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Abstract

The sub-seasonal characteristics and prediction of rainfall over the South China Sea

and surrounding areas during spring–summer transitional season (April–May–June)
are investigated using a full set of hindcasts generated by the Dynamic Extended

Range Forecast operational system version 2.0 (DERF2.0) of Beijing Climate Center,

China Meteorological Administration. The onset and development of Asian summer

monsoon and the seasonal migration of rain belt over East Asia can be well depicted

by the model hindcasts at various leads. However, there exist considerable differ-

ences between model results and observations, and model biases depend not only on

the lead time, but also on the stage of monsoon evolution. In general, forecast skill

drops with increasing lead time but rises again after lead time becomes longer than

30 days, possibly associated with the effect of slowly-varying forcing or atmospheric

variability. An abrupt turning point of bias development appears around mid-May

when bias growths of wind and precipitation exhibit significant changes over the

northwestern Pacific and South Asia, especially over the Bay of Bengal and the South

China Sea. This abrupt bias change is reasonably captured by the first two modes of

multivariate empirical orthogonal function analysis, which reveals several important

features associated with the bias change. This analysis may provide useful informa-

tion for further improving model performance in sub-seasonal rainfall prediction.
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1 | INTRODUCTION

Numerical models have been applied in operational cli-
mate prediction and climate change research since
decades ago (Sperber and Palmer, 1996; Johns et al.,
2006). However, these models often show deficiencies in
reproducing realistic climatology, and their prediction
capability is inevitably limited (Li and Zhao, 2002; Li
et al., 2004; Zhou et al., 2009a; 2009b; 2009c; Lee et al.,
2010; Li et al., 2010; Zhou and Zou, 2010). At present, cli-
mate system models are still not perfect, and their fore-
cast skills cannot meet the governmental and social
demands. Thus, assessing the skills of dynamical predic-
tion, understanding models' systematic biases, and pro-
viding useful information for improving these models
and their prediction capability is of critical importance
for both academic and operational communities (Zhu
et al., 2013; Li et al., 2015; Wei et al., 2017).

One of the recent research hotspots is the 10–30-day
forecast with a focus on the extended-range time scale
between weather phenomena and seasonal mean, which
is of great significance to disaster prevention and mitiga-
tion. However, our current skills cannot fulfil the need
for operational climate prediction due to initial errors
and the deficiencies of models themselves: many models
show limited skills in simulating and predicting sub-
seasonal variability. Thus, assessing and improving the
skills of 10–30-day forecast have become a challenging
and important task in both operational forecast sector
and academic community. Previous studies have shown
that the skill of dynamical extended-period prediction is
not significantly better than that of statistical persistent
prediction, although the former coincidently achieves a
high forecasting skill score sometimes (Molteni et al.,
1986; Anderson and Van, 1994). On the other hand, stud-
ies have also found that some state-of-the-art global
models exhibit useful skills on time scales beyond
2–3 weeks, especially when measured by indices of multi-
variate spatial modes (Fu et al., 2013; Neena et al., 2014).
Recently, Abhilash et al. (2014) and Liu et al. (2014a)
examined the sub-seasonal prediction skill of the NCEP
CFSv2 for the Indian monsoon and the major global
monsoon components and found that the actual forecast
skill was closely related to the behaviours of large-scale
features of the monsoons. Meanwhile, the sub-seasonal
predictions of regional summer rainfall over several trop-
ical Asian ocean and land domains were examined using
the CFSv2 (Liu et al., 2013; 2015) and it was noted that

the forecast skills exhibited geographical differences, with
higher skills for oceans than for land.

The Dynamic Extended Range Forecast operational
system version 2.0 (DERF2.0) of the Beijing Climate Cen-
ter (BCC) of China is one of the state-of-the-art opera-
tional seasonal prediction systems. In recent years, the
DERF2.0 forecasts have achieved great progress with the
upgrade from DERF1.0 to DERF2.0, and become an
important tool in research and prediction operation. The
major upgrade in DERF from version 1 to version 2 is the
climate model. DERF 1.0 utilizes the Beijing Climate
Center (BCC) Atmospheric General Circulation Model
(AGCM) version 1.0 (BCC_AGCM 1.0), which is triangu-
larly truncated with 63 waves (�1.875�) in the horizontal
direction and 16 layers in the vertical direction (Ding
et al., 2002). DERF2.0 is established on the basis of
BCC_AGCM2.2 (T106 L26), which has a horizontal T106
truncation (�1.125�) and 26 layers in the vertical
(Wu et al., 2010). He et al. (2014) found that the DERF2.0
performances for temperature and precipitation predic-
tions were significantly better than the DERF1.0. The
DERF2.0 was even somewhat skillful in predicting
extreme droughts and floods, such as those in 1998 and
2006. However, the DERF2.0 still has apparent deficien-
cies in reproducing the observed climatology, variability,
and relationships with other climate systems. Especially,
DERF2.0 predictions are often less skillful in capturing
regional characteristics compared to large-scale features
(Chen et al., 2016; Zhang and Chen, 2016; Li et al., 2017),
and it is also more difficult to predict rainfall variability
compared to circulation variability (Tang et al., 2016) by
the DERF2.0 model. In addition, the skill for monthly-
mean precipitation forecast is better than that for daily-
mean precipitation, and it is the same for low-intensity
rainfall than for high-medium-intensity rainfall (Liu
et al., 2014a).

The months from April to June are the main period
for the onset, development, and prevalence of the East
Asian summer monsoon, and for the ‘pre-flood season’ in
South China, where the precipitation from April to June
accounts for 40–50% of the annual amount (Huang,
1986). Thus, an accurate forecast in this period plays an
important role in the overall climate prediction. More-
over, during this period of spring-to-summer transition
when the atmospheric circulation bears abrupt changes
(Wu et al., 2010), heavy flood events resulted from large
precipitation variability occur frequently in Southeast
China. The prediction skill during the spring–summer
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transition, however, is quite low. To make things worse,
less attention is paid to the climate prediction for the
spring-to-summer transition. Therefore, it is significant to
discuss the characteristics of precipitation from April to
June and to evaluate the skill of precipitation prediction
by dynamical forecast system.

The differences between DERF2.0 and observations
on the sub-seasonal scale are less discussed compared to
those on monthly and/or seasonal scales during the
period of spring-to-summer transition. There is limited
exploration over the South China Sea (SCS) and its sur-
rounding areas, which is an important aspect to address
in this study. Therefore, here we diagnose the prediction
biases of precipitation, 850-hPa winds, and skin tempera-
ture (SKT) during the spring-to-summer transition by the
DERF2.0 on sub-seasonal scale, and investigate the key
factors that affect prediction skills. Several analyses are
conducted to address the following questions. What,
when, and where are the conspicuous biases in the sub-
seasonal predictions of precipitation, 850-hPa winds, and
SKT over the SCS and its surrounding areas? How differ-
ent are the biases during different stages of seasonal evo-
lution and as a function of lead time? At which lead time
can the sub-seasonal regional rainfall variability be
predicted? What are the possible physical causes of these
differences?

The focuses of this study are mainly the pentad cli-
matic anomalies (such as 5-day average rainfall anoma-
lies). In order to reveal and understand the sources of
prediction errors, the predictions of related circulations
are analysed. Extended-range forecast requires that a
model can predict the monthly climate background well,
and capture the climate prediction on a relatively short
time scale for a stable forecast. Therefore, we first analyse
the monthly average climate state of the model in order
to verify the basic performance of the model.

The article is organized as follows. In Section 2, we
describe the model, observation data, and the analysis
methods applied in this study. In Section 3, we discuss
the predictions of monthly climatological features, sub-
seasonal evolution of winds and rainfall over the SCS and
its surrounding areas, the forecast skills over selected
regions, and possible causes of biases. Summary and con-
cluding remarks are provided in Section 4.

2 | DATA AND METHODOLOGY

2.1 | Model and hindcast outputs

In this study, the hindcast outputs from the DERF2.0 are
analysed. The availability of comprehensive retrospective
forecasts from the DERF2.0 offers an opportunity to

understand the predictability of precipitation, winds, SKT,
etc. In the DERF2.0 system, the global atmospheric circula-
tion model BCC_AGCM2.2 (T106 L26) is utilized to gener-
ate the extended range (sub-seasonal) climate prediction
based on a two-tier method. The BCC_ACGM2.2 model is
integrated under the forcing of a given sea surface tempera-
ture (SST), composing the observed SST anomaly of the ini-
tial time and the climatological mean SST. The initial
conditions for atmosphere and SST are obtained from the
NCEP/NCAR reanalysis (Kalnay et al., 1996) and the Opti-
mum Interpolation Sea Surface Temperature (OISST) of the
National Oceanic and Atmospheric Administration (NOAA;
Reynolds et al., 2002), respectively. Four model runs (00Z,
06Z, 12Z, and 18Z) are initialized every day starting on
January 1, 1983, and run for 56- or 57-day integrations each.
Daily mean is generated as the ensemble average of the four
members. Daily- and monthly-averaged rainfall, 850- and
200-hPa winds, and SKT are analysed in this study.

2.2 | Observational data

Daily winds and SKT of the ERA-Interim reanalysis data
are from the European Centre for Medium-range
Weather Forecasts (ECMWF; Simmons et al., 2007;
Uppala et al., 2008), with a horizontal resolution of
0.75� × 0.75�. The monthly precipitation of the Global
Precipitation Climatology Project (GPCP; Huffman et al.,
2001) from 1983 to 2014 and the daily precipitation of the
GPCP from 1997 to 2014 are used. These reanalysis data
are referred to as observational data. For the convenience
of comparison, all data are interpolated onto the resolu-
tion of 1� × 1� using the bilinear interpolation method.

2.3 | Analysis methods

The prediction skills during April–June, the spring-to-
summer transition period, at various lead days (LD) for
sub-seasonal prediction are examined. Monthly and pen-
tad means are also analysed to exhibit both overall back-
ground and detailed evolution of biases. For a specific
target month (or pentad) to predict, lead 0 is defined as
the model run initialized on the first day of the month
(or pentad), lead 1 denotes the model run initialized on
the last day of the previous month (or pentad), lead 2 is
for the forecast initialized on the last but 1 day of the pre-
vious month (or pentad), and so forth, until 26- or
27-lead days and 51- or 52-lead days for monthly mean
and pentad mean prediction, respectively. In this article,
we only analyse the hindcast data of 0–14 lead days for
monthly mean and 0–49 lead days for pentad mean pre-
dictions as examples. The prediction for a certain month
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is an ensemble mean of 60 members lead from 0 to
14 days (four members per day). The ensemble forecasts
for a certain pentad are divided into 10 groups according
to lead time, that is, 0–4, 5–9, 10–14, and every 5 days to
45–49 days. For example, for the target pentad of the first
pentad of April, ensemble-mean prediction on the first
day of April and the last 4 days of March is defined as the
0–4 day-lead (LD0-4) prediction. The pentad predictions
are ensemble means of 20 members within 5-day-lead
time. The statistical analysis methods used in this study
include pattern correlation coefficient (PCC), anomaly
correlation coefficient (ACC), Taylor diagram, and multi-
variate empirical orthogonal function (MV_EOF) analy-
sis. The Student's t test and the F test are used for
statistical significance test.

3 | RESULT ANALYSIS

3.1 | Monthly prediction skill

To understand the overall background of prediction
biases, we present in Figure 1 the climatology of monthly
precipitation and 850-hPa winds from observations and
DERF2.0 prediction from April to June, as well as their
differences. The ensemble means of 0–14 lead-day predic-
tion for various target months are discussed. Overall, the
main locations of forecasted rainfall agree well with those
observed. The model captures the major evolution fea-
tures of the Asian monsoon; that is, the rain belt associ-
ated with the intertropical convergence zone (ITCZ)
strengthens gradually over the SCS and the western

FIGURE 1 Monthly precipitation (shading; units: mm�day−1) and 850-hPa wind (vector; units: m�s−1) for observations (left column),

DERF2.0 predictions (middle column), and their differences (right column; predictions minus observations) from April to June (top to bottom).

Only the differences passing the significant test of 95% confidence level (Student's t test for precipitation and F test for wind) are shown
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tropical Pacific from April to June. In May, the Asian
summer monsoon (ASM) occurs first around the
Indo-China Peninsula (ICP) and Eastern Bay of Bengal,
accompanied by apparently increased rainfall. In June, as
the Indian summer monsoon starts, tropical westerly
wind and precipitation develop and prevail, and the rain
belt expands northward. Moreover, the westerly jet over
the Arabian Sea enhances in May and June.

Apparently systematic biases, however, appear in the
middle and lower latitudes, including the northerly wind
bias over the equatorial Indian Ocean (IO), the westerly
wind bias over the Indian Peninsula (IP) and ICP, and
the cyclonic and anticyclonic wind biases over the north-
western Pacific Ocean (NWP), with most significant
biases in June. Associated with the anticyclonic bias over
Southeast China-Japan, there is an underestimation of
rainfall from April to June. Dry biases appear over most
parts of South China, the southern edge of the Tibetan
Plateau (TP), the northern part of the Bay of Bengal
(BOB), and the eastern equatorial IO. On the other hand,
wet biases appear over ICP and IP, due possibly to the
unreasonable estimate of the influence by topography in
the model. These biases gradually increase from April to
June. In addition, the biases can change their sign with
time. For example, the wet bias in the ITCZ over SCS and
tropical western Pacific in April is replaced by a dry bias
in June.

The above analysis indicates that the hindcast results
of precipitation are related to the circulation biases of the
model. Then, what causes circulation biases? Since the
thermodynamic difference between land and oceans is an
essential factor that results in the monsoon and its vari-
ability, it is important to investigate the ability of the
model to simulate the features of temperature, especially
at the low levels. Indeed, Chen et al. (1997) found that
the simulation bias of temperature might be one of the
reasons that cause the biases of monsoon circulation. A

poor simulation of SST may also result in bad simulations
of monsoon precipitation (Zhou and Yu, 2006). There-
fore, to better understand the biases of monsoon precipi-
tation, SKT (SST for oceans) is selected for a comparative
analysis. The simulated SKT is more consistent with
observation, compared to precipitation and winds. The
model can reasonably depict the increase in skin temper-
ature from April to June, as well as from the lower to
higher latitudes, as in the observation (figure not shown).
Figure 2 showing the differences in surface temperature
between hindcast and observation, indicates warm biases
in South Asia and most parts of East China including IP,
ICP, and South China. Especially, almost all East China
experiences significant warm biases in June, while most
land areas from Northwest China to Northeast China are
mainly dominated by cold biases. In addition, the cold
biases around Lake Balkhash in April are replaced by
warm biases from May to June, and the cold bias is more
significant over land than over oceans, especially over the
TP where the cold bias is apparently large. Although dur-
ing summer months the TP is much warmer than the
oceans, thus cold bias in TP can lead to weaker tempera-
ture differences between oceans and land and affect the
intensity of monsoon circulation.

3.2 | Variation of sub-seasonal evolution

The development of ASM on the pentad time scale is
investigated. We use pentad mean precipitation above
6 mm�day−1 and 850 hPa zonal wind turning from east-
erly wind to westerly wind to define the ASM onset (Lau
and Yang, 1997; Liu and Ding, 2007). Figure 3 shows the
changes in observed precipitation before and after the
onset of the ASM, which are the same as those in
Figure 1a,d,g but on the pentad time scale. The monsoon
onset over the Eastern Indian Ocean and Sumatra starts

FIGURE 2 Differences in monthly skin temperature (units: �C) between DERF2.0 predictions and observations (prediction minus

observation) from April to June (left to right). Only the differences passing the significant test of 95% confidence level (Student's t test) are shown
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FIGURE 3 Same as Figure 1, except for pentad precipitation (shading; units: mm�day−1) and 850-hPa wind (vectors; units: m�s−1) of
the ensemble means of 0–4-day-lead predictions and observations from late spring to early summer (top to bottom). Only the differences

passing the significant test of 95% confidence level (Student's t test for precipitation and F test for wind) are shown
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from late April, following a northeastward movement of
rain belt and being accompanied by prevailing south-
westerly wind. However, the cross-equatorial flow is
weak due to the control of northwesterly or northeasterly
wind over the IP and the Arabian Sea (Figure 3a). The
Eastern BOB and ICP summer monsoon establish in
early May, accompanied by a gradual strengthening of
southwesterly flow of the Somalia jet and a northward
movement of equatorial convergence zone (figure not
shown). Around mid-May, water vapour is transported
from the southern IO to the Arabian Sea through the
Somali jet and then to the SCS through BOB and ICP.
The wind over the SCS turns from southeasterly to south-
westerly in the fourth pentad of May (Figure 3d). After-
ward, the onset of the SCS summer monsoon (SCSSM) in
the fifth pentad of May (Figure 3g) marks the arrival of
summer monsoon and the beginning of rainy season over
East and Southeast Asian (Chen et al., 2000; Ding et al.,
2006). Thus, gradual increases in precipitation occur over
the BOB, ICP, SCS, and South China, as well as the
Kuroshio area, in the fifth pentad of May, which agrees
with the results of Zhao et al. (2007), He et al. (2008), and
Qi et al. (2008). Accompanied by the onset of Indian sum-
mer monsoon, rain belt moves to the Yangtze River basin
in mid-June, indicating the beginning of the Meiyu sea-
son (Figure 3j). Two separate rain belts then appear over
East Asia: one is the ITCZ rain belt over the SCS-western
tropical Pacific and the other is the convergence zone of
Meiyu rain belt in East Asia. The evolution of these two
rain belts is independent of each other.

Next, the variations of pentad rainfall and winds in
DERF2.0 predictions are examined. Figure 3 shows the
differences in pentad mean precipitation and 850-hPa
winds between the ensemble means of 0–4-day-lead pre-
dictions and observations from April to June. The pentad
predictions can generally capture the major evolution
features of the ASM in observations. However, there are
some significant systematic biases, especially in the mag-
nitude of major rainfall centres. Similar to the features
shown in Figure 1, there exist northerly wind bias over
the equatorial region and cyclonic wind bias over the
NWP in different stages during the spring-to-summer
transition. Correspondingly, dry biases dominate in the
southern flank of the TP, South China, and the Kuroshio
region, while wet biases occur over the western Pacific
and the southern IO. Interestingly, the biases of model
predictions are closely related to the onset and the posi-
tion of the ASM: the dry biases over BOB and SCS begin
to propagate and become significant in the fourth and
fifth pentads of May, respectively, along with the increas-
ing easterly or northeasterly wind biases over the two
regions (Figure 3f,i). The wet bias becomes significant in
the fourth pentad of June over the western IP (Figure 3l),

which is perhaps due to the underestimate of the winds
after monsoon onset. In addition, the magnitude and
range of biases are consistent with the location and
changing time of the rain belt (Figure 3f). For example,
the region where rainfall is underestimated further shifts
northward, along with the northward movement of
Meiyu convergence zone rain belt in East Asia, while the
range and magnitude of wet biases increase due to the
northward shift of the northwestern Pacific subtropical
high and the increase in cyclonic bias.

Figure 4, which shows the predictions at 25–29 lead
days, indicates that the model can reproduce the develop-
ment process of the ASM, but the precipitations over sev-
eral key regions including IP, ICP, BOB, SCS, and South
China and the Meiyu rain belt in East Asia exhibit larger
biases at 25–29 lead days than at 0–4 lead days. Con-
versely, there are weaker wind biases in long-lead predic-
tions than in shorter-lead predictions over many regions.
From the shortest-lead (0–4 days) to the mid-lead
(25–29 days) predictions, the northerly wind biases over
the equatorial IO are significantly weaker. The cyclonic
wind biases over the western Pacific are weaker in April
and May, resulting in a remarkable decline of wet bias.
The centre of the cyclonic bias shifts northward in June,
bringing about the northward shift of the centre of wet
bias. Nevertheless, there are opposite biases at the lead
time of 25–29 days compared with the lead time of
0–4 days over some regions. For example, a weak dry bias
appears over the southeastern Arabian Sea with short
leads and it becomes a wet bias at longer leads, related
possibly to the obvious cyclonic bias at the lead time of
25–29 days over the Arabian Sea. Meanwhile, the equato-
rial areas including the equatorial IO and the Maritime
Continent show dry biases at the lead time of 25–29 days
in June, while showing wet biases at the lead time of
0–4 days. Figure 4 also shows that the predictions at
45–49 lead days may not be skillful, but is helpful for
revealing the growth of biases with increasing lead time.
Correspondingly, the predictions at the 45–49 lead days
are consistent with those at the 25–29 lead days, in terms
of not only the time when the difference occurs, but also
the position where the difference appears, except for the
increasing degree of deviation.

The cross section of differences between observed and
predicted pentad mean precipitations and 850-hPa zonal
winds, at different lead days along 70�–90�E, 90�–110�E,
and 110�–130�E are analysed respectively (Figures 5–7).
The forecasted precipitation along 70�–90�E is character-
ized by a northward shift from the equator to the Asian
continent and from the first pentad of April to the last
pentad of June, which is consistent with the observed fea-
tures (not shown). However, the model biases increase
with lead time as shown in Figure 5. At first, the 0–4
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lead-day forecasts display small deviations from observa-
tions before June. The deviations increase slightly with
increasing lead time as shown in Figure 3l, that is, the
prediction skill decreases after the onset of the Indian
monsoon. Then, the biases show a more consistent ‘dry-
wet-dry’ feature from the equator to the Asian continent,
and the dry biases gradually diminish while wet biases
increase from 5–9 to 45–49 lead days especially in June.
Consistent with the characteristics of precipitation
change, the 0–4-day-lead forecasts of 850-hPa zonal wind

also display agreements with observations before June
(Figure 5a). However, westerly biases gradually increase
from 5–9 to 45–49 lead days around 10�N from April to
June, which corresponds to an overestimate of rainfall
(Figure 5b–d). This feature indicates that the over-
estimate of precipitation may be due to the bias in
850-hPa westerly wind.

The model can well capture the observed feature of
precipitous increase in precipitation along 90�–110�E
after the onset of BOB monsoon around the third pentad

FIGURE 4 Same as middle and right columns of Figure 3, except for the ensemble predictions with lead times from 25 to 29 days (two

left columns) and from 45 to 49 days (two right columns). Only the differences passing the significant test of 95% confidence level (Student's

t test for precipitation and F test for wind) are shown in the second and forth columns
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of May, and the large values over 20�N afterward (not
shown). However, differences appear between observa-
tions and model results, especially in the timing of BOB
monsoon advancement and the position of rain belt. On
the one hand, the centre of dry bias over 20�–30�N

gradually diminishes with increasing lead time from mid-
May. On the other hand, all time leads except for
0–4 days show a wet bias belt, which begins from the
equatorial area and shifts northward to the Asian conti-
nent during April–June. The forecasted winds (contours)

FIGURE 5 Latitude-time cross

sections of differences in precipitation

(shading; units: mm�day−1) and 850-hPa

zonal wind (contour; units: m�s−1)
between ensemble predictions and

observations along 70�–90�E. the solid
and dotted lines denote the positive and

negative values, respectively. (a), (b),

(c), and (d) for 0–4, 5–9, 15–19, 45–49
lead day prediction, respectively

FIGURE 6 Same as in Figure 5,

except along 90�–110�E
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at various leads show not only a good agreement with
observations (e.g., northward shift), but also a small dif-
ference in wind speed from the observed. Other impor-
tant features include the westerly and easterly biases over
10�–20�N at 0–4 lead days and the northward-shifting
westerly biases near the equator, later on, followed by
dominant westerly biases over 10�–20�N at 15–19 lead
days in mid-May, where rainfall is overestimated
(Figures 3 and 4). Overall, the variation of the difference
between forecasted and observed winds is consistent with
that of precipitation difference.

Similar to the spatial distributions on monthly and
pentad time scales discussed previously, precipitation
centres appear over northern South China and the Yang-
tze River in early-April, which is the same as the ‘spring
rain in the Yangtze River’ (Chen et al., 2000). However,
there is a dry bias of rain belt over 20�–30�N, which
intensifies significantly after the onset of SCSSM in the
fifth pentad of May, when the 850-hPa zonal wind shows
an easterly wind bias over 20�N. Interestingly, the wet
biases from the equator to 20�N also become significant
around the fifth pentad of May and move slightly north-
ward. The difference between model and observation
shows a maximum centre at 5–9 lead days, which dimin-
ishes from 10–14 to 25–29 lead days, followed by rein-
forcement from 30–34 lead days. Afterwards, the value of
difference maintains with little change (Figure 7d). The
westerly wind bias at 850 hPa is similar to that of precipi-
tation from the equator to 20�N, but the position is

slightly different, especially for 5–9 lead days. Thus, we
can conclude that the time of deviation change is exactly
the same as the onset and northward movement of the
SCSSM, but it is more significant at longer leads
(Figure 7c,d). These results further demonstrate that the
model can capture the commencement, development,
and advancement of the ASM, but show poor forecast
skill for the magnitude of wind and rainfall in some
places.

3.3 | Prediction skill for spatial and
temporal variability of regional rainfall

We select five domains (South China, ICP, BOB, SCS and
IP; see Figure 8) to depict the regional features and pre-
diction skills and analyse the main sources of errors.
Figure 9 shows the Taylor diagrams of area-averaged pre-
cipitation and 850-hPa zonal wind at all leads. In general,
the predictions of precipitation at all lead days are signifi-
cantly correlated with observations. The predictions of
short leads reasonably capture the features of sub-
seasonal variations, and the rainfall predictions are
highly correlated (dotted blue line) with observation for
all leads, with a correlation coefficient above 0.9 in all
regions except South China and the SCS, where the coef-
ficients are 0.52–0.91 and 0.85–0.96, respectively. The
root-mean-square errors (RMSEs; dotted green line) are
1.0–2.0 overall the five regions; however, the standard

FIGURE 7 Same as in Figure 5,

except along 110�–130�E
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deviation (STD; dotted black line) of each lead time over
South China is smaller than observed. The small STD
may be due to the underestimate of rainfall over South
China as shown in Figures 3 and 4. On the other hand,
there are larger differences between different leads over
other regions, where the STDs have their minimum
values only at the 0–4 lead days and 5–9 days (except for
the SCS). For 850-hPa zonal wind, the forecast skill is
much poorer over South China where the correlation
coefficients between observation and model at some leads
are even negative (not shown). The prediction skills of
wind show larger consistency compared to those of rain-
fall, implying that the correlation coefficients are higher
(above ~0.9) and the RMSEs are smaller (below 2.0).
STDs exhibit minimum values at the leads of 0–4 and
5–9 days.

Overall, the RMSEs, STDs and correlation coefficients
of regional precipitation and zonal wind are not always
the smallest at the minimum lead time. The forecast skill,
which generally decreases with lead time, can increase
again after the lead time is longer than 30 days, perhaps
because the initial atmospheric memory has been lost sig-
nificantly at that lead time and the predictions begin to
be dominated by slowly-varying components of the cli-
mate system (Figures 5–7).

ACC is a more rigorous method for climate model
evaluation, which allows us to analyse the forecast skills
of models. In Figure 10, the model hindcast at the leads
of 0–4 days shows better correlation with observations
than at other leads in the other pentads from April to
June, especially over the SCS where ACC is higher than
0.3. These results further demonstrate the reasonable
skill of the model in forecasting the rainfall over SCS and
the tremendous difficulty in forecasting the rainfall over
South China. Meanwhile, the ACCs decrease rapidly or
even show negative values with lead time over South
China. Similar to Figures 5–7 and 9, the ACCs of most

target pentads do not decrease progressively with lead
time, but ‘decrease’ and ‘increase’ alternately over each
region. For example, the obvious change in ‘decrease–
increase–decrease’ can be seen in the third pentad of
April over IP, ICP, and BOB. Overall, the best correla-
tions between forecasts and observations are seen in
April for all five regions, especially in the second, third,
and fifth pentads of April, followed by May, and the
worst is in June.

For rainfall anomalies, the PCCs between observation
and model results are computed pentad by pentad, and
year by year. Figures 11, 12 show the multi-year-averaged
PCCs in each pentad and during spring-to-summer transi-
tion for each year. Climatologically, there are higher skills
over IP and BOB than over the other regions. In addition,
the PCCs decrease with increasing lead time over South
China, IP, ICP, and BOB. Note that the PCC of SCS rainfall
exhibits two maximum periods, the third pentad of May
and after mid-June. PCCs can be predicted skillfully at the
leads of 0–4 days in all pentads over all regions, and they
also decrease or show ‘high-low’ oscillation with increasing
lead time (Figure 11). Corresponding with Figure 11, the
spring-to-summer averaged PCCs in each year exhibit more
remarkable inter-annual differences over IP and BOB, fea-
tured by a fast drop of PCC below the confidence level after
a few days of forecasts in some years but at about 3-week
or longer leads in the other years (Figure 12). Over IP, the
skills are significant at the 40-day-lead time for forecasts of
most years. In contrast, over South China, ICP, and SCS,
relatively small inter-annual differences in PCC are found,
along with a rapid drop of PCC below the 95% confidence
level in most years (Figure 12).

3.4 | Possible causes of prediction biases

The above analysis indicates that the skills of sub-
seasonal prediction of the onset, development, and preva-
lence of the ASM depend on both lead time and the
evolution stage of the monsoon. On the one hand, the
bias of rainfall prediction shifts northward as the rain
belt moves northward (see Figures 5–7). The bias shows a
significant change from mid-May onward, especially after
the fifth pentad of May. Meanwhile, the prediction of
zonal wind shows a similar feature, but there is a remark-
able dissimilarity in the position of bias with rainfall pre-
diction, especially near the equator and the western
Pacific tropical monsoon region (Figure 7). On the other
hand, biases do not always increase with increasing lead
time, and are not consistent in different regions and at
different leads, which to some extent agrees with the fea-
tures shown in Figures 5–7. Therefore, it is necessary to
answer the question of what results in these features.

FIGURE 8 Studied ranges of land domains (yellow; Indian

subcontinent: IP, Indo-China Peninsula: ICP, and South China: SC)

and ocean domains (blue; Bay of Bengal: BOB and South China

Sea: SCS) in this article
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As suggested in Sections 3.1–3.3, the NWP is domi-
nated by cyclonic wind bias and the associated precipita-
tion bias, which may be closely associated with the

WPSH, bridging tropical SST anomalies and the change
in East Asian summer circulation. That is, the deviations
of forecasted WPSH may exert an impact on the

FIGURE 9 Taylor diagrams of standard deviation, temporal correlation coefficient, root-mean-square error (RMSE) between ensemble

prediction and observation for (a) precipitation (units: m�s−1) and (b) 850-hPa zonal wind (units: mm�day−1) over the Indo-China Peninsula
(ICP), Bay of Bengal (BOB), South China Sea (SCS), Indian subcontinent (IP), and South China (SC)
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magnitude and distribution of rainfall and the advance of
rain belt in East Asia. Figure 13a shows the variation of
WPSH ridge, defined as the average latitude of zero con-
tour of 850-hPa zonal wind within 120�–150�E/10�–45�N,
in the ensemble mean predictions at different leads. The
ridge shows an early and slowly southward retreat or a
northward jump as lead time increases. Model predic-
tions capture the observed features of sub-seasonal
change but show larger differences in magnitude. In the
meantime, the observed WPSH ridge jumps northward
accompanied by the outbreak of the SCSSM after the fifth
pentad of May, but model predictions show more south-
ward than observations at all lead days except for 0–4
lead days. Compared with observation, the predicted
WPSH ridge is mostly more northward before the fifth
pentad of May and more southward after the fifth pentad
of May. However, the model skill does not progressively

decrease with increasing lead time, especially before
late-May.

Figure 13b shows the variation of the Webster–Yang
(WY) index, which is defined as the vertical shear of
zonal winds between 850- and 200-hPa levels averaged
over 40�–110�E/0�–20�N (Webster and Yang, 1992). The
WY monsoon index represents well the South Asian
monsoon (tropical monsoon), while WPSH is a major
member of the subtropical monsoon system. The correla-
tion coefficient between the WY index and the WPSH
ridge index is −0.55 in observation, exceeding the 95%
confidence level. The two indexes jointly characterize the
ASM. The WY index is defined as the vertical shear of
zonal winds between 850- and 200-hPa levels averaged
over 40�–110�E and 0�–20�N, which is located in the
southwest of WPSH. So the position of WPSH is closely
related to the strength of the South Asian monsoon. The

FIGURE 10 ACC skills of pentad rainfall predictions at various lead times with respect to observations averaged over the South China

(SC), Indian subcontinent (IP), Indo-China Peninsula (ICP), South China Sea (SCS), and Bay of Bengal (BOB)
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significant negative correlation between the two indexes
indicates that when the South Asian summer monsoon is
strong, the WPSH ridge is southward, and the subtropical
summer monsoon is weak.

The predicted WY index is more consistent with
observation than the WPSH ridge index during the entire
analysis period, but it shows a systematic weak bias since
early-June except before late-May. Meanwhile, the
predicted WY index is weaker at the lead time of 15–19
and 20–24 days but stronger at the lead time of 0–4 and
5–9 days. Model predictions exhibit more consistency
with observations for short leads (such as 0–4 days) than
for long leads (such as 20–24 days) within the lead time
less than 30 days. It approves that the correlation
between prediction and observation decreases with lead
time (for less than 30 days, Figure 9) and that the
0–4 day-lead prediction is in good agreement with obser-
vation (Figure 10).

Both internal atmospheric variability and external
forcing may contribute to model biases and their growth.
To further understand the differences between prediction
and observation, we analyse latitude-time cross sections

(Figure 14) for ensemble-mean prediction biases of sur-
face temperatures at different leads along 110�–130�E
including SCS and South China. The development of
thermal bias exhibits apparently spatial and temporal dif-
ferences. The change in significant bias is mainly concen-
trated near 20�–30�N, with the cold bias near 30�N before
May gradually replaced by a warm bias after May,
corresponding to the change from a cold to a warm bias
south of the Yangtze River from April to June (Figure 2).
The warm bias enhances gradually from 0–4 lead days to
15–19 lead days, and then weakens from 20–24 lead days
to 30–34 lead days, before gradually intensifying again
from 35–39 lead days to 45–49 lead days. Interestingly,
the model warm biases at all leads except for 0–4 lead
days become significant from mid-May, especially from
the fifth pentad of May (Figure 11), associated with the
apparent southward-shifted WPSH ridge and the weak
WY index in various lead-time predictions after mid-May
(Figure 13). In the meantime, the warm bias over 20�–
30�N gradually expands northward to 35�N around late-
June, related to the northward movement of the WPSH
(Figure 13a).

FIGURE 11 Multi-year-averaged PCCs between forecasted and observed rainfall over the South China (SC), Indian subcontinent (IP),

Indo-China Peninsula (ICP), South China Sea (SCS), and Bay of Bengal (BOB) as a function of lead time (y coordinate) and seasonal stage

(x coordinate)
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To link all these known factors and gain a more com-
prehensive understanding of the causes for prediction
biases, an MV_EOF analysis is carried out for precipita-
tion and 850-hPa winds (Figure 15), and for surface tem-
perature and 850-hPa winds (Figure 16). The first EOF
mode and principal components (PCs) of precipitation
and winds (Figure 15) show that the bias distribution
clearly transits from the negative phase to the positive
phase around mid-May, from the third pentad to the fifth
pentad of May, which occurs earlier in short-lead predic-
tions than in long-lead predictions. The transition corre-
sponds to the split time when the WPSH ridge and the
SKT between 20�N and 30�N (such as South China) show
significant changes (Figures 13a and 14). Associated with
the positive phase beginning in mid-May, the first mode
is characterized by the development of cyclonic wind
biases over the NWP, and westerly wind biases over the
ICP and the southwestern IP where wet biases exist. On
the other hand, anticyclonic wind biases occur over the
western tropical IO and Somali, and northwesterly wind
biases exist over the equatorial IO and from the north-
eastern ICP to the equatorial region through the BOB.
Correspondingly, dry biases appear over the equatorial
IO, the northeastern IP and BOB, and other equatorial
regions. In addition, precipitation is underestimated over
the west coast of the NWP, including the Kuroshio, South

China, and the SCS, which may be related to the north-
westerly or northeasterly wind bias caused by the
cyclonic bias over the NWP. As discussed in Sections 3.1
and 3.2, these biases indicate weak WPSH and South
Asian summer monsoon. Along with the similar distribu-
tion of wind biases revealed in Figure 15c and the associ-
ated with the positive phase beginning in mid-May, the
first EOF modes of SKT and winds (Figure 16c) show
apparent cold biases over the NWP and warm biases over
the IO, which may be a response to the cyclonic wind
bias over the NWP and the anticyclonic wind bias over
the western tropical IO, respectively. Other apparent fea-
tures include the cold biases and overestimated rainfall
over the western IP and ICP, while there are warm biases
from North Africa to East China, except for part of
the TP.

Note that the first modes in Figures 15c and 16c are
highly significant, explaining nearly 40% of the total vari-
ance. The negative phase of the spatial mode shown in
Figure 15c bears much resemblance to the biases over the
BOB and the SCS-WP ITCZ in April (see Figure 1c), and
in the leads of 25–29 and 45–49 days in the sixth pentad
of April (see Figure 4b,d). The positive phase of the spa-
tial mode is similar to the bias distribution in June (see
Figure 1i) and in the 25–29 and 45–49 lead days of the
fourth pentad of June (see Figure 4n,p). In Figure 16c,

FIGURE 12 April–June averaged PCCs between forecasted and observed rainfall over the South China (SC), Indian subcontinent (IP),

Indo-China Peninsula (ICP), South China Sea (SCS), and Bay of Bengal (BOB) as a function of lead time (x coordinate) for each year. The

black dashed line denotes the statistically significant value at 95% confidence level (Student's t test)
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the distribution of surface temperature biases over south
of the ICP is opposite to that over south of China, as
shown in Figure 2a,c. Therefore, the first mode may be
related to the transitions of atmospheric circulation and
the thermal state of the underlying surface. On the one
hand, the WPSH with an anticyclonic wind bias before
mid-May can contribute to the southeasterly or south-
westerly wind bias to the west coast of the NWP but
that with a cyclonic wind bias after May can intensify
the northwesterly wind bias from South China to the
equatorial regions. Associated with the evolution of
wind bias, the precipitation and surface temperature
biases over the NWP are replaced by opposite-sign
biases during the transition process. On the other hand,
the transition from anticyclonic biases to cyclonic
biases over the western tropical IO and Somali regions
may be closely connected with the regional surface tem-
perature biases and partly attributed to the significant

change in surface temperature from warm to cold bias
over the western IP (see Figures 2 and 16a,c). These fea-
tures are favourable for the meridional wind biases over
western IP changing from southerly to northerly wind
bias as a thermal response of regional atmospheric
circulation.

The second EOF modes and PCs of precipitation and
winds (see Figure 15b,d), and of surface temperature and
winds (see Figure 16b,d), show a consistent variation
with a gradually increasing tendency from April to mid-
May and a decreasing tendency from mid-May to June.
Compared to the long-lead predictions, the PCs of short-
lead predictions show smaller values but earlier peaks.
The latter indicates an earlier northward jump of the
WPSH as shown in Figure 13a, while the former indicates
a decay of initial memory and a growth of prediction bias.
The time range of transition from an ascending tendency
to a descent tendency of all-lead predictions from the
third pentad of May to the fifth pentad of May is consis-
tent with that of the transition from a negative phase to a
positive phase in Figures 15a and 16a. Otherwise, the
transition from the negative phase to the positive phase
around mid-April (Figures 15b and 16b) also corresponds
to the split time when the WY index changes from a neg-
ative phase to a positive phase (Figure 13b). Associated
with the positive phase from mid-April to mid-June
(Figures 15b and 16b), the second mode is characterized
by an apparent anticyclonic wind bias over the NWP and
Somali-IO regions. Correspondingly, dry biases appear
over the NWP, SCS, and IO. Apparent wet and warm
biases south of China arise as a response to the south-
westerly wind biases caused by the anticyclonic wind bias
over the NWP. Meanwhile, wet and cold biases occur
south of the ICP and northeast of the IP. Therefore, the
second mode in the positive phase features a strong
WPSH over the NWP and strong monsoon over South
Asia. The biases associated with the second mode gradu-
ally intensify before the strongest SCSSM develops and
the WPSH fully dominates over the NWP, and weaken as
both SCSSM and WPSH move northward.

It should be noted that the second mode only
accounts for 11% of the total variance and its typical fea-
tures can be captured only when it is in a strong state
and the first mode is in a weak state. For example, the
positive phase of spatial mode shown in Figure 15d is
similar to the bias distribution depicted in Figures 1f and
4h,l, which bears much resemblance to the biases south
of China, the western Pacific, and Southeast Asia. More-
over, as pointed out above, biases do not always increase
with increasing lead time. Knowing the time when biases
reach their saturation state is helpful for identifying their
causes. As shown in Sections 3.1 and 3.2, bias develop-
ment depends on both lead time and the stage of

FIGURE 13 Time series of ensemble predicted and observed

ridges of the WPSH (a) and the Webster–Yang index (b) in the

spring–summer transitional season (April–June)
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monsoon evolution. In addition, significant geographical
differences in bias growth with increasing lead time may
result from different initial memory capabilities of the
model over different regions. Figures 15 and 16 further

confirm that the predictions of different leads always
show significant differences in the transition of biases.
However, better consistency among the predictions of dif-
ferent leads may exist during other periods, which can

FIGURE 14 Latitude-time cross

sections of prediction biases of skin

temperature (units: �C) along 110�–
130�E. (a), (b), (c), and (d) for 0–4, 5–9,
15–19, 45–49 lead day prediction,

respectively

FIGURE 15 The first two leading

modes (bottom panels) and

corresponding principal components

(top panels) of multivariate EOF

analysis on prediction biases of

precipitation and 850-hPa wind at all

lead times from 0 to 49 days. The value

in parentheses on top of each panel in

(c) and (d) represents the explained

variance of each mode
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partially result from the model responses to the biases of
different components at different time leads.

4 | CONCLUSIONS AND
DISCUSSIONS

Based on the hindcasts of DERF2.0 from 1983 to 2014,
the prediction skills of precipitation over the Asian mon-
soon region during the spring-to-summer transition
(April–June) are examined. The key factors influencing
the prediction skills are also explored. The study yields
the following main conclusions:

1. The DERF2.0 can reproduce the observed distribu-
tions and sub-seasonal processes of precipitation, tem-
perature, and 850-hPa winds, reflect the changing
trend of the ASM during the spring-to-summer transi-
tion and generally capture the processes of onset and
evolution of the East Asian summer monsoon. Thus,
the DERF2.0 is skillful in predicting precipitation,
SST, and winds during the spring-to-summer transi-
tion. However, the model still needs improvement in
predicting the position and intensity of anomaly cen-
tres. For instance, the model has difficulties in
predicting the abrupt increase or decrease in precipita-
tion at most lead days, and the emergence of spurious

interruption at some leads. The underestimate of pre-
cipitation is found in the ITCZ over the SCS, the west-
ern Pacific, and the Meiyu rain belt.

2. Based on the ACC and PCC skills of precipitation, the
model has high prediction skills for the IP and BOB,
but relatively low skills for South China. The lower skill
of the model in predicting rainfalls over South China
compared to other regions is related to the poor skill of
predicting WPSH. The prediction skill is best in April,
followed by May, and worst in June. Biases are related
not only to lead time but also to the stage of monsoon
evolution. The model shows better prediction skills at
0–4 lead days, and afterwards bias becomes significant
gradually. In general, model prediction skill decreases
with increasing lead time when lead time is less than
30 days, but increases when lead time is longer than
30 days. An abrupt turning point of bias development
appears in mid-May, when the bias growth of winds
and precipitation shows significant changes over the
NWP and the South Asian summer monsoon region,
especially the BOB and the SCS. Otherwise, the location
of the predicted WPSH ridge is more northward before
the fifth pentad of May and southward afterwards com-
pared with observation. The predicted WY index is also
weaker than observed after mid-May.

3. The possible physical causes of biases are explored by
using an MV_EOF analysis method. The abrupt change

FIGURE 16 Same as Figure 15,

except for multivariate EOF analysis

based on the biases of skin temperature

and 850-hPa wind
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in the biases of winds, precipitation, and surface tem-
perature is captured by the first two MV_EOF modes.
The first mode shows a transition from a negative phase
to a positive phase in mid-May. Associated with the pos-
itive phase beginning in mid-May, the first mode is fea-
tured by weaker South Asian summer monsoon and
WPSH compared to observations. The fundamental
change depicted in the first mode also occurs around
the split time mentioned above. The second EOF mode
indicates an initial increasing tendency and then a
decreasing tendency with a change in mid-May. The
biases associated with this mode gradually intensify
before the strongest SCSSM occurs and the WPSH fully
dominates over the NWP, and weaken as the SCSSM
and WPSH move northward. The positive phase fea-
tures a strong WPSH over the NWP and a strong mon-
soon over South Asia. The transition from negative
phase to positive phase in mid-April also corresponds to
the split time when the WY index changes from nega-
tive phase to positive phase.

It is also found that the westerly wind in DERF2.0 is
weaker than observation over most East Asia during the
spring-to-summer transition, which results in less water
vapours transported by westerly and southwesterly flows
to eastern China in the model. It may be one of the lead-
ing causes of the weakly predicted precipitation over the
East Asian monsoon region. The negative deviation of
forecasted temperature over the TP and its surrounding
regions is greater than that over the oceans to the east
and south, which may affect the prediction of the inten-
sity of monsoon circulation. Therefore, the biases of over-
estimated or underestimated monsoon precipitation by
the DERF2.0 may be due to the influence of winds and
surface temperature. Furthermore, are there any other
causes for the errors of model simulations? How are they
responsible for the performance of the rainfall forecast?
To what extent can the conditions of local sea/land–
atmosphere interactions and large-scale circulation pat-
tern be skillfully reproduced?

Models' biases are associated with not only the initial
errors but also the deficiency of models themselves. It is
also found that there exist apparent spatial and temporal
dependences on the proportion of the two (Lee and
Krishnamurthy, 2010). In addition to the instability of
the atmospheric system itself, the error growth of numer-
ical prediction will amplify the initial error, plus another
reason, that is, the increase in external error caused by
model subsidence. All these problems need further inves-
tigations into the model's physical processes, land–sea–
atmosphere interactions, and the effects of topography
and sea temperature on the initial fields in order to
improve both the model itself and its prediction skill.
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