and method

The Tibetan Plateau area of focus in this study is the region
within 26–41◦ N and 70–105◦ E at an altitude of greater than
3000 m (Fig. 1). Although the Tibetan Plateau is located over
middle latitudes, the area is cold due to high altitude, espe-
cially in boreal winter. This study focuses on TPSC during
wintertime. Here, each winter contains 17 weeks, covering
from the 45th week (5–11 November) in one year to the
9th week (26 February–4 March) in the following year. This
study spans 11 winters (from 1999/2000 to 2009/2010).

The reforecasts in the S2S models are verified against ob-
servational daily snow cover and SAT in the reanalysis. Ob-
servational daily snow cover data are obtained at a 24 km
resolution from the Interactive Multisensor Snow and Ice
Mapping System (IMS) snow cover analysis (Helfrich et al.,
2007) provided by the National Oceanic and Atmospheric
Administration. The IMS examines satellite images and other
sources of data on snow cover and generates maps of snow
cover distribution. The IMS analysis over the Tibetan Plateau
corresponds well with ground-based measurements and can
capture the general subseasonal variability in TPSC (Yang et
al., 2015; Li et al., 2018). The original 24 km resolution IMS

Figure 1. The location and topography of the Tibetan Plateau. Shad-
ing shows topography (unit: m). The black rectangle shows the re-
gion within 26–41◦ N and 70–105◦ E. The red contour marks al-
titudes at 3000 m. The Tibetan Plateau area, which is the focus
of this study, is the region within the black rectangle at an alti-
tude of greater than 3000 m. This figure also shows the simula-
tion domain for numerical experiments in this study. The map in
this figure was generated using NCAR Command Language (NCL)
version 6.6.2, an open-source software free to the public (https:
//doi.org/10.5065/D6WD3XH5, UCAR/NCAR/CISL/TDD, 2020).

analysis is interpolated into the 1◦× 1◦ grid of the S2S mod-
els. IMS provides binary snow cover information: it has the
value of 1 if more than 50 % of the 24 km pixel is covered by
snow; otherwise, it is 0 (snow free). Orsolini et al. (2019) ag-
gregated the original IMS product to a lower resolution recti-
linear grid. They counted the number of pixels with a value of
1 in a grid box; assuming that they have 100 % cover gave the
high estimate, and assuming that they represent 50 % cover
gave the low estimate. These two estimates provide a range
of values, which reflects the uncertainty inherent to aggregat-
ing the 24 km binary data; e.g., a value of 1 in a pixel means a
50 % to 100 % snow coverage. Here, we used a method sim-
ilar to Orsolini et al. (2019) to interpolate the original IMS
product into the 1◦× 1◦ grid of S2S products, but we further
averaged these two estimates. Daily SATs at a 1◦× 1◦ reso-
lution are obtained from the ERA-Interim reanalysis (Dee et
al., 2011). These data range from 1 January 1999 to 30 De-
cember 2010. S2S reforecasts are compared with the obser-
vations and reanalysis for the same calendar date.

Two precipitation datasets, the Global Precipitation Anal-
ysis Products of the Global Precipitation Climatology Cen-
tre (GPCC; Schneider et al., 2011) and the Tropical Rainfall
Measuring Mission (TRMM; Huffman et al., 2007), are used
to evaluate the wintertime mean precipitation. The GPCC
precipitation dataset is from built rain gauges that were GTS
based. The TRMM precipitation dataset is based on satellite
observations. The precipitation used in this study spans 11
winters (from 1999/2000 to 2009/2010).

To quantify the forecast ability of S2S models, three com-
mon statistical measures, i.e., the temporal correlation coef-
ficient (TCC), the root-mean-square error (RMSE) and the
mean bias, are calculated in this study. A composite analy-
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sis is performed to investigate the different performances on
predicting the snow cover for increasing cases and decreas-
ing cases (details are described in Sect. 3.2).

2.3 Numerical model and experimental design

To reveal the causality of the systematic bias of the TPSC-
induced regional SAT bias, numerical experiments are per-
formed. Numerical experiments are performed using the Ad-
vanced Weather Research and Forecasting Model (WRF-
ARW, version 4.1.3), which was developed by the National
Center for Atmospheric Research (NCAR). WRF-ARW has
been applied to climate research, including studies of land–
atmosphere interactions. The land surface parameterization
scheme used in this study is the Noah land surface model
(Ek et al., 2003). Important physics options include the
WRF single-moment 6-class microphysics scheme (Hong
and Lim, 2006), the NCAR Community Atmosphere Model
(CAM 3.0) spectral-band shortwave and longwave radiation
schemes (Collins et al., 2006), the Yonsei University plane-
tary boundary layer scheme (Hong et al., 2006) and the Kain–
Fritsch convective parameterization scheme (Kain, 2004).
The WRF is driven by atmospheric and surface forcing data
extracted from the National Centers for Environmental Pre-
diction (NCEP) FNL (Final) Operational Model Global Tro-
pospheric Analyses. The simulation domain is in a cylin-
drical equidistant projection with a horizontal resolution of
1◦× 1◦ and located within 5–65◦ N and 40–170◦ E (as shown
in Fig. 1) and without nesting. There are 41 levels in the ver-
tical direction.

Two ensemble experiments are performed: control (CTL)
runs and sensitive experimental (EXP) runs. All these runs
have the same initial times as the forecasts in the S2S mod-
els that we used in this study for each winter. But the
experiments were run for 20 winters (from 2000/2001 to
2019/2020), and both runs contain 340 cases. Each mem-
ber ran continuously for 22 d. The first day in each run is
for spin-up, and the results are discarded. The CTL runs are
integrated freely without any modification. Because both the
NCEP S2S model and our numerical experiment use Noah
as the land surface model, the TPSCs in CTL runs are ex-
pected to show unreal increases with integration time, which
is similar to that in the NCEP S2S model (will be revealed in
Sect. 3). The EXP run is designed to eliminate such bias in
TPSC. The FNL analyses are from the Global Data Assim-
ilation System (GDAS), which continuously collects obser-
vational data from the GTS and other sources for many anal-
yses. GDAS incorporates daily snow data from IMS analy-
ses and the Air Force Weather Agency Snow Depth Analysis
Model. We replace the forecasted TPSC in the WRF model
with TPSC in the FNL analyses every 6 h. Because FNL anal-
yses assimilate the observed TPSC, the TPSC in the EXP run
is expected to show a small bias that increases with integra-
tion time. We averaged all 340 cases in CTL runs and EXP

runs respectively. Ensemble mean results between the CTL
and EXP runs are compared with each other.

3 Tibetan Plateau snow cover in the S2S forecast
models

3.1 Increasing Tibetan Plateau snow cover with
forecast lead time

Before we present the systematic bias of TPSC in the S2S
models, the overall forecast skill of TPSC is evaluated. Here,
we focus on the variation in snow-covered area over the en-
tire Tibetan Plateau, which can be measured by a Tibetan
Plateau snow cover index (TPSCI). The TPSC index repre-
sents the percentage of grid points covered by snow in the
analysis or models over the entire Tibetan Plateau. The unit
of the TPSC index is percent (%). The prediction skill of
the TPSC index has been investigated through the TCC and
RMSE between the TPSC index in the predictions and that
in the observations during wintertime (Fig. 2). A skillful pre-
diction is generally defined as a TCC greater than 0.5. All
three models show good prediction skills at lead times of 1–
2 weeks with a TCC greater than 0.5 (Fig. 2a). At lead times
of 1–2 weeks, the TCC for the ECMWF model is largest
among the three models. The NCEP model has the lowest
TCC among the three models at a lead time of 1 week. How-
ever, the TCC for NCEP falls the most slowly at lead times of
2 weeks or more. The NCEP model has a larger TCC than the
CMA model at lead times of 2 weeks or more. The TCC val-
ues decrease with the increase in the forecast lead time and
decline below 0.5 at and after lead times of 3 weeks for all
three models. RMSEs increase with the forecast lead time
(Fig. 2b). The RMSE for ECMWF is the smallest among
the three models. Additionally, CMA has the largest RMSEs.
These results indicate that the S2S models can skillfully fore-
cast TPSC variations within a lead time of 2 weeks during
wintertime but show limited skill at a lead time of 3 weeks or
more.

The above results also indicate that the ECMWF model
is shown to have a better TPSC forecasting skill than the
other two models. Even so, the ECMWF model shows non-
negligible RMSEs with a TPSC index of more than 15 %
(Fig. 2b). The other two models, especially the CMA model,
show even more significant RMSEs up to more than 25 %.
These large errors in the forecasting of the TPSC are induced
by systematic bias of the TPSC, as shown by the following.
The multiyear wintertime mean biases of the TPSC index in
forecasts against that in the IMS snow cover analysis for all
three models show positive values, which indicates that all
of the models tend to overestimate the TPSC during winter
(Fig. 3a). The TPSC index in the ECMWF is higher than the
observed TPSC index by approximately 20 %–30 %. NCEP
has a larger TPSC index than that in the observation by ap-
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Figure 2. Prediction skill of the Tibetan Plateau snow cover (TPSC) index in the S2S models during wintertime. (a) The temporal correlation
coefficients (TCCs; y axis) between the observed TPSC index and the predicted TPSC index in the ECMWF (orange line), NCEP (green
line) and CMA (blue line) models during winter. The x axis represents the forecast lead time (unit: week). A good prediction skill has a TCC
that is greater than 0.5 (marked by black line). Panel (b) is similar to panel (a) but is for the root-mean-square errors (RMSEs; y axis, unit:
%).

proximately 5 %–20 %. The CMA shows largest biases of ap-
proximately 25 %–40 %.

Another remarkable issue regarding the forecast of TPSC
is the increasing TPSC with forecast lead time, which further
increases the overestimation of TPSC in models at longer
forecast lead times. These increasing biases can be detected
from the multiyear winter mean biases (Fig. 3a). To high-
light such increasing biases, we further present differences
in the multiyear winter biases for the TPSC index between
forecasts for leads of 2–5 weeks and forecasts for leads of 1
week in three modes (Fig. 3b). Such differences are obtained
by subtracting the multiyear winter mean of the TPSC index
at a lead time of 1 week from that at forecast lead times of 2–
5 weeks. The differences in the three models show common
features: the differences in all three models are all positive
and increase with increasing forecast lead time. The positive
biases of TPSC with the longest forecast lead time (5 weeks)
are largest among all forecasts. The increases in the differ-
ences in the ECMWF model are the smallest, while the CMA
model has the largest increases in the differences. Taking the
differences between the forecasts with a lead of 4 weeks and
the forecasts with a lead of 1 week as an example, the spatial
patterns of these increases in the biases in the three models
show some similarities (Fig. 4). Although the spatial patterns
of the differences in the three models show some small dis-
crepancies, the differences are mainly positive in the three
models, especially over parts of central and eastern Tibetan
Plateau. These indicate that the increasing TPSC with the
forecasting lead time occurs at a regional scale.

3.2 Snow cover accumulation versus dissipation

The intraseasonal variability in TPSC leads to obvious rapid
variations in TPSC with a period shorter than a season, mak-
ing TPSC exhibit a distinct lack of persistence within one
season (Li et al., 2020a). Both accumulation and dissipation

of snow cover occur within a season over the Tibetan Plateau.
The increase in TPSC with forecast lead time in the models
may be induced by overestimation of snow cover accumula-
tion or underestimation of snow cover dissipation. To support
this hypothesis, we analyzed the frequency of weekly TPSC
accumulation and dissipation in the observation and forecast
models in winter (Table 1). Here, the increasing (decreas-
ing) weeks means that the TPSC index is greater (less) than
that in the preceding week. The TPSC indexes in the S2S
models are compared with the TPSC indexes in the preced-
ing week, which are initialized at the same time, but with
different forecast lead times.

The proportions of increasing and decreasing weeks in the
observations are 50.3 % and 49.7 %, respectively, which is
fairly even (Table 1). However, this kind of balance does
not exist in the models. In the models, the proportion of
increasing weeks is mostly more than 2 times as large as
the proportion of decreasing weeks. The proportion of de-
creasing weeks is low compared with that in the observa-
tions. Specifically, decreasing weeks occupy only 23.0 %–
31.0 % of the total forecasts by ECMWF. NCEP shows sim-
ilar results, except for forecasting at a lead time of 5 weeks.
This underestimation of the proportion of decreasing weeks
is more severe in CMA. Moreover, the most severe underes-
timations of the proportion of decreasing weeks are the fore-
casts with a lead time of 2 or 3 weeks for all models.

The above results indicate that the models underestimate
the frequency of TPSC dissipation, whereas they overesti-
mate the frequency of TPSC accumulation, which leads to
a systematic TPSC bias. To highlight increases in the over-
all TPSC biases, as well as changes in biases in succes-
sive weeks, a composite analysis is performed for all TPSC
reforecasts during winter (Fig. 5a), increasing TPSC cases
(Fig. 5b) and decreasing TPSC cases (Fig. 5c). All refore-
casts initialized in winter are taken into account for the com-
posite of all cases shown in Fig. 5a. The sample numbers
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Figure 3. (a) The multiyear wintertime mean biases of the Tibetan Plateau snow cover (TPSC) index (unit: %) in forecasts against those
in the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover analysis. (b) Differences in the multiyear wintertime mean
TPSC index between forecasts with a lead of 2–5 weeks and forecasts with a lead of 1 week in each model.

Table 1. The proportion of increasing (decreasing) weeks in the observations and forecast models with different lead times (in weeks).

Observation/lead= 2 Lead= 3 Lead= 4 Lead= 5

IMS 50.3 % (49.7 %)
ECMWF 72.7 % (27.3 %) 77.0 % (23.0 %) 70.6 % (29.4 %) 69.0 % (31.0 %)
NCEP 77.5 % (22.5 %) 69.5 % (30.5 %) 64.7 % (35.3 %) 55.1 % (44.9 %)
CMA 86.6 % (13.4 %) 67.4 % (32.6 %) 72.2 % (27.8 %) 79.7 % (20.3 %)

of all cases are 187. Among all cases, we further select the
increasing TPSC cases and decreasing TPSC cases. If the
TPSC index continues to increase (decrease) for 3 weeks, this
case is regarded as an increasing (decreasing) TPSC case.
There are 46 increasing TPSC cases and 53 decreasing TPSC
cases. We average the 46 (53) cases for different lead times.
To focus on the increase in biases, values with a lead time of
1 week are removed for forecasting at all lead times.

On a seasonal average, the growth of the TPSC index in
winter is only 1.3 % over 2 weeks in the observation (black
line in Fig. 5a). However, the models tend to exaggerate the
growth of the TPSC index (color lines in Fig. 5a). The growth
of the TPSC index over the 2 weeks in the models ranged
from 4.9 % (ECMWF) to 9.8 % (CMA). The TPSC index in
the forecast shows distinct differences between the increas-
ing TPSC cases and decreasing TPSC cases (Fig. 5b and
c). The growth of the TPSC index in the increasing TPSC
cases is 14.1 % over 2 weeks in the observation (black line
in Fig. 5b). The growth of the TPSC index over 2 weeks in
NCEP and CMA is close to that in the observation, while
there is some underestimation of such growth in the ECMWF
(color lines in Fig. 5b). Although there are some differences
between the TPSC index in the models and that in the ob-
servation, all models can forecast the increasing trend in the
TPSC index. However, the situation for the decreasing TPSC
cases is quite different. The reduction of the TPSC index in
the decreasing TPSC cases is −10.0 % over 2 weeks in the
observation (black line in Fig. 5c). However, all the changes
in the TPSC index in the models are positive values (color

lines in Fig. 5c), indicating that there are some difficulties
for the models in forecasting the dissipation of TPSC.

Studies have shown that current state-of-the-art atmo-
spheric general circulation models (GCMs) tend to strongly
overestimate the precipitation over the Tibetan Plateau (e.g.,
Su et al., 2013; Chen and Frauenfeld, 2014; Zhang and Li,
2016; Zhang et al., 2019). For example, Su et al. (2013) eval-
uated 24 GCMs that were available in the fifth phase of the
Coupled Model Intercomparison Project (CMIP5) over the
eastern Tibetan Plateau by comparing the model outputs with
ground observations, and they found that all of the models
consistently overestimated the observed precipitation for all
seasons. Zhang et al., (2019) found similar results, in that all
climate models they evaluated exaggerated the daily precip-
itation in the Tibetan Plateau during winter compared with
the observed values. Here, we also found that the S2S mod-
els tended to overestimate the precipitation over the Tibetan
Plateau. We compared the precipitation in the S2S models
with both the gauge-based GPCC precipitation dataset and
the satellite-based TRMM precipitation dataset (Fig. 6). The
regional averaging wintertime mean precipitation values over
the Tibetan Plateau in the GPCC and TRMM models are
0.27 and 0.32 mm d−1, respectively. Compared with the ob-
served precipitation, all three S2S models exaggerate the re-
gional precipitation obviously. Notably, such an overestima-
tion persists throughout the model integration. The ECMWF
model reproduces the precipitation that is closest to the ob-
servations among the three models, but it still shows a large
overestimation. The precipitation in the ECMWF model is
0.78 to 0.88 mm d−1. The precipitation values in the NCEP
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Figure 4. Differences in the multiyear wintertime mean Tibetan Plateau snow cover fraction (unit: %) between forecasts with a lead of
4 weeks and forecasts with a lead of 1 week in (a) ECMWF, (b) NCEP and (c) CMA. The map of the Tibetan Plateau was created by using
Global Relief Model data of ETOPO1 (topographic data are free to the public, https://doi.org/10.7289/V5C8276M, National Geophysical
Data Center, 2020).

Figure 5. Composites of the Tibetan Plateau snow cover index (unit: %) for (a) all cases, (b) increasing TPSC cases and (c) decreasing TPSC
cases. Black lines, orange lines, green lines and blue lines represent composites in the observation, ECMWF, NCEP and CMA, respectively;
see legend in (a). The x axis represents the number of weeks in the cases for the composites, which are also forecast lead times (unit: week).
The “N” in the title of each plot indicates the number of cases for the composite.

model (1.07 to 1.37 mm d−1) and in the CMA model (1.50
to 2.13 mm d−1) have larger precipitation biases and even in-
crease with the forecasting lead time. These overestimations
of the precipitation induce underestimations of the TPSC dis-
sipation, and they lead to positive biases in the TPSC from
the models. Because the overestimation of the precipitation
exists throughout the model integration, the positive biases
of the TPSC accumulate and increase with the model inte-
gration.

In this section, it was found that S2S models underestimate
the frequency of TPSC dissipation and have some difficulties
forecasting TPSC dissipation with an observed rate. Exag-
gerations of the precipitation were found in all three models,
which directly lead to accumulated overestimation of TPSC.
As a result, systematic bias of TPSC occurs and increases
with the model integration time.

Figure 6. The multiyear wintertime mean precipitation over the Ti-
betan Plateau (unit: mm d−1) for the observations and forecasts in
each model.
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4 Sensitivity of local surface air temperature to snow
cover biases

4.1 Colder temperature with increasing forecast lead
time

The local SAT over the Tibetan Plateau is highly correlated
with simultaneous TPSC at a subseasonal timescale (Li et al.,
2020a). Local snow–temperature relationships in S2S mod-
els were examined. We took a similar approach as in F. Li
et al. (2019) and Diro and Lin (2020). The temporal cor-
relation between the snow cover fraction and SAT with a
lead of 1 week and 4 weeks for each grid point in the three
models was computed to identify the extent and nature of
the relationship (Fig. 7). Almost all of the regions exhibit a
significant negative correlation in all of these three models.
Additionally, such a relationship in all three models did not
weaken with the forecasting lead time (compare Fig. 7a–c
and Fig. 7d–f), even if the forecasting skill on the TPSC de-
clined over time. The reason is that the relationship between
the snow cover fraction and the SAT is embedded in the land
surface model.

The skill of predicting the TPSC will further influence the
skill of predicting the SAT. As shown in Sect. 3, the TPSC
in the S2S models during the cold season increases with in-
creasing forecast lead time. Such systematic biases of TPSC
may influence the forecasted SAT in the S2S models. To test
this hypothesis, we performed an analysis on SAT over the
Tibetan Plateau similar to our analysis on TPSC. The SAT
over the Tibetan Plateau is derived by averaging the SAT over
the Tibetan Plateau region as defined in Sect. 2.2. Differences
in the multiyear winter mean SAT over the Tibetan Plateau
between forecasts with leads of 2–5 weeks and forecasts with
leads of 1 week in the three models, which were obtained by
subtracting the multiyear winter mean with a lead time of 1
week from that for forecast lead times of 2–5 weeks, are ex-
amined (Fig. 8). The differences in the three models show
some common features. The differences in all three models
are all negative. By comparing values at different lead times,
we also find that such negative differences increase with in-
creasing lead time, except for the value at a lead of 3 week
in the CMA model. The negative differences of SAT with the
longest forecast lead time (5 weeks) are largest among all
forecasts. The differences in SAT between the forecast for a
lead of 5 weeks and the forecast for a lead of 1 week can be
up to 1.9 ◦C. The increases in the SAT with the forecasting
lead time are on a regional spatial scale (Fig. 9). Almost all
of the grid points show negative values. Such increases in the
CMA are less than those in ECMWF and NCEP.

The above results indicate that the SAT over the Tibetan
Plateau becomes colder with increasing forecast lead time
in the S2S models. Considering the results we obtained in
Sect. 3, it can be concluded that the increasing TPSC is ac-
companied by decreasing SAT with forecast lead time.

4.2 Sensitivity of SAT to snow cover accumulation and
dissipation

Section 3.2 reveals that models show different performances
on snow cover accumulation and dissipation. We also found
that there are some difficulties for the models in forecast-
ing the dissipation of TPSC. To learn whether such differ-
ent performances influence the SAT forecast and to examine
the sensitivity of SAT to TPSC in the S2S models, we in-
vestigated the changes in SAT in the S2S models over the
Tibetan Plateau during winter (Fig. 10a), as well as the in-
creasing TPSC cases (Fig. 10b) and decreasing TPSC cases
(Fig. 10c). To provide a SAT reference in the models, a com-
posite was performed on SAT in the ERA-Interim reanalysis.
We performed the same composite method as that is used in
Sect. 3.2 on TPSC but for SAT over the Tibetan Plateau.

On a seasonal average, the change in SAT over the Ti-
betan Plateau in the reanalysis during winter is less than
0.1 ◦C (black line in Fig. 10a). However, the SAT in the
models tends to decrease as the forecast lead time increases,
especially in the ECMWF and NCEP models (color lines
Fig. 10a). The decline of the SAT over 2 weeks is 1.2 ◦C
for the ECMWF and NCEP models. Considering the exag-
gerated growth of TPSC shown in Fig. 5a, a decrease in SAT
is expected. In the ECMWF and NCEP models, more TPSC
leads to lower SAT. SAT tends to be sensitive to TPSC in
the ECMWF and NCEP models. However, SAT in the CMA
model lacks sensitivity to TPSC. Although the exaggerated
growth of the TPSC index in the CMA model is the most in-
tense in these three models, the decrease in SAT in the CMA
model is the least obvious.

The change in SAT should be closely connected to the
variations in TPSC. The change in SAT in the increasing
TPSC cases is −1.9 ◦C in 2 weeks in the ERA-Interim re-
analysis (black line in Fig. 10b), which is associated with the
accumulation of TPSC (black line in Fig. 5b). SAT shows
considerable decreases during the increasing TPSC cases
(Fig. 10b). Cold biases of SAT between the forecasted SAT
with lead time and that at the initial week tend to appear in
all models (Fig. 10b), which is associated with accumula-
tion of TPSC (in Fig. 5b). Here, the change in SAT in CMA
over 2 weeks is smaller than that in the ECMWF and NCEP
models. SATs in the ECMWF and NCEP models are more
sensitive to TPSC than that in the CMA model.

Here, we further find that such biases lead to biases in
SAT. SAT increases by 1.4 ◦C over 2 weeks in the reanalysis
(black line in Fig. 10c), which is associated with the dissipa-
tion of TPSC (black line in Fig. 5c). However, the SATs in
all these models show small changes (color lines in Fig. 10c)
compared with that in the reanalysis. Such small changes in
the SATs in the ECMWF and NCEP models are consistent
with the changes in the TPSC indexes in these models, which
show little changes (Fig. 5c). However, the large change in
TPSC in the CMA model (Fig. 5c) does not induce large bi-
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Figure 7. Spatial pattern of correlations between the snow cover fraction and the surface air temperature with a lead of 1 week in (a)
ECMWF, (b) NCEP and (c) CMA. Only significant correlations at the 0.01 level are displayed. Panels (d)–(f) are similar to panels (a)–(c)
but for forecasting with a lead of 4 weeks. The map of the Tibetan Plateau was created by using Global Relief Model data of ETOPO1
(topographic data free to the public, https://doi.org/10.7289/V5C8276M, National Geophysical Data Center, 2020).

Figure 8. Differences in the multiyear wintertime mean surface air
temperature over the Tibetan Plateau (unit: ◦C) between forecasts
with a lead of 2–5 weeks and forecasts with a lead of 1 week in
each model.

ases in SAT, indicating that the SAT in CMA lacks sensitivity
to TPSC.

4.3 Numerical experiment

Through the results in Sect. 4.1 and 4.2, we find that the lo-
cal SAT over the Tibetan Plateau becomes colder with in-
creasing forecast lead time. We assumed that the cold SAT
biases are induced by the overestimation of TPSC. However,
the relationship between snow cover and the atmosphere is a
two-way coupling connection (Henderson et al., 2018). The

assumption should be tested by numerical experiments (see
Sect. 2.2 for details about the numerical model and exper-
imental design). Otherwise, one may suspect that the cold
SAT induces an increasing TPSC other than the TPSC influ-
ence on SAT. Therefore, we used the predicted TPSC as a
boundary condition in CTL runs (with overestimated TPSC),
while observational TPSC in GDAS was used as a bound-
ary condition in the EXP runs (without overestimated TPSC).
The difference between the CTL and EXP runs is considered
to represent the response or the sensitivity of the SAT to the
overestimated TPSC.

We averaged snow cover and SAT over the Tibetan Plateau
in all simulations for the CTL and EXP runs to obtain a com-
posite for all reforecasts of TPSC during winter in the numer-
ical experiment (Fig. 11a–b). As we discussed in Sect. 3.2,
the growth of the TPSC index in winter is only 1.3 % for
2 weeks in the observations, while the S2S models tend to
exaggerate the growth of the TPSC index (Fig. 5a). In the nu-
merical experiment, CTL also exaggerates the growth of the
TPSC index (blue line in Fig. 11a). Because both the NCEP
S2S model and our numerical experiment use Noah as the
land surface model, such biases may be attributed to the land
surface model. Compared with the CTL run, the EXP run
shows smaller cumulative biases (red line in Fig. 11a), which
is because TPSC in the EXP run is replaced by TPSC in the
FNL analyses every 6 h. The SAT becomes colder with in-
creasing forecast lead time in CTL (blue line in Fig. 11b).
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Figure 9. Differences in the multiyear wintertime mean surface air temperature over the Tibetan Plateau (unit: ◦C) between forecasts with a
lead of 4 weeks and forecasts with a lead of 1 week in (a) ECMWF, (b) NCEP and (c) CMA. The map of the Tibetan Plateau was created by
using Global Relief Model data of ETOPO1 (topographic data free to the public, https://doi.org/10.7289/V5C8276M, National Geophysical
Data Center, 2020).

Figure 10. Composites of surface air temperature over the Tibetan Plateau (unit: ◦C) for (a) all cases, (b) increasing TPSC cases and
(c) decreasing TPSC cases. Black lines, orange lines, green lines, blue lines and black lines represent composites in observation, ECMWF,
NCEP and CMA, respectively; see legend in (a). The x axis represents the number of weeks in the cases for the composites, which are also
forecast lead times (unit: week). The “N” in the title of each plot indicates the number of cases for the composite.

However, such a decrease in SAT is much smaller in the
EXP run (red line in Fig. 11b). By checking the land sur-
face energy fluxes over the Tibetan Plateau between the CTL
run and the EXP run (Fig. 11c), we found that the overes-
timated TPSC strongly increases the upward-reflected short-
wave radiation (negative value indicates enhanced upward ra-
diation) due to the snow-albedo effect. This difference in the
solar surface energy leads to a decrease in the absorbed so-
lar radiation. Thus, the net shortwave radiation is decreased
(−10.2 W m−2), while the response of the net longwave ra-
diation is much smaller than that of the net shortwave radi-
ation. The decreased absorbed solar radiation is mainly bal-
anced by the sensible heat flux (8.1 W m−2; positive values
indicates reduced upward heat flux). In contrast, the differ-
ences in the latent heat flux and ground heat flux are low.
The overall responses of the surface energy to the overesti-
mated TPSC lead to an incorrect cooling shift. Hence, the
numerical experiment indicates that the cold SAT biases are
induced by the overestimation of TPSC.

5 Conclusions and discussion

Accurate subseasonal-to-seasonal (S2S) atmospheric fore-
casts and hydrological forecasts have considerable socioe-
conomic value. This study evaluates the Tibetan Plateau
snow cover (TPSC) prediction capabilities of three S2S fore-
cast models (ECMWF, NCEP and CMA) during wintertime.
These three S2S models can skillfully forecast TPSC varia-
tions within a lead time of 2 weeks during wintertime with
temporal correlation coefficients greater than 0.5. ECMWF
better captures TPSC variations compared with NCEP and
CMA at a lead time of 1–2 weeks. All models show lim-
ited skill in forecasting TPSC at a lead time of 3 weeks or
more. Compared with the IMS snow cover analysis, all three
models tend to overestimate the area of TPSC. Another re-
markable issue regarding the TPSC forecast is the increasing
TPSC with forecast lead time, which makes the systematic
positive biases of TPSC in models further increase at longer
forecast lead times.

S2S models underestimate the frequency of TPSC dissipa-
tion, whereas they overestimate the frequency of TPSC ac-
cumulation. The accumulation and dissipation of wintertime
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Figure 11. Sensitivity of SAT and surface energy balance to TPSC biases in the numerical experiments. (a) TPSCI and (b) SAT over the
Tibetan Plateau in the CTL (blue lines) and EXP (red lines) runs. The units of TPSCI and SAT are percent (%) and degree Celsius (◦C). The
x axis represents the number of weeks lagging the start of the model initial date (unit: week). (c) The difference in the surface energy balance
between the CTL and EXP runs (CTL minus EXP) at 3 weeks in the numerical experiments. The terms from left to right are downward
shortwave radiation (↓SW), downward longwave radiation (↓LW), upward shortwave radiation (↑SW), upward longwave radiation (↑LW),
net shortwave radiation (NetSW), net longwave radiation (NetLW), sensible heat flux (SH), latent heat flux (LH) and ground heat flux (GRD)
at the surface over the Tibetan Plateau (unit: W m−2). The flux sign is positive downwards.

TPSC occurs evenly in the observations. However, this kind
of balance does not exist in the S2S models. In the models,
the proportion of TPSC accumulation is mostly more than 2
times as large as the dissipation proportion. The most severe
underestimations of the dissipation proportions are the fore-
casts at a lead time of 2 or 3 weeks for all models. The models
also have some difficulties forecasting the TPSC dissipation
at an observed rate. The growth of TPSC in the decreasing
TPSC cases is−10.0 % over 2 weeks in the observations, but
all the changes in TPSC in the models are increasing.

All of the three S2S models consistently exaggerate the
precipitation over the Tibetan Plateau compared to the obser-
vations. The exaggeration of the precipitation is prominent
and always exists throughout the model integration. System-
atic bias in the TPSC therefore occurs and accumulates with
the model integration time due to exaggeration of the precip-
itation in the models.

The increasing TPSC is accompanied by decreasing sur-
face air temperature (SAT) with forecast lead time. The SAT
over the Tibetan Plateau becomes colder with increasing
forecast lead time in the S2S models. The differences in SATs
between the forecast for a lead of 5 weeks and the forecast for
a lead of 1 week can be up to 1.9 ◦C. SATs tends to be sen-
sitive to the TPSCs in both ECMWF and NCEP. However,
SAT in CMA lacks sensitivity to TPSC. Numerical experi-
ments were performed to test whether the cold SAT biases
are induced by the TPSC overestimation. The control run ex-
aggerates the growth of TPSC, which is similar to that in S2S
models. The SAT in the control run becomes colder with in-
tegration time. When the increasing TPSC with forecast lead
time in the models along with the integration of the model is
removed in the sensitivity run, the decreasing SAT with in-
tegration time also disappears. The overall responses of the
surface energy to the overestimated TPSC lead to incorrect

cooling shifts. This finding indicates that cold SAT biases
are induced by the TPSC overestimation.

Land–atmosphere coupling is one of the key physical pro-
cesses for S2S prediction but is not well simulated and
may reduce S2S prediction skill (Robertson et al., 2014;
Dirmeyer et al., 2019). Studies have shown that better snow
cover initialization improves subseasonal and seasonal fore-
casts/simulations (Jeong et al., 2013; Orsolini et al., 2013;
Senan et al., 2016; Lin et al., 2016; Kolstad, 2017; F. Li et
al., 2019). This study indicates that in addition to snow cover
initialization, a better model skill for snow cover prediction
may also improves S2S prediction skill. More work is neces-
sary and valuable to improve the prediction ability of models
for snow cover.

Previous studies have shown that current state-of-the-art
GCMs tend to strongly overestimate the precipitation over
the Tibetan Plateau (e.g., Su et al., 2013; Chen and Frauen-
feld, 2014; Zhang and Li, 2016; Zhang et al., 2019). It is
worthwhile to note that the S2S models also significantly
overestimate the precipitation over the Tibetan Plateau and
further cause other biases (e.g., TPSC biases and SAT bi-
ases). It is of great significance to reduce the biases of the
precipitation over the Tibetan Plateau in the GCMs. Surface
winds and snow sublimation could also play a role in caus-
ing the snow ablation. Identifying the relative contributions
of these factors to the biased snow prediction needs more
detailed and careful diagnoses. Note that the current study
analyzed the data during common reforecast period of 1999–
2010 for ECMWF, NCEP and CMA models. All these three
operational models provide real-time forecasts since 2015
based on the improved prediction systems. It could be valu-
able to carry out evaluation works based on the up-to-date
forecast results. Future studies on these issues are potentially
valuable.
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