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ABSTRACT

With the increasing availability of  precipitation radar data from space,  enhancement of  the resolution of  spaceborne
precipitation observations is important,  particularly for hazard prediction and climate modeling at local scales relevant to
extreme precipitation intensities and gradients. In this paper, the statistical characteristics of radar precipitation reflectivity
data  are  studied  and  modeled  using  a  hidden  Markov  tree  (HMT)  in  the  wavelet  domain.  Then,  a  high-resolution
interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information. Owing to
the  small  and  transient  storm elements  embedded  in  the  larger  and  slowly  varying  elements,  the  radar  precipitation  data
exhibit distinct multiscale statistical properties, including a non-Gaussian structure and scale-to-scale dependency. An HMT
model can capture well the statistical properties of radar precipitation, where the wavelet coefficients in each sub-band are
characterized  as  a  Gaussian  mixture  model  (GMM),  and  the  wavelet  coefficients  from the  coarse  scale  to  fine  scale  are
described  using  a  multiscale  Markov  process.  The  state  probabilities  of  the  GMM  are  determined  using  the  expectation
maximization method, and other parameters, for instance, the variance decay parameters in the HMT model are learned and
estimated  from high-resolution  ground  radar  reflectivity  images.  Using  the  prior  model,  the  wavelet  coefficients  at  finer
scales are estimated using local Wiener filtering. The interpolation algorithm is validated using data from the precipitation
radar  onboard  the  Tropical  Rainfall  Measurement  Mission  satellite,  and  the  reconstructed  results  are  found to  be  able  to
enhance the spatial resolution while optimally reproducing the local extremes and gradients.
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Article Highlights:

•  The HMT model can capture multiscale statistics of radar reflectivity, including a non-Gaussian structure and interscale
dependency.

•  The variance decay and multiscale  processes  controlling parameters  in  the  HMT model  can be  estimated from ground
radar reflectivity images.

•  Wavelet-based  interpolation  with  the  HMT model  as  prior  information  can  recover  small-scale  features  of  spaceborne
radar reflectivity data.

 

 
 

1.    Introduction

Precipitation  is  a  key  component  of  the  water  cycle,

and observations of precipitation have played a key role in
meteorology  and  hydrology  (Sorooshian  et  al.,  2011).
Global precipitation measurement with high spatiotemporal
resolution  is  important  for  various  applications,  including
water  resource  management,  numerical  weather  prediction,
climate modeling at local scales, and flash flood forecasting
(Wang  and  Wolff,  2009; Prakash  et  al.,  2016; Skofronick-
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Jackson  et  al.,  2017; Kou  et  al.,  2018).  The  precipitation
radar  (PR)  onboard  the  Tropical  Rainfall  Measuring  Mis-
sion  (TRMM)  satellite  was  the  first  space-based  weather
radar,  and  the  availability  of  spaceborne  PR data  has  been
highly beneficial  for observations of precipitation (Kozu et
al., 2001). Following the success of the TRMM satellite, the
Global Precipitation Measurement (GPM) core satellite was
launched in February 2014 and started its observations (Hou
et al., 2014). A constellation of nine satellites for the GPM
mission promises to provide observations of high precision
precipitation and cloud dynamics at a global scale with a 3-
h revisiting time, which creates opportunities for improving
climate  modeling  and  disaster  prediction  at  local  scales.
Spaceborne  radar  is  vital  for  global  precipitation  measure-
ments,  particularly  for  regions  in  which  high-resolution
ground radars (GRs) are absent,  or  in mountainous regions
where  radar  blockage  is  a  severe  problem  (Kozu  et  al.,
2001; Ebtehaj et al., 2012; Skofronick-Jackson et al., 2017).
However,  the  low  horizontal  resolution  (4  km  ×  4  km  or
5  km  ×  5  km)  of  spaceborne  radars  limits  their  use  for
small-scale precipitation observation applications such as dis-
aster  prediction  and  warning,  as  well  as  detailed  informa-
tion on extremes that could be used in a data assimilation set-
ting or in climate modeling. Therefore, obtaining high-resolu-
tion data on the small-scale variability of precipitation from
space continues to present a challenge both in a theoretical
and practical sense.

Interpolation is a widely used method for increasing the
data resolution in order to obtain more detailed information
(Gonzalez  and  Woods,  2007; Demirel  and  Anbarjafari,
2011; Azam et al.,  2014; Chavez-Roman and Ponomaryov,
2014). Conventional data interpolation methods, such as lin-
ear,  bicubic,  or  Cressman  interpolation,  are  the  most  com-
mon spatial domain interpolation methods of weather radar
data  and have the advantage of  high speed but  suffer  from
staircase  effects  and  blurring  due  to  the  band  limit  con-
straints. A number of methods have been proposed to over-
come  the  shortcomings  of  these  spatial  domain  interpola-
tion  methods  based  on  low-pass  filtering  (Deidda,  2000;
Tao  and  Barros,  2010; Chavez-Roman  and  Ponomaryov,
2014; Ruzanski and Chandrasekar, 2015; Jiao et al., 2016).
Jiao  et  al.  (2016) proposed  an  interpolation  method  for
weather radar data based on Fourier spectrum analysis. Ruz-
anski and Chandrasekar (2015) performed temporal interpola-
tion of meteorological radar data using a kernel-based Lag-
rangian nowcasting technique with a fast Fourier transform.
Tao et al. (2010) used fractal interpolation to enhance the res-
olution  of  satellite  precipitation  products  based  on  iterated
function  systems  and  fractal  Brownian  surfaces.  However,
the key geometrical and statistical properties of radar precipit-
ation observations have not been explored or included in spa-
tial interpolation algorithms.

The  spatial  and  temporal  variabilities  of  precipitation
exhibit  distinct  statistical  space–time  structures  at  multiple
scales  (Perica  and  Foufoula-Georgiou,  1996; Harris  et  al.,
2001; Ebtehaj  and  Foufoula-Georgiou,  2011).  Such
multiscale statistical characteristics have been studied using

several  approaches  in  the  frequency  and  wavelet  domain,
such as the theory of multifractals,  multiplicative cascades,
exponential Langevin-type models, and the cascades of Gaus-
sian-scale mixtures (Badas et al., 2006; Deidda et al., 2006;
Gupta et al., 2006; Venugopal et al., 2006; Sapozhnikov and
Foufoula-Georgiou,  2007; Ebtehaj  and  Foufoula-Georgiou,
2011). These multiscale representations have proven to be use-
ful  for  quantifying  the  precipitation  variability  at  multiple
scales and can be exploited as prior information. In view of
the sparseness of precipitation in the wavelet domain, Ebte-
haj et al. (Ebtehaj et al., 2012, Ebtehaj and Foufoula-Geor-
giou,  2013)  recast  precipitation  downscaling  into  an  ill-
posed  inverse  problem  and  estimated  the  high-resolution
information  with  regularization.  Based  on  the  non-Gaus-
sian and local coherent structure of radar reflectivity data in
the wavelet domain, Kou et al. (2019) proposed an interpola-
tion algorithm for radar reflectivity data using the Gaussian-
scale mixtures model.

Small-scale variability is important for accurate predic-
tion  and  warning  of  heavy  precipitation.  In  this  study,  the
multiscale statistical characteristics of radar reflectivity data
are studied and modeled using a hidden Markov tree (HMT)
in  the  wavelet  domain.  A  high-resolution  interpolation
algorithm  for  spaceborne  radar  reflectivity  based  on  the
HMT model is proposed to enhance the resolution and repro-
duce the small-scale detailed information. First, the character-
istics  of  the  thicker-than-Gaussian  structure  and  interscale
dependency  of  the  radar  reflectivity  data  are  studied,  and
these  characteristics  are  matched  using  the  HMT  model.
Then,  the  variance  decay  and  multiscale  processes  con-
trolling  parameters  across  different  scales  in  the  HMT
model  are  learned  and  estimated  from  a  set  of  matched
high-resolution GR reflectivity images dominated by convect-
ive precipitation. Furthermore, a Wiener filter is applied loc-
ally  to  each  sub-band  to  obtain  the  fine-scale  coefficients.
Finally,  high-resolution satellite  reflectivity data  are  gener-
ated with an inverse wavelet transform. Case studies are con-
ducted for the proposed method to prove that it can capture
and reproduce the small-scale details of the spatial distribu-
tion of precipitation, such as sharp variations and extreme val-
ues.

2.    HMT modeling for radar reflectivity

2.1.    Statistical characteristics of modeling in the wavelet
domain

Because of the high precipitation intensity embedded in
the lower intensity regions, large gradients and discontinuit-
ies  are  present  in  precipitation  echoes.  In  other  words,  the
probability  distribution  of  the  precipitation  reflectivity  in
the  derivative  space  (e.g.,  the  wavelet  domain)  has  a  large
mass around zero (nearby pixels with similar values) and a
few  heavy  values  (steep  gradients),  thereby  representing  a
heavy-tailed non-Gaussian distribution. In addition, the evolu-
tion of precipitation from coarse to fine scale often displays
self-similarity, which can be considered as a self-similar mul-
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tifractal  process  (Deidda,  2000; Deidda  et  al.,  2006).  Prior
information about these multiscale statistics of precipitation
is important for reproducing the desired properties of precipit-
ation fields.

For  remotely  sensed  precipitation  data  obtained  by
ground or spaceborne radar, some common statistical proper-
ties and mathematical signatures exist that can be character-
ized  and  exploited  for  precipitation  modeling  and  further
applications  (Ebtehaj  and  Foufoula-Georgiou,  2011;
Foufoula-Georgiou  et  al.,  2014).  The  wavelet  transform
using  a  multiresolution  analysis  framework  can  represent
well the multiscale processes of precipitation, and it is use-
ful for quantifying the rainfall variability at multiple scales
(Willsky, 2002; Azam et al., 2014). With prior modeling of
wavelet coefficients of radar reflectivity data, the estimated
finer wavelet coefficients can effectively recover the essen-
tial properties of the reflectiviy data.

Before  studying  the  statistical  characteristics  of  the
radar reflectivity data, the data from the TRMM PR and the
GR were  quality  controlled  and  spatiotemporally  matched.
The level II algorithm of the TRMM PR profile (2A25) was
used,  which  includes  ground  clutter  filtering,  attenuation
and  beam  filling  correction  (Kozu  et  al.,  2001).  The  GR
data from the ground Doppler radar at Longwang Mountain
(32.1908°N, 118.6969°E) in Nanjing city, China, were pro-
cessed  with  anomalous  propagations  and  ground  clutter
removal using the NCAR SOLO II algorithm. Using the res-
ults in Zhu et al. (2016) that employed 245 TRMM PR and
Nanjing  GR  matchup  cases  to  determine  the  calibration
biases, the system calibration bias of the Nanjing GR was cor-
rected by adding a bias adjustment. The temporal matching
was  carried  out  with  a  6-min  window  centered  on  the
TRMM PR overpass time. The spatial matchup scheme was
based  on  the  grid  matching  method  (Liao  and  Meneghini,
2009), in which both sets of data were interpolated to a com-
mon 3D Cartesian coordinate system. The gridded GR data
were interpolated from the GR spherical coordinate system
centered  at  the  GR  using  a  cubic  linear  interpolation
algorithm,  with  a  vertical  resolution  of  about  1  km  to  a
height of 20 km and a horizontal resolution of about 1 km to
a horizontal  extent of ±150 km. The TRMM PR data were
also resampled into Cartesian coordinates with a horizontal
resolution of 4 km, and the displacement of the PR samples
was  corrected  as  well  (Wang and  Wolff,  2009; Kou et  al.,
2018).

After  data  preprocessing,  the  statistical  characteristics
of the high-resolution radar reflectivity data, including non-
Gaussian marginal statistics and scale-to-scale dependency,
were first studied with convective precipitation cases. Then,
the intrascale and interscale statistical characteristics of the
reflectivity data were matched using the HMT model. In the
wavelet domain of the HMT model, the distribution densit-
ies of the wavelet coefficients were approximated by a Gaus-
sian  mixture  model  (GMM),  and  the  dependencies  of
multiscale  wavelet  coefficients  were  represented  by  a
Markov  process  and  state  transition  parameters  (Crouse  et
al., 1998; Romberg et al., 2001; Li et al., 2010).

The radar data used in this paper are the reflectivity at a
height of 3 km in Cartesian coordinates,  and a shift-invari-
ant  undecimated  orthogonal  wavelet  transform  and  Haar
wavelet were used for wavelet decomposition (Nason and Sil-
verman,  1995). Figure  1a shows  the  spaceborne  radar
reflectivity  image  at  3  km  height  from  TRMM  PR  at
0456:41 UTC 27 May 2008, and Fig. 1b shows the coincid-
ental high-resolution GR CAPPI (Constant Altitude Plan Posi-
tion  Indicator)  at  0459:00  UTC. Figure  1c shows  the  mar-
ginal probability distribution on the log scale of the wavelet
coefficient  in  the horizontal  sub-band of  the image presen-
ted in Fig. 1b, and Fig. 1d is the corresponding statistical his-
togram of the horizontal wavelet coefficient. It can be seen
from Fig.  1d that  the  wavelet  coefficient  of  the  precipita-
tion  image  has  heavy  tail  that  is  significantly  thicker  than
those of a Gaussian distribution; this usually corresponds to
the heavy precipitation gradients and intensities.

Figure 2 shows another convective precipitation image
obtained  by  the  Nanjing  GR  at  0530:00  15  August  2010.
Figure  2b shows  the  wavelet  coefficients  in  the  horizontal
band of the radar reflectivity data presented in Fig. 2a, and
Fig.  2c is  the  corresponding  probability  distribution  of  the
wavelet  coefficients,  where  the  asterisk  denotes  the  histo-
gram. It can be seen that the histogram is also significantly
different  from  a  Gaussian  distribution,  with  much  heavier
tails than those of a Gaussian function.

This heavy-tail property implies that most wavelet coeffi-
cients  contain  very  little  information,  while  a  few  wavelet
coefficients  represent  significant  information.  The  Gaus-
sian  mixture  distribution  can  be  employed  to  characterize
the non-Gaussian marginal statistics and the heavy-tail proper-
ties of the radar reflectivity: 

f (wi) =
M∑

m=1

Psi (m) fwi |s (wi |si = m) , (1)

Psi (m)

fwi |s (wi |si = m)

where si is the state m of the ith coefficient wi, and  rep-
resents  the  probability  that  the  wavelet  coefficient wi

belongs to the state m;  is the Gaussian condi-
tional  probability  distribution  function  (PDF). Figure  3
shows the two-state,  zero-mean mixture model by the PDF
of the state variable s (s = 0 or 1), and the variances of the
Gaussian PDF corresponding to each state. For M = 2, each
state  is  modeled  as  one  of  two  states:  “1 ”  represents  the
“high” state corresponding to a wavelet atom with high vari-
ance  and  significant  signal  energy,  and  “0 ”  denotes  the
“low” state corresponding to a wavelet atom with low vari-
ance and little signal information. The results shown in Fig. 3
correspond to a two-state GMM. In the GMM, the value of
the coefficient w is observed, but the value of the state vari-
able s is hidden, which should be estimated.

The  black  solid  line  in Fig.  1d is  the  fitted  two-state
GMM  distribution  (on  the  log  scale)  obtained  using  the
expectation  maximization  (EM)  algorithm  (Figueiredo  and
Nowak, 2003), where the asterisks denote the original probab-
ility distribution of wavelet coefficients. The fitted GMM dis-
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tribution is 0.56N(0, 0.583) + 0.44N(0, 8.2958), where N(0,
0.583)  represents  the  Gaussian  distribution  function  with
mean  0  and  variance  0.583.  The  coefficient  of  determina-
tion of the fitted line is 0.9872, and it can be seen from Fig. 1d
that the GMM distribution can capture well  the sharp peak
and  heavy  tail  of  the  precipitation  image  in  the  wavelet
domain. By increasing the number of states, the arbitrary prob-

ability densities can be generated with a finite number of dis-
continuities.  However,  a  GMM  with  more  than  two  states
may  possess  the  problem  of  slow  convergence  speed  and
strong  dependence  on  initial  values,  and  it  is  easy  to  cap-
ture  some  local  optimal  values.  Developing  an  optimized
algorithm for a GMM with more states is a topic for further
research. The two-state, zero-mean GMM is simple, robust,

 

 

Fig.  1.  (a)  Radar  reflectivity  image from TRMM PR obtained at  0456:41 UTC 27 May 2008,  (b)  the coincidental
reflectivity image captured by the GR in Nanjing at 0459:00 UTC, (c) wavelet coefficients in the horizontal sub-band
of  the  reflectivity  image  in  (b),  and  (d)  the  corresponding  log  histogram  (asterisks)  of  the  wavelet  coefficients
normalized by the standard deviation. A heavier tail than the Gaussian distribution [dotted line in (d)] is clear in the
precipitation reflectivity image in the wavelet domain, and the solid line in (d) is the fitted GMM distribution with
the EM algorithm.

 

 

Fig. 2. (a) Radar reflectivity image of another precipitation case in Nanjing obtained at 0530:00 15 August 2010, (b)
wavelet  coefficients  in  the  horizontal  sub-band  of  the  reflectivity  image  in  (a),  and  (c)  the  corresponding  log
histogram (asterisks) of the wavelet coefficients normalized by the standard deviation.
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and  easy  to  use,  which  are  attractive  features  for  applica-
tions. In this study, a two-state GMM is employed.

In addition to the non-Gaussian and heavy-tail  proper-
ties of the precipitation reflectivity, the data exhibit an evid-
ent  interscale  dependency  because  the  precipitation  fluctu-

ations  are  similar  across  scales  and  the  wavelet  transform
does  not  completely  decorrelate  the  precipitation  images.
Figure 4 shows the 2D joint  and conditional  histograms of
the  wavelet  coefficients  in  the  horizontal  sub-band  for  the
reflectivity  image  presented  in Fig.  1b.  The  shape  of  the

 

 

Fig. 3. Two-state, zero-mean GMM for a random variable used to generate a non-Gaussian probability distribution,
where s = 0 or 1 denotes the state 0 or 1, f(w|s=0 or 1) is the Gaussian distribution under state 0 or 1, and f(w) is the
generated non-Gaussian distribution.

 

 

Fig. 4. Joint histogram of the (a) horizontal, (b) vertical and (c) diagonal wavelet coefficients of the precipitation reflectivity
image  in Fig.  1b,  and  (d–f)  the  corresponding  conditional  histograms.  The  shape  of  the  joint  histograms  shows  that  the
conditional probability of scale 2 given scale 1 is not uniform and that a high-order dependency exists. The bowtie shape of
the conditional histograms demonstrates the interscale dependency, and the tilted shape indicates a nondiagonal covariance
structure.
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joint histograms in Figs. 4a–c indicates the conditional prob-
ability of scale 2 given that scale 1 is not uniform and that a
high-order dependency exists. The shape of the conditional
histograms in Figs. 4d–f indicates that the variance of scale
2 depends on the magnitudes of scale 1, and larger variance
of  scale  1  gives  rise  to  scale  2  with  larger  variance.  The
tilted bowtie shapes of the horizontal and vertical sub-bands
in Figs. 4d and e also represent the presence of off-diagonal
nonzero elements  on the covariance matrix of  the scale-to-
scale coefficients.

ρ(i)

The  marginal  non-Gaussian  distribution  and  scale-to-
scale Markovian dependencies lead to practical HMT model-
ing  for  the  precipitation  reflectivity  wavelet  coefficients.
The structure of the HMT model is shown in Fig. 5, where
the solid points represent the wavelet coefficients and the hol-
low  points  denote  the  states  of  the  coefficients.  For
example, w1 is the wavelet coefficient at the root node and
its state is indicated as s1. Every node can be related to the
nodes at coarser and finer scales; in particular, the node 
is the parent of node i.

ρ (i)

The  Markov  tree  structure  shown  in Fig.  5 has  two
implications.  First,  the  state  of  the  wavelet  coefficients  at
any node i depends on the state of the coefficients at the par-
ent node ,  and the dependence can be described by the

conditional probability: 

Psρ(i) |si

(
sρ(i) = m

∣∣∣si = n
)
, (2)

m ∈ {0,1} , n ∈ {0,1}where .  Second,  the  wavelet  coefficient
representation  in  a  quadtree  structure  of  a  multiscale
Markov  process  can  be  expressed  as  a  stochastic  process
evolving from the coarse scales to the fine scale according
to 

w(i) = A(i)w(ρ(i))+B(i)e(i) , (3)

ΣB(i)

where A(i) and B(i) are the parameters that control the scale-
to-scale  variability  of  the  process, e(i)~N(0,1)  is  the  Gaus-
sian  white  noise,  and  the  term B(i)e(i)  is  called  “process
noise” with covariance .

2.2.    Model parameter estimation

It  is necessary to estimate three types of parameters in
the  HMT  model—namely,  the  state  decision,  variance  of
Gaussian distribution, and multiscale process controlling para-
meters. First, the state probabilities of the GMM for the ori-
ginal  (coarser  scale)  wavelet  coefficients  are  estimated
using the EM algorithm. Using the estimated state probabilit-
ies, the state of the parent coefficient is then determined by

 

 

ρ(i)

Fig. 5. Quadtree structure used to represent the HMT model, where the black
node denotes the wavelet  coefficient wi and the white  node denotes its  state
variable s;  in particular, w1 and s1 are coefficients and their  state at  the root
node.  In  the  representation,  the  GMM  is  used  as  the  PDF  for  each  wavelet
coefficient, and every node is related to nodes at the coarser and finer scales
(Markov dependency). For example, the state and coefficient at node i depend
on its parent node .

1364 HMT MODELING AND INTERPOLATION IN WAVELET DOMAIN VOLUME 37

 

  



calculating the expectation of the states within a local win-
dow: 

E[sρ(i)] =
∑

m

mP(sρ(i) = m) , (4)

 

P
(
sρ(i) = m

)
=
∑

m

P
(
sρ(i) = m |si = n

)
P (si = n) . (5)

E[sρ(i)] ⩾ 0.5
Considering  the  intrascale  dependence  of  precipitation

coefficients,  a  5 × 5 window is employed.  If ,
the parent coefficient belongs to state 1, and if not, state 0 is
selected. The conditional state transition probability can be
learned from a set of similar GR data, or the universal HMT
parameters given by Romberg et al. (2001) can be used.

After the decision of the state, the variance of the Gaus-
sian probability distribution is the next important parameter
to be estimated. This parameter determines the precision of
the shape of the GMM and the estimation of coefficient val-
ues.  Due  to  the  multifractal  behavior  and  self-similarity  of
wavelet  coefficients  across  scales  (Deidda  et  al.,  2006;
Venugopal et al., 2006), the magnitude of variances decays
exponentially as they are from coarse scales to finer scales.
The  relationship  between  the  variances  of  consecutive
scales can be described by 

E[|wm, j|2] = 2αm E[|wm, j−1|2] , (6)

m ∈ {0,1} αmwhere j denotes the scale, , and  are the exponen-

tial decay constants.

αm

α0 α1

Decomposing  the  precipitation  reflectivity  images  at
four levels (j = 1–4), the parameters  can be estimated by
least-squares fitting. Figure 6 shows the evolution of the vari-
ance of the horizontal sub-band wavelet coefficients across
scales,  where Fig.  6a is obtained using the reflectivity data
presented in Fig. 1b, and Fig. 6b is obtained using another pre-
cipitation case shown in Fig. 2a. The variance decay in the
horizontal sub-band is measured with a log-scale plot of the
variance versus scale for each state and total points, and the

 and  parameters  of  the  scaling  law are  3.18  and  2.61
for Fig. 6a, and 3.07 and 2.56 for Fig. 6b.

αm

αm

αm

The  vary in a finite range for different precipitation
reflectivity  images,  enabling  us  to  fix  to  the  average
value  obtained  from  a  set  of  GR  convective  precipitation
reflectivity images. Using 14 matched Nanjing GR datasets
obtained between 2008 and 2010 and dominated by convect-
ive precipitation, the average and the interval of the  val-
ues  are  estimated,  as  summarized  in Table  1 for  all  of  the
sub-band coefficients.  This  similarity  reflects  the statistical
similarity of the precipitation images in the wavelet domain
that is beneficial for the parameterization and is exploited as
prior information.

After  the  Gaussian  mixture  probability  distribution
prior model is obtained, the finer-scale wavelet coefficients
of radar reflectivity can be estimated in a multiscale frame-
work using Eq. (3). It can be seen from Fig. 4 that the para-
meters A(i) depend on the state covariances ∑ρ(i) and scale-

α0 α1

αm αm

Table 1.   Estimated decay parameters of variances for state 0 ( ) and state 1 ( ) at different orientations (H, horizontal; V, vertical; D,
diagonal). The  (m = 0 or 1) vary in a finite range for different precipitation reflectivity images, and the average value of  obtained
with 14 matched Nanjing GR data dominated by convective precipitation for 2008–10 is used.

H V D

α0 3.1151 (3.0477–3.2701) 3.0919 (3.0170–3.2545) 3.8094 (3.7735–3.9369)
α1 2.5803 (2.4555–2.7211) 2.5022 (2.4738–2.5814) 2.7362 (2.6437–2.9221)

 

 

Fig.  6.  Scaling  law  (in  log  form)  of  the  horizontal  sub-band  wavelet  coefficients  across  scales  for  the  Nanjing  GR
precipitation  reflectivity  image  obtained  at  0456:41  UTC  27  May  2008  (a)  and  for  the  precipitation  image  obtained  at
0536:00 UTC 15 August 2010 (b). Variance decay across scales (in log-log scale) for states 0 and 1 follow a linear law and
can be used to characterize the evolution of the GMM distribution in the HMT model.
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to-scale cross covariances ∑(i,ρ(i)): 

A(i) =
∑

(i,ρ(i))∑
ρ(i)
. (7)

The B(i) can be estimated from the difference between
the  fine-scale  wavelet  coefficient  and the  coefficient  at  the
next  coarser  scale  of  the  high-resolution  GR  reflectivity
image, 

B(i) =
√

Var(w (i))−Var(w (ρ (i))) , (8)

where  Var(w(i))  denotes  the  variance  of  the  coefficients
w(i). B(i)  is  a  function of  scale,  and the  calculation should
include the variance exponent decay across the scales.

3.    Description of the interpolation algorithm

The estimation of the unknown wavelet coefficients in
high-frequency  sub-bands  from  coefficients  in  lower  sub-
bands  is  the  key  issue  for  interpolation  in  the  wavelet
domain.  In  contrast  to  traditional  interpolation  methods,
such  as  bilinear  interpolation,  which  inherently  assume
smoothness  constraints,  the  wavelet  transform decomposes
the  signal  in  different  directions,  which  may  preserve  and
reproduce  the  edges  and  local  regularities  (Demirel  and
Anbarjafari, 2011; Azam et al., 2014). For precipitation, and
in particular for heavy convective precipitation, the sharp vari-
ation  features,  extreme  values,  and  singularities  are  very
important, because these features are relevant for hazard warn-
ing  and  forecasting.  These  features  in  the  precipitation
images typically correspond to the edges or boundaries in dif-
ferent  directions  between  the  wetted  areas  and  the  back-
ground,  or  between  the  high-intensity  regions  and  the
lower-intensity  areas.  The information about  these  features
of precipitation can be obtained using a multiscale wavelet
framework and statistical characteristics modeling.

The proposed interpolation algorithm will  first  capture
and characterize the non-Gaussian structure (e.g., sharp vari-
ation and singularity) and interscale dependency (e.g., similar-
ity across scales) of the radar reflectivity data, based on the
multiscale wavelet analysis and HMT modeling. This charac-
terization and HMT modeling are then used to estimate the
value of the wavelet coefficients at the finest scale. The para-
meters  of  the  HMT  model  will  be  estimated  according  to
the description in section 2.2. Using the estimated paramet-
ers  in  the  HMT  model,  the  fine-scale  wavelet  coefficients
for spaceborne radar can be generated according to Eq. (3)
with  Wiener  filtering.  The  flow chart  of  the  wavelet-based
interpolation of spaceborne radar reflectivity data based on
the HMT model is shown in Fig.7.

The algorithm can be summarized as follows:
A set of matched GR reflectivity images dominated by

convective  precipitation  is  decomposed  with  a  shift-invari-
ant  undecimated  orthogonal  wavelet  transform  and  Haar
wavelet  base,  from  which  the  multiscale  wavelet  coeffi-
cients  in  horizontal,  vertical,  and  diagonal  sub-bands  are

obtained.
Due to the local coherence of the wavelet coefficients,

the  wavelet  coefficients  in  each  sub-band  are  divided  into
overlapping 5 × 5 local windows.

Psi (m)

P
(
sρ(i) = m |si = n

)
m ∈ {0,1}

The parameters of the state probabilities  are estim-
ated from the original spaceborne radar image using the EM
algorithm,  and  the  conditional  state  transition  probabilities

 in  the  HMT  model  of  wavelet  coeffi-
cients are estimated from the GR reflectivity images, where

.

αm

Based  on  the  interscale  dependence  of  wavelet  coeffi-
cients across scales, the self-similarity index of the  of vari-
ance evolution, the transition matrix A(i), and process noise
B(i),  are  calculated  from  the  GR  precipitation  reflectivity
images.

Due to the undecimated processing of the wavelet trans-
form  used  to  avoid  the  aliasing  effect,  the  spaceborne  PR
reflectivity  images  are  interpolated  using  a  bilinear
algorithm  to  ensure  that  the  pixel  size  of  the  interpolated
spaceborne  PR  image  is  the  same  as  that  of  the  expected
high-resolution image.

The  interpolated  spaceborne  radar  reflectivity  images
are  decomposed,  and  the  wavelet  coefficients  in  each  sub-
band are divided with an overlapping 5 × 5 window. Then,
the elements  of  a  neighborhood of  the wavelet  coefficients
are stacked according to a fixed order into a vector form y.

Σm

Using the prior HMT model parameters,  the state m is
determined  using  Eqs.  (4)  and  (5),  and  the  wavelet  coeffi-
cient vector x at finer scale is estimated locally according to
Eq. (9) using Wiener filtering for every neighborhood loca-
tion that slides over the entire sub-band domain. In Eq. (9),

 denotes  the  covariance  matrix  of  the  wavelet  coeffi-
cients belonging to the state m: 

x = Σm AT(AΣm AT+ΣB)−1y . (9)

For all overlapping areas, the estimated coefficients are
averaged  to  obtain  the  final  wavelet  coefficients  at  high-
pass  sub-bands.  The  high-resolution  spaceborne  PR  image
is obtained with the estimated wavelet coefficients using an
inverse wavelet transform.

It is worth noting that the background effect of rainfall
fields is significant. At each level of the wavelet decomposi-
tion, due to the convolution of the field with the wavelet scal-
ing function, a set  of zero values next to edges of the wet-
ted  areas  becomes  nonzero  and  subsequently  the  areas  of
nonzero  pixels  progressively  grow  from  fine  to  coarse
scales.  For  resolving  this  issue,  the  background  pixels
(zeros)  of  the  coarse  resolution  spaceborne  radar  image
remain zero in the finer scale image.

4.    Results from the case studies

There are inherent differences in the reflectivity of the
two instruments (TRMM PR and GR) owing to their differ-
ent  frequencies,  sampling  characteristics,  sample  volumes,
and so on (Wang and Wolff, 2009; Warren et al., 2018). For
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merely  considering  the  interpolation  method  itself,  a  case
from the Nanjing GR on 25 July 2011 that was not included
in  the  GR  training  dataset  was  firstly  selected  to  demon-
strate the effectiveness of the proposed algorithm. The ori-
ginal GR data at 1 km × 1 km (Fig. 8a) were downgraded to
4 km × 4 km low-resolution observations via a simple box-
averaging of size 4 × 4,  followed by downsampling with a
factor  of  4.  The  resulting  low-resolution  field  is  shown  in
Fig. 8b, and it can be considered to be the field that would
be available to us from a satellite sensor. By using the prior
HMT modeling in the wavelet domain, a high-resolution inter-
polation  reflectivity  field  (from  4  km  ×  4  km  to  1  km  ×
1  km)  is  generated  in Fig.  8d.  For  comparison,  the  result
with bilinear interpolation is shown in Fig. 8c. The results in
Fig.  8 show  that,  due  to  the  explicit  consideration  of  the
heavy-tail  nature  and  interscale  dependent  structure  of  the
wavelet coefficients of the precipitation reflectivity data, the
proposed  method  can  reproduce  the  spatial  correlation  of

the precipitation images while accounting for the non-Gaus-
sian marginal statistics and heavy-tail features. This result is
promising  in  that  it  demonstrates  the  method  can  recover
the high-frequency features and estimate the small-scale struc-
tures  of  the  precipitation  image  of  interest  for  a  relatively
coarse-scale observation.

Table 2 presents a statistical comparison of the images
in Fig.  8 in  terms  of  several  quantitative  parameters—
namely,  the  mean  error  (MEAN),  the  root-mean-square
error  (RMSE),  the  peak  signal-to-noise  ratio  (PSNR),  and
the  Kullback–Leibler  divergence  (KLD).  These  parameters
are calculated as follows (Gonzalez and Woods, 2007): 

MEAN = ∥ f − f0∥1/N , (10)
 

RMSE = ∥ f − f0∥2/
√

N , (11)
 

PSNR = 20lg
[
max( f )/RMSE

]
, (12)

 

 

 

Fig.  7.  Flow  chart  of  the  wavelet-based  interpolation  for  spaceborne  radar
reflectivity with the HMT model as prior information.
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KLD =
∑

i

p f0 (i) ln
[
p f0 (i)/p f (i)

]
, (13)

∥ f∥1 ∥ f∥2
p f0 (i) p f (i)

where  denotes  the l1-norm,  denotes  the l2-norm,
and  and  are the discrete probabilities of the true
data (f0) and the estimated data (f). The original high-resolu-
tion  GR  image  is  used  as  the  reference f0.  In Table  2,  the
PSNR (in units of dB) represents a measure that not only con-
tains  the  RMSE  but  also  encodes  the  recovered  range,
which reflects the closeness of the estimated values to the ref-
erence data, so that a high PSNR value indicates a high qual-
ity  reconstructed  image.  The  KLD  is  the  relative  entropy,
which  represents  the  relative  degree  of  closeness  between

two  probability  distributions  in  terms  of  their  entropy,
where smaller values signify a stronger degree of similarity.
It  can be seen from Table 2 that the proposed method pro-
duces  a  high-resolution  precipitation  field  that  is  closer  to
the  original  high-resolution  GR field  and  can  better  repro-
duce the extreme intensities and local gradients with larger
PSNR  and  smaller  KLD.  Compared  to  bilinear  interpola-
tion, the PSNR of the image with HMT modeling in the wave-
let  domain  shows  improvement  on  an  order  of  3  to  4  dB,
and  the  KLD  index  has  an  improvement  of  about  60%–
70%.

For  demonstrating  the  stability  and  robustness  of  the
algorithm,  more  different  convective  precipitation  cases
from  the  Nanjing  GR  during  the  summer  (from  May  to
September)  of  2011  were  processed  in  similar  way,  as
shown by  the  images  in Fig.  8,  and  the  statistical  compar-
ison results  are  presented in Table  3.  The cases  in Table  3
span a wide range of heavy precipitation with different spa-
tial  structures  and  geometrical  shapes,  ranging  from
clustered  convective  cells  to  frontal  convective  lines.  The
first  column lists  the dates of the precipitation cases.  From
Table 3, it can be seen that the proposed wavelet-based inter-
polation  method  generally  outperforms  the  result  obtained

Table 2.   Error statistics obtained by comparing the original high-
resolution GR precipitation reflectivity image obtained on 25 July
2011  (the  reference)  with  the  bilinearly  interpolated  GR  image
from the smoothed low-resolution GR (GR with bilinear for short)
and that  obtained by HMT prior  modeling in the wavelet  domain
(GR with HMT for short).

MEAN RMSE PSNR KLD

GR with bilinear 1.1242 3.6512 25.4204 0.1028
GR with HMT 0.2834 1.7751 28.8759 0.038

 

 

Fig. 8. Comparisons of radar reflectivity images from the Nanjing GR at 2302:00 UTC 25 July 2011: (a) the original
high-resolution GR reflectivity image at resolution 1 km × 1 km; (b) the coarse-scale image at resolution 4 km × 4
km  generated  by  smoothing  and  downsampling;  (c)  the  GR  image  with  bilinear  interpolation;  and  (d)  the  high-
resolution wavelet-based interpolation result with HMT prior modeling.
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via  bilinear  interpolation.  The  MEAN  decreases  by  about
60% and the RMSE decreases by about 20% on average, by
comparing the results of the proposed method with the res-
ults  of  bilinear  interpolation.  In  terms  of  the  PSNR,  the
HMT method shows improvement on an order of 2 to 4 dB,
and the KLD index is also improved (50%–70%). The wave-
let-based HMT method can better reproduce the small-scale
structures  and variability  features  compared to  the conven-
tional  spatial  interpolation  method,  due  to  the  inclusion  of
prior statistical information, such as the non-Gaussian mar-
ginal  distribution of  convective  precipitation.  Note  that  the
algorithm can  be  used  for  images  at  other  heights  or  from
other radar stations, as long as the model parameters are cor-
rectly estimated. The performance for images at 1 km height
is  similar  to  those  at  3  km  height  in Table  3 (not  shown
here). However, it should also be noted that the algorithm’s
ability  to  properly  reproduce  the  high-resolution  structures
and detailed features may be limited if the original low-resolu-
tion image is too smooth with little high-frequency informa-
tion.

To further demonstrate the application of the HMT mod-
eling  and  the  proposed  wavelet-based  interpolation
algorithm on spaceborne radar reflectivity, two cases of con-
vective precipitation from TRMM PR were selected to evalu-
ate  the  performance  quantitatively. Figure  9 shows  images
for a convective storm that occurred in Nanjing on 27 May
2008. The storm was caused by the joint effects of the east-
ward movement of a low trough in the upper air, low-level
shear, and southward cold air. The storm image obtained by
TRMM PR with  a  resolution  of  4  km × 4  km is  shown in
Fig. 9a, and the coincidental image from the Nanjing GR is
shown in Fig. 9b, with a resolution of 1 km × 1 km. For com-
parison, the TRMM PR image is interpolated using the bilin-
ear method, presented in Fig. 9c. Figure 9d shows the result

obtained  by  the  wavelet-based  interpolation  of  the  TRMM
PR data from the resolution of 4 km × 4 km to the resolu-
tion of 1 km × 1 km using the proposed method with HMT
prior modeling. It can be seen from Fig. 9c that the bilinear
interpolation smooths the image without adequate detailed fea-
tures  of  the  storm  and  extreme  intensity  values,  due  to  its
low-pass  filtering  effect.  The  result  presented  in Fig.  9d
demonstrates  that  the  proposed  method  can  estimate  the
small-scale detailed structures of the precipitation and incor-
porates more information from the TRMM PR data. The 1D
reflectivity data shown in Fig. 9e demonstrate that the curve
of  the  original  TRMM PR image  is  relatively  smooth,  and
the reconstructed curve shows more fluctuations, with the res-
ult  much  closer  to  the  high-resolution  GR  data.  This  con-
firms  that  the  reconstructed  image  can  reproduce  more
detailed information, such as sharp gradients and extreme val-
ues,  compared  to  the  original  low-resolution  TRMM  PR
image.

Table 4 presents a quantitative comparison of the interpol-
ation  results  for  TRMM  PR  in Fig.  9.  Although  the  refer-
ence high-resolution rainfall field is of course not available
in  practical  cases,  and  differences  exist  in  the  reflectivity
from the TRMM PR and the GR, it is instructive to make a
quantitative assessment by comparing the TRMM PR interpol-
ation  results  with  the  spatiotemporally  matched  GR  data
[the reference (f0)]. The reflectivity of the original low-resolu-
tion  TRMM  PR  (Original  PR),  bilinearly  interpolated
TRMM  PR  (Bilinear),  and  wavelet-based  interpolated
TRMM PR with HMT modeling (HMT) methods are com-
pared  to  the  reference  GR  data.  For  comparison,  the  data
pairs are selected in the area where both the TRMM PR and
GR data  are  available.  Note  that  to  compute  the  quantitat-
ive  parameters  of  the  original  low-resolution  observations
of TRMM PR, the size of those fields was extended to the

Table 3.   Error statistics obtained by comparing the original high-resolution GR precipitation reflectivity images (Cases) obtained from
the Nanjing GR during the summer of 2011 with the bilinearly interpolated GR images from the smoothed low-resolution GR (GR with
bilinear for short) and those obtained by HMT prior modeling in the wavelet domain (GR with HMT for short).

Case Methods MEAN RMSE PSNR KLD

20110617
GR with bilinear 1.2530 4.5483 19.9765 0.0981
GR with HMT 0.3849 4.1850 22.5394 0.0484

20110623
GR with bilinear 0.8260 3.3452 23.4702 0.1087
GR with HMT 0.3276 3.6212 27.3611 0.0640

20110711
GR with bilinear 0.9756 3.1947 24.8578 0.0906
GR with HMT 0.2925 1.8755 27.0366 0.0583

20110718
GR with bilinear 1.4812 4.1528 20.4720 0.1138
GR with HMT 0.4198 3.8849 22.6933 0.0752

20110725
GR with bilinear 1.1242 3.6512 25.4204 0.1028
GR with HMT 0.2834 1.7751 28.8759 0.0380

20110811
GR with bilinear 1.5021 4.4328 21.5048 0.1187
GR with HMT 0.5277 3.6794 24.0597 0.0445

20110817
GR with bilinear 0.9565 3.8124 23.9025 0.0899
GR with HMT 0.3014 2.9140 26.2355 0.0341

Average
GR with bilinear 1.1598 3.8768 22.8006 0.1032
GR with HMT 0.3624 3.1336 25.5430 0.0518
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size of  the true field using nearest  neighborhood interpola-
tion.  The  results  in Fig.  9 and Table  3 show  that  the  pro-
posed method produces high-resolution spaceborne radar pre-

cipitation fields that are closer to the structure of the high-res-
olution GR field, and that the HMT method considerably out-
performs  the  simple  spatial  interpolation  method,  such  as

 

 

Fig. 9. Comparisons of the reflectivity images for the case of convective precipitation in Nanjing at 0459:00 UTC 27 May
2008: (a) TRMM PR; (b) GR; (c) TRMM PR image with bilinear interpolation; (d) wavelet-based interpolated TRMM PR
image with HMT prior modeling; (e) reflectivity profiles along the line in (a), where the red, black and blue lines denote the
TRMM  PR  data,  the  GR  data,  and  the  wavelet-based  interpolated  data,  respectively.  For  quantitative  comparison,  please
refer to Table 3.
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the result obtained by bilinear interpolation. Due to the differ-
ence from the two instruments (TRMM PR and GR), from
Table  4 it  can  be  seen  that  the  degree  of  improvement  is
lower  than  the  result  in Table  2.  The  PSNR  of  the  space-
borne radar image reconstructed with HMT modeling shows
an improvement on the order of approximately 2–3 dB, and
the KLD is improved by about 30%.

Figure 10 and Table 5 show the images and the quantitat-
ive statistical results for the case on 17 August 2011, when
the  precipitation  was  not  included  in  the  dataset  for  HMT

Table  4.   Error  statistics  obtained  by  comparing  the  matched
high-resolution GR precipitation reflectivity image obtained on 27
May  2008  (the  reference)  with  the  original  TRMM  PR  image
(Original PR for short),  the interpolated PR image obtained using
the  bilinear  algorithm  (Bilinear  for  short),  and  that  obtained  by
HMT prior modeling in the wavelet domain (HMT for short).

MEAN RMSE PSNR KLD

Original PR 2.8505 5.9736 19.0184 0.1158
Bilinear 2.7900 5.4182 19.7585 0.0951
HMT 1.7818 4.2253 21.9953 0.0781

 

 

Fig. 10. Comparisons of the reflectivity images for the case of convective precipitation in Nanjing at 0815:00 UTC
17  August  2011:  (a)  TRMM  PR;  (b)  GR;  (c)  TRMM  PR  image  with  bilinear  interpolation;  (d)  wavelet-based
interpolated TRMM PR image with HMT prior modeling; (e) reflectivity profiles along the line in (a), where the red,
black and blue lines denote the TRMM PR data, the GR data, and the wavelet-based interpolated data, respectively.
For quantitative comparison, please refer to Table 4.
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modeling. From the interpolation results it can be seen that,
with prior knowledge containing important statistical charac-
teristics such as the non-Gaussian structure of convective pre-
cipitation data,  the high-frequency features  and small-scale
geometrical  structures  can  be  recovered  with  the  proposed
method.  An  examination  of  the  horizontal  profiles  presen-
ted  in Fig.  10e shows  that  the  wavelet-based  interpolated
reflectivity  image  exhibits  obvious  fluctuations  and  gradi-
ents  compared  to  the  low-resolution  TRMM  PR  data,  and
its  structure  is  more  similar  to  the  high-resolution  GR
image.

To  better  illustrate  the  improvement  of  the  statistical
properties of the thicker-than-Gaussian tails of precipitation
gradients,  in Fig.  11 we  compare  the  probability  distribu-
tion of the derivatives in the horizontal direction in terms of
a  Q–Q  plot,  where  the x-coordinates  are  the  standard  nor-
mal quantiles and the y-coordinates are the quantiles of stand-
ardized reflectivity derivatives. All of the PDFs presented in
Fig.  11 differ  strongly  from a  Gaussian  distribution  (black
dashed straight line), and the PDF of the high-resolution GR
data (black dotted line) shows a more obvious heavy tail com-
pared  to  the  PDF  of  the  low-resolution  TRMM  PR  data
(line with red crosses), while the PDF of the wavelet-based
interpolated data with HMT modeling (blue diamonds) is in
between. It can be seen that the wavelet-based interpolation
method with HMT modeling can reproduce the heavy tail of

the  PDF  of  precipitation  gradients,  which  are  thicker  than
those of the TRMM PR PDF. It is clear that the high-resolu-
tion  image  is  much  finer,  and  the  wavelet-based  interpol-
ated image is able to enhance the tails of the low-resolution
precipitation reflectivity and reproduce the high gradients in
the high-resolution precipitation field.

5.    Conclusions

Based on the statistical characteristics of convective pre-
cipitation  reflectivity  data,  an  HMT  model  in  the  wavelet
domain is introduced as prior information. The HMT model
can effectively capture the multiscale structure of the wave-
let  coefficients  of  precipitation,  including  the  heavy-tailed
non-Gaussian  distribution,  interscale  dependency,  and  the
nonlinear  scaling  law (multifractal  behavior).  The  problem
of high-resolution interpolation of spaceborne radar precipita-
tion  data  in  the  wavelet  domain  is  equivalent  to  the  prob-
lem of estimating the coefficients at  finer scales.  The prior
HMT model used to interpolate the spaceborne radar precipita-
tion data in the wavelet domain can improve the resolution
of  precipitation,  while  effectively  reproducing  and  pre-
serving the desired precipitation properties such as extreme
intensities, steep gradients and singularities. Because of the
similar statistical properties and common mathematical signa-
tures  in  the  radar  reflectivity  data,  the  parameters  of  the
prior model can be estimated from a set of available coincid-
ental spaceborne and GR precipitation observations domin-
ated  by  convective  precipitation.  Most  parameters  of  the
prior HMT model, including the conditional state transition
probability,  variance  decaying  parameters,  and  scale-to-
scale  process  controlling  parameters,  are  estimated  from
high-resolution GR data. This is flexible and will be import-
ant for addressing optimal estimation problems such as space-
borne radar data interpolation, physical parameter retrieval,
and multisensor precipitation data fusion.

In this study, a two-state Gaussian mixture distribution
was used in the HMT modeling, which is conditionally Gaus-

Table  5.   Error  statistics  obtained  by  comparing  the  matched
high-resolution GR precipitation reflectivity image obtained on 17
August  2011  (the  reference)  with  the  original  TRMM  PR  image
(Original PR for short),  the interpolated PR image obtained using
the  bilinear  algorithm  (Bilinear  for  short),  and  that  obtained  by
HMT prior modeling in the wavelet domain (HMT for short).

MEAN RMSE PSNR KLD

Original PR 3.2823 7.5839 17.0690 0.0848
Bilinear 2.8304 7.6223 16.8632 0.0754
HMT 2.4350 6.3491 18.0984 0.0523

 

 

Fig.  11.  Quantiles  of  the  standardized  horizontal  derivatives  versus  standard  normal  quantiles,  where  red  crosses,
black circles and blue diamonds denote the original TRMM PR data, the matched high-resolution GR data, and the
wavelet-based  interpolated  TRMM  PR  data  with  HMT  modeling,  respectively:  (a)  precipitation  case  on  27  May
2008; (b) precipitation case on 17 August 2011. The dashed straight line represents Gaussian distribution quantiles.
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sian given another state. The property of the conditional Gaus-
sian  distribution  is  convenient  and  advantageous  for  linear
optimal  estimation  problems.  However,  a  two-state  Gaus-
sian mixture distribution is not sufficiently flexible. A wave-
let-based  HMT  model  with  more  than  two  states,  and  its
application to radar reflectivity data, will be studied in fur-
ther research.
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