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ABSTRACT

Based  on  the  reforecast  data  (1999–2010)  of  three  operational  models  [the  China  Meteorological  Administration
(CMA),  the  National  Centers  for  Environmental  Prediction  of  the  U.S.  (NCEP)  and  the  European  Centre  for  Medium-
Range  Weather  Forecasts  (ECMWF)]  that  participated  in  the  Subseasonal  to  Seasonal  Prediction  (S2S)  project,  we
identified the major sources of subseasonal prediction skill for heatwaves over the Yangtze River basin (YRB). The three
models  show  limited  prediction  skills  in  terms  of  the  fraction  of  correct  predictions  for  heatwave  days  in  summer;  the
Heidke Skill Score drops quickly after a 5-day forecast lead and falls down close to zero beyond the lead time of 15 days.
The superior skill of the ECMWF model in predicting the intensity and duration of the YRB heatwave is attributable to its
fidelity  in  capturing  the  phase  evolution  and  amplitude  of  high-pressure  anomalies  associated  with  the  intraseasonal
oscillation and the dryness of soil moisture induced by less precipitation via the land–atmosphere coupling. The effects of
10–30-day and 30–90-day circulation prediction skills on heatwave predictions are comparable at shorter forecast leads (10
days),  while  the  biases  in  30–90-day  circulation  amplitude  prediction  show  close  connection  with  the  degradation  of
heatwave prediction skill at longer forecast leads (> 15–20 days). The biases of intraseasonal circulation anomalies further
affect  precipitation  anomalies  and  thus  land  conditions,  causing  difficulty  in  capturing  extremely  hot  days  and  their
persistence in the S2S models.
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Article Highlights:

•  The major sources of subseasonal prediction skill for heatwaves over the Yangtze River Basin were identified based on
S2S model data.

•  Models with superior skill for heatwave prediction show higher fidelity in predicting both the 10–30-day and 30–90-day
circulation anomalies.

•  The land conditions modulated by circulation anomalies also contribute to the prediction skill for heatwave duration and
intensity.

 

 
 

1.    Introduction

Heatwaves,  prolonged  extremely  high-temperature
days,  exert  considerable impacts on not  only human health
and  ecosystems  but  also  infrastructure  and  social  services.
Several regions worldwide have frequently suffered from heat-
wave  events  in  the  context  of  global  warming  (Meehl  and
Tebaldi,  2004; IPCC,  2013).  For  example,  Europe  experi-

enced  a  severe  heatwave  in  2003  with  more  than  70  000
heat-related  casualties  (Robine  et  al.,  2008).  Western  Rus-
sia  was  struck  by  the  hottest  summers  in  2010,  leading  to
the  deaths  of  around  55  000  people  (Hoag,  2014).  During
December 2013, a long-lasting hot period hit the southern sec-
tor of South America and caused a sharp rise in disease and
a  substantial  surge  in  electricity  consumption  (Almeira  et
al.,  2016).  Record-breaking  heatwaves  have  also  been  fre-
quently reported in the last decade in densely populous coun-
tries of Asia, such as China (Yang and Li, 2005; Xia et al.,
2016; You  et  al.,  2017; Hsu  et  al.,  2020),  India
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(Nageswararao et al., 2020), Japan, and on the Korean Penin-
sula  (Imada et  al.,  2019; Qian et  al.,  2020).  For  better  risk
management,  an  accurate  prediction  of  heatwaves  at  a
longer  lead  time  beyond  10  days  is  crucial;  however,  this
remains challenging for both scientific and operational com-
munities.

To  advance  our  understanding  of  the  predictability  at
the subseasonal-to-seasonal timescale (i.e.,  beyond 10 days
but less than a season) and improve the subseasonal-to-sea-
sonal  prediction  skill  for  extreme  events,  the  WWRP
(World Weather Research Program) and WCRP (World Cli-
mate  Research  Program)  under  the  World  Meteorological
Organization (WMO) jointly launched the Subseasonal to Sea-
sonal  Prediction  (S2S)  project  (Vitart  et  al.,  2017).  One  of
the important tasks of the S2S project is to develop an extens-
ive  database  of  subseasonal  (up  to  60  days)  forecasts  and
reforecasts for achieving the goals stated above. At present,
11 institutions provide their forecast models’ outputs, includ-
ing  the  China  Meteorological  Administration  (CMA),  the
National  Centers  for  Environmental  Prediction  (NCEP)  of
the U.S.,  the European Centre for  Medium-Range Weather
Forecasts  (ECMWF),  as  well  as  others  from  Australia,
Canada,  France,  Italy,  Japan,  Korea,  Russia  and  the  UK.
The  S2S  model  database  provides  a  great  opportunity  for
assessing  the  prediction  skill  for  extreme  events,  such  as
mega-heatwaves  in  populous  China,  and  more  importantly
for identifying the sources of prediction skill.

Some recent studies have evaluated the prediction skill
of regional heatwave occurrence based on the S2S models.
For example, Vitart and Robertson (2018) indicated that the
ECMWF model shows capability in predicting high probabilit-
ies  of  extremely  high  temperature  over  Russia  during  the
period  of  the  2010  Russian  heatwave  occurrence  at  a  lead
time of three weeks. For the strong heatwave that occurred
in December 2013 over South America, the model from the
Australian  Bureau  of  Meteorology  shows  higher  skill  than
the  CMA model  in  predicting  the  temperature  and  circula-
tion  anomalies  associated  with  this  heatwave  one  to  two
weeks in advance (Osman and Alvarez, 2018). Based on the
NCEP model’s prediction outputs, Ford et al.  (2018) docu-
mented  that  few  heatwave  events  over  the  U.S.  continent
could be predicted at long lead times (> 15 days) owing to
the  misrepresentation  of  land–atmosphere  feedback  in  the
model.  By  assessing  the  prediction  skill  of  the  ECMWF
model  for  a  heatwave  event  over  the  Yangtze  River  basin
(YRB)  in  2012, Qi  and  Yang  (2019) found  that  the  model
demonstrates limited skill  at a two-week lead time because
it poorly captures the circulation anomalies of intraseasonal
oscillation. The importance of intraseasonal circulation anom-
alies to the prediction skill  for  heatwaves was also pointed
out by Hsu et al. (2020), in which the real-time forecasts asso-
ciated  with  the  record-breaking  heatwave  over  Northeast
Asia  in  summer  2018  by  two  S2S  models,  from the  CMA
and Japan Meteorological Agency, were evaluated. The res-
ults  of Hsu  et  al.  (2020) suggested  that  when  models  cor-
rectly predict the phase evolution and amplitude of the trop-

ical western Pacific Madden–Julian Oscillation (MJO) con-
vection,  as  well  as  the  MJO-related  teleconnection  pattern,
they  show  higher  skill  in  terms  of  Northeast  Asian  heat-
wave prediction.

Previous studies using the S2S model data have tended
to  focus  on  heatwave  case  evaluations.  The  robustness  of
key  factors  pointed  out  to  influence  the  heatwave  predic-
tion  skill  needs  to  be  further  verified  by  assessing  a  larger
sample of heatwave events, which is one of the subjects of
this study. Although the importance of the ability of models
in predicting the intraseasonal circulation anomalies to the pre-
diction of  Asian heatwaves has been reported (Yang et  al.,
2018; Qi  and  Yang,  2019; Hsu  et  al.,  2020),  the  relative
effects  of  two  distinct  modes  associated  with  Asian  mon-
soon intraseasonal oscillation [i.e., the quasi-biweekly oscilla-
tion  (QBWO)  and  the  MJO]  on  the  heatwave  prediction
skill  have not  been addressed and will  be discussed in  this
study.  In  addition  to  the  atmospheric  condition,  land  sur-
face processes have been identified as being crucial for sub-
seasonal-to-seasonal  prediction  because  of  the  longer
memory of soil moisture than the atmosphere (Koster et al.,
2004; Dirmeyer  et  al.,  2009; Ford  et  al.,  2018).  The  find-
ings based on both observational analysis and model experi-
ments suggest that the occurrence and development of heat-
waves are generally induced by anomalous atmospheric circu-
lations, while heatwave intensity and extent could be suppor-
ted  by  the  dryness  of  soil  moisture  (Fischer  et  al.,  2007;
García-Herrera et al., 2010; Zhang and Wu, 2011; Seo et al.,
2018; Wang et  al.,  2019).  The effect  of  land conditions on
heatwave  prediction  at  the  subseasonal  range  is  another
issue worth investigating based on the S2S model data.

The  YRB,  with  its  large  population,  is  one  of  the
regions  with  the  most  frequent  heatwaves  in  China  during
boreal summer (e.g., You et al., 2017). Although a few stud-
ies  (Yang  et  al.,  2018; Qi  and  Yang,  2019)  have  investig-
ated  the  subseasonal  prediction  skill  of  YRB  heatwaves
based  on  limited  case  studies  or  on  a  single  model  assess-
ment, the overall forecast skill for YRB heatwaves in the cur-
rent  subseasonal-to-seasonal  prediction  systems  and  the
major sources of predictability need to be further disclosed
by using larger prediction samples. These are the key steps
for  improving  forecast  accuracy  and  extending  forecast
leads of prolonged extreme hot events. Thus, the main aims
of this  study include a systematic evaluation of  YRB heat-
wave  prediction  at  the  subseasonal  timescale  based  on  the
reforecast  (1999–2010)  data  from  the  CMA,  NCEP  and
ECMWF S2S models,  and  a  discussion  of  the  key  factors,
including  different  intraseasonal  modes  and  land  processes
that influence the prediction skill for YRB heatwaves.

The paper is organized as follows. In section 2, we intro-
duce  the  data  and methods.  The  heatwave prediction  skills
of  the  three  S2S  models  are  evaluated  in  section  3.  The
sources  of  prediction  skill  for  the  YRB  mega-heatwave
event  in  the  summer  of  2003  are  analyzed  and  compared
among the three models. In section 4, the relative effects of
prediction biases with respect to the QBWO and MJO circula-
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tions  on  heatwave  prediction  are  discussed  based  on  a  lar-
ger sample of data (i.e., including all heatwave events over
the reforecast period). The contributions of land surface condi-
tions to the heatwave prediction skill are also examined. Sec-
tion 5 summarizes the major findings of our study.

2.    Data and methods

2.1.    Reforecasts and verification data

The  reforecast  data  from  three  models  (CMA,  NCEP
and ECMWF) were collected from the server of the S2S data-
base (http://apps.ecmwf.int/datasets/data /s2s). Basic descrip-
tions  of  these  models  can  be  found  in Table  1.  The  com-
mon period of reforecast for the model comparisons in this
study is  from 1999 to 2010.  We focus on the summer sea-
son  (June–August,  or  JJA)  for  heatwave-related  assess-
ments. Note that the CMA and NCEP models were initiated
every day, while the ECMWF model produced the forecast
twice  a  week  (on  Monday  and  Thursday).  To  more  easily
and  conveniently  compare  the  prediction  skills  among  the
three  models,  we  applied  a  data  processing  method  pro-
posed by previous studies (Yang et al., 2018; Qi and Yang,
2019)  to  reprocess  the  twice-weekly  data  of  the  ECMWF
model outputs to daily reforecast data (as in the NCEP and
CMA models).  Briefly,  the  forecasts  from N −  2  to N +  2
days were used to represent the results of the N-day lead fore-
cast. If there are two values representing a specific lead time
forecast, an arithmetic average is applied. According to the
results  of  sensitivity  tests,  we  found  that  this  data  pro-
cessing  method  will  not  change  any  of  the  main  conclu-
sions obtained from either the daily-based reforecast data or
the original outputs, as reported by Yang et al. (2018).

The  verification  datasets  include  the  gridded  daily-
mean  near-surface  air  temperature  (SAT)  at  2  m  from  the
CN05 database (Xu et al., 2009) provided by the National Cli-
mate  Center  of  China  with  a  horizontal  resolution  of  0.5°.
Large-scale circulations associated with geopotential height
at  500  hPa  (H500)  and  zonal  wind  at  850  hPa  (U850)  are
from  the  ERA-Interim  reanalysis  (Dee  et  al.,  2011)  at  a
1.5° × 1.5° spatial resolution. The land surface data, includ-
ing  the  surface  sensible  heat  flux  and  soil  moisture  from
ERA-Interim, are also utilized. The surface-layer soil mois-
ture at 0–100 cm is obtained by summing the soil product in
three  levels  (0–7  cm,  7–28  cm,  28–100  cm)  with  linear
weights.  Although  the  information  on  fluxes  and  soil
depends largely on the reanalysis models, these fields have
been  shown to  have  reasonable  amplitude  and  variation  as
compared with observation (Decker et  al.,  2012; Liu et  al.,

2019).  Daily  outgoing  longwave  radiation  (OLR)  provided
by  NOAA  at  a  spatial  resolution  of  1°  is  used  to  identify
deep convections. For better comparison, we unified the spa-
tial resolution of model outputs to be consistent with observa-
tions.

To  eliminate  the  systematic  biases  of  individual  mod-
els, we removed the climatological mean state for each lead-
time forecast. The long-term background components (with
a period longer than 90 days) were also removed, to retain
the components of subseasonal variation. Then, the high-fre-
quency  components  (<  10  days)  associated  with  synoptic
weather systems, which are not the target of subseasonal-to-
seasonal prediction, were also subtracted, by applying a pre-
ceding five-day mean of each prediction time step (i.e., the
average from day −5 to day 0). The resultant component has
roughly  the  time  scale  of  10–90  days,  referred  to  as
intraseasonal signals. To further separate the intraseasonal sig-
nals into the QBWO and MJO, we applied a preceding 15-
day mean (average from day −15 to day 0) in the last step to
remove the high-frequency component with a period longer
than  30  days,  and  thus  obtained  the  MJO-related  signals.
The  QBWO-related  signals  were  derived  from  the  differ-
ence  between  the  intraseasonal  (10–90  days)  and  MJO
(30–90 days) components.

2.2.    Definitions of heatwave and evaluation metrics

Given  the  fact  that  models  generally  produce  errors
when  representing  extreme  amplitudes,  an  absolute  (or  a
fixed) threshold for defining heatwave events as used in obser-
vation  is  not  applicable  in  models.  Thus,  we  adopted  the
threshold relative to climatological SAT distributions in the
individual datasets to define the observed and modeled heat-
waves.  Specifically,  a  heatwave  occurs  when  the  SAT
exceeds a relative criterion of the 90th percentile for at least
three  consecutive  days.  Considering  the  seasonal  cycle  of
SAT, the criterion of the 90th percentile is defined for each
day using a 15-day moving window (day −7 to day 7) dur-
ing JJA of 1999–2010.

The pattern correlation coefficient  (PCC) and the tem-
poral correlation coefficient (TCC) are used to respectively
evaluate  the  similarity  of  the  spatial  distribution  and  tem-
poral evolution between the prediction and observation. The
root-mean-square  error  (RMSE)  estimates  the  amplitude
biases  of  prediction.  The  categorical  verification  score
known  as  the  Heidke  Skill  Score  (HSS)  (Heidke,  1926)
serves  as  the  metric  to  evaluate  the  hit  rate  of  heatwave
days.  The HSS is  related to two quantities—the proportion
correct (PC) measurement and its maximum-likelihood estim-
ate of probability (E), which are defined as follows: 

Table 1.   Description of the CMA, NCEP and ECMWF models’ reforecast data.

Model Forecast range Model resolutions Type Forecast frequency Period Ensemble size

CMA 0–60 d T106, L40 Fixed Daily 1994–2014 4
NCEP 0–44 d T126, L64 Fixed Daily 1999–2010 4

ECMWF 0–46 d Tco639/Tco319, L91 On the fly 2/week Past 20 years 11
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PC =
a+d

a+b+ c+d
=

a+d
n
, (1)

where a represents  the  number  of  observed  heatwave  days
that are correctly predicted, b is the number of false alarms,
c represents  the  observed  heatwave  days  that  are  not  pre-
dicted, and d is the number of correct rejections. According
to Eq. (1), the perfect value for PC is the unity and the refer-
ence value is the chance agreement. Therefore, E is written
as 

E =
(a+ c

n

)(a+b
n

)
+

(
b+d

n

)(
c+d

n

)
, (2)

and HSS is then defined as 

HSS =
PC−E
1−E

=
2(ad−bc)

(a+ c)(c+d)+ (a+b)(b+d)
, (3)

∞in which HSS ranges from −  to 1. A negative value indic-
ates that the random forecast is better, while a value of zero
means  no  skill.  A  perfect  prediction  obtains  an  HSS value
of 1.

2.3.    QBWO and MJO indices

The states of the QBWO and MJO over the Asian mon-
soon region were described by the real-time boreal summer
intraseasonal  oscillation  indices  proposed  by Lee  et  al.
(2013). The first two leading modes of the multivariate empir-
ical  orthogonal  function  (EOF)  of  deep  convection  (OLR)

and low-level  circulation (U850) anomalies  over  the Asian
summer  monsoon  region  (10°S–40°N,  40°–160°E)  present
the MJO-related signals, which propagate northwards/north-
eastwards  from  the  tropical  Indian  Ocean  towards  East
Asia. The third and fourth EOF modes capture the northwest-
ward propagating QBWO from the tropical central-western
Pacific towards East Asia. The respective life cycles of the
MJO and QBWO can be  divided into  eight  distinct  phases
by  constructing  phase  diagrams  of  the  corresponding  prin-
cipal  components  (PCs).  The  variability  of  MJO-related
PCs  [(PC12 +  PC22)1/2]  and  QBWO-related  PCs  [(PC32 +
PC42)1/2] is defined to describe their amplitude. Active MJO
and  QBWO  events  are  selected  based  on  an  amplitude
greater than 1. The predicted MJO and QBWO states were
obtained by projecting the  modeled OLR and U850 anom-
alies at different forecast lead times onto the observed EOF
modes.

3.    Assessments  of  subseasonal  heatwave
prediction skill

The threshold (90th percentile) of JJA SAT for the heat-
wave definition over China is shown in Fig. 1a. High SAT
occurs over southeastern and northwestern China. The 90th-
percentile values of JJA SAT maximize over the YRB with
SAT  higher  than  30°C  in  some  grids  here.  Thus,  a  heat-
wave will be recorded in these grids over the YRB when the
high SAT (greater than the 90th percentile) lasts more than

 

 

Fig.  1.  Distributions  of  (a)  90th  percentile  values  of  observed  SAT  in  JJA  of  1999–2010  (units:  ℃)  and  the
prediction biases (model minus observation) at a 5-day forecast lead time in the ensembles of (b) CMA, (c) NCEP
and (d) ECMWF models, respectively. The PCCs and RMSEs between forecasted and observed values are given in
the bottom-left corner of each panel. (e) The climatological probabilities (units: %) of observed heatwave occurrence
in JJA of 1999–2010. The blue box delineates the key region of the YRB (25°–31°N, 107°–122°E) for assessment.
(f) The 90th percentile values of area (YRB)-averaged SAT (units: ℃) at the forecast leads of 5, 10, 15, 20, 25, 30,
35, and 40 days, respectively. The red, blue and green curves represent the averages of ensemble members from the
CMA,  NCEP  and  ECMWF  models,  respectively,  along  with  inter-member  spreads  shown  by  whiskers.  Observed
90th percentile value is displayed by the horizontal dotted line for comparison.
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three  days.  Based on the  heatwave definition,  we analyzed
the climatological  probability  of  heatwave occurrence over
China  (Fig.  1e)  and  found  that  heatwaves  occur  more  fre-
quently over the YRB (25°–31°N, 107°–122°E) and south-
western China (You et al., 2017). Because of the high sum-
mer-mean  SAT  (Fig.  1a)  and  the  high  probability  of  heat-
wave  occurrence  (Fig.  1e)  detected  in  the  YRB,  the  popu-
lated  region  of  the  YRB  appears  to  be  vulnerable  to  heat-
waves. Hence, we selected the YRB as the key area for invest-
igating the subseasonal prediction of heatwaves.

Ensemble-predicted  (mean  of  ensemble  members)
90th-percentile values of JJA SAT at the lead time of 5 days
reveal  high  PCCs  of  ~0.93  (CMA)  to  ~0.96  (NCEP  and
ECMWF)  with  observation,  while  cold  biases  were  pre-
dicted  by  all  three  models  over  southeastern  China  (Figs.
1b–d), including the YRB. Figure 1f compares the 90th-per-
centile  values  of  regional  (YRB)  SAT  predicted  at  lead
times  of  5  to  40  days  from  the  ensemble  mean  (color
curves)  of  the  three  S2S  models,  respectively.  The  cold
biases of 90th percentile thresholds in the three models are
shown at nearly all different forecast leads, as compared to
the  observation  (the  horizontal  dashed  line).  The  heatwave

thresholds  for  the  ensemble  members  of  the  CMA  model
(red  curve)  increase  with  the  forecast  lead  from  5  days
(~27°C) to 40 days (~29°C). The NCEP model displays an
evident  underestimation  of  SAT.  The  thresholds  of  a  pre-
dicted heatwave in the NCEP model lie between 25.9°C to
26.2°C for different leads (blue curve). As for the ECMWF
model predictions, the SAT criterion for the heatwave defini-
tion is around 27.5°C–28°C (green curve).

Based  on  the  relative  threshold  (90th  percentile)  of
SAT and its duration (at least three days), we identified indi-
vidual  YRB  heatwave  events  in  summers  (JJA)  over  the
period  of  1999–2010  (gray  shading  in Fig.  2a).  In  total,
there  were  20  heatwave  cases  observed  during  this  period.
Most  of  the  heatwave  events  lasted  for  three  days  (nine
cases)  and  four  days  (seven  cases).  The  longest  heatwave
event,  of  8  days,  exceeding  the  90th  percentile  of  SAT
occurred in the late July and early August of 2003 (marked
by  the  green  asterisk  in Fig.  2a). Figure  2b compares  the
three  S2S  models’ HSSs  estimated  by  the  fraction  of  cor-
rect predictions for heatwave days in the YRB during the sum-
mer seasons after  eliminating the corrected predictions due
to random chance. In both the individual members’ and the

 

 

Fig.  2.  (a)  Observed  area-averaged  SAT  anomalies  (color  bars;  units:  ℃)  and  detected  heatwave  events  (gray
shading)  over  the  YRB  during  the  summers  (JJA)  of  1999–2010.  The  green  asterisk  marks  the  period  of  mega-
heatwave in  2003.  (b)  Heidke Skill  Score  (y-axis)  of  heatwave predictions  at  different  forecast  leads  from 1 to  40
days (x-axis)  for  the individual  members (dashed curves)  and the ensemble predictions (solid curves)  of  the CMA
(red),  NCEP (blue)  and ECMWF (green) models.  (c)  Comparisons of  observed and ensemble-forecasted heatwave
occurrence periods for the mega-heatwave event in 2003. The gray shading marks the heatwave occurrence period in
the  observation  (27  July  to  3  August  2003).  The  blue  horizontal  lines  indicate  the  predicted  heatwave  occurrence
periods  at  different  forecast  leads  (y-axis)  by  the  CMA  (left),  NCEP  (middle)  and  ECMWF  (right)  models,
respectively. Red boxes mark the predicted heatwave at the lead time of 10 days.
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ensemble  predictions,  the  HSS  drops  quickly  as  the  fore-
cast  lead  increases  from  5  to  15  days  in  all  three  models.
The  model  predictions  show  no  skill  (HSS  of  ~0)  beyond
the 15-day lead.  Compared to  the predictions of  individual
members  (dashed  curves),  the  ensemble  prediction  (based
on the mean of all members’ SAT) shows higher skill (solid
curves) at most of the forecast lead times. Among the three
models,  the  ensemble  prediction  of  ECMWF is  superior  at
the lead time of 5–20 days. The HSS was reduced to 0.1 at
the  lead  time  of  12  days  in  all  ensemble  predictions  from
three models. The results suggest that the S2S models have
some  capability  in  predicting  the  extreme  hot  days  associ-
ated  with  YRB  heatwave  events  beyond  the  time  scale  of
weather  forecasts  (i.e.,  7–10  days  in  advance),  while  the
skill  is  limited  beyond  the  lead  time  of  12–15  days.  Since
the ensemble predictions have a higher and more stable pre-
dictive  skill  (Fig.  2b),  only  the  ensemble  prediction results
are shown in the following analyses.

To  further  examine  the  sources  of  prediction  skill  for
YRB heatwaves, we selected the prolonged mega-heatwave
in  the  summer  of  2003  (green  asterisk  in Fig.  2a),  which
caused tremendous losses to the economy but had a low pre-
dictability, as a case study. Figure 2c shows the model-pre-
dicted occurrence of the 2003 heatwave event at different fore-
cast  lead  times  (blue  curves)  against  the  observation  (gray
shading). Overall, the CMA model failed to predict the occur-
rence  period  of  this  heatwave  event.  The  predicted  heat-
wave  appeared  later  than  observed  at  all  lead  times  (left-
hand panel of Fig. 2c). In contrast, the NCEP model showed
good skill in predicting this long-lasting heatwave at 9 days
in advance (middle panel  of Fig.  2c),  although it  tended to
overestimate the duration of the heatwave at the lead times
of 3–8 days. From the forecast lead of 10 days and beyond,
the  NCEP  model  underestimated  the  lifespan  of  this  heat-
wave. Compared to the notable overestimation biases in the
NCEP model,  the ECMWF model revealed a more reason-
able prediction of the heatwave period at the forecast leads
of 5–10 days (right-hand panel of Fig. 2c). Given the consider-

able differences in prediction skill  among the three models
at the 10-day lead time forecast, in the following we exam-
ine  the  factors  leading  to  the  prediction  biases  at  the  fore-
cast lead time of 10 days and identify the key sources of heat-
wave prediction skill.

The observed and predicted evolutions of  SAT associ-
ated with the YRB mega-heatwave (27 July to 3 August) in
the late July and early August of 2003 are shown in Fig. 3a.
The SAT varied slowly with time and experienced different
stages. To examine how well the models can predict the tem-
poral  variation  of  SAT  anomalies  associated  with  this
mega-heatwave,  we  divided  the  heatwave  period  into  four
4-day  stages.  The  observed  SAT  (black  curve  in Fig.  3a)
increased  before  the  heatwave’s  initiation  (23–26  July,
referred  to  as  the  developing  period)  and  reached  its  peak
stages  as  the  heatwave  was  detected  (27–30  July  for  peak
period I and 31 July–3 August for peak period II), followed
by  a  decaying  period  during  4–7  August.  The  four  stages
are also clear in the 10–90-day intraseasonal component of
observed  SAT  (black  curve  in Fig.  3b).  The  evolutions  of
total  and  intraseasonal  SAT are  highly  consistent,  suggest-
ing that the intraseasonal oscillation might play a role in caus-
ing the prolonged high SAT anomalies.

Similar  to  the  observation,  the  evolutions  of
intraseasonal SAT anomalies in the models’ predictions are
consistent  with  the  total  SAT  (Figs.  3a and b).  The  pre-
dicted error of intraseasonal SAT anomalies leads to the fail-
ure  of  heatwave  prediction  in  the  CMA model  at  the  fore-
cast  lead  of  10  days.  A  positive  SAT  anomaly  was  pre-
dicted  by  the  CMA model  during  the  observed  developing
period  but  negative  anomalies  of  SAT  appeared  in  the
observed  heatwave  peak  stages  (Fig.  3b).  When  the
observed  heatwave  started  to  diminish  in  the  decaying
period, the SAT predicted by the CMA model showed a signi-
ficant increase. As a result, the CMA model did not capture
the  timing  of  heatwave  occurrence  as  observed  (Figs.  2c
and 3a). The NCEP and ECMWF models both correctly pre-
dicted  the  evolving  features  of  the  SAT  anomaly,  with  an

 

 

Fig. 3. Temporal evolution of (a) SAT and (b) its intraseasonal component over the YRB (25°–31°N, 107°–122°E)
for  the  2003  mega-heatwave  event  (units:  ℃).  Black  curves  show  the  observations;  red,  blue,  and  green  curves
represent  the  10-day  lead  predictions  by  the  CMA,  NCEP,  and  ECMWF  models,  respectively.  The  bars  of  color
shading denote the developing period (DVP, 23–26 July), peak period I (PP1, 27–30 July), peak period II (PP2, 31
July–3 August) and decaying period (DCP, 4–7 August) of the observed mega-heatwave event. Circles on the curves
indicate the model-predicted heatwave days.
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increasing  tendency  of  SAT  anomalies  in  the  developing
period  but  a  relatively  flat  curve  of  SAT maximum during
the observed heatwave periods (peak periods I  and II).  For
the prediction of amplitude, the ECMWF model shows bet-
ter  skill  than  the  NCEP  model.  The  former  predicted  the
large increases in SAT anomaly, close to the observed val-
ues  in  peak  period  II,  while  the  latter  underestimated  the
SAT  anomalies  during  the  observed  peak  periods  I  and  II
(Fig. 3b). Thus, the heatwave predicted by the NCEP model
revealed a shorter duration than observed (Figs. 2c and 3a).
Overall,  the  ECMWF model  shows  higher  skill  in  predict-
ing  the  initiation,  amplitude  and  duration  of  this  YRB
mega-heatwave in the summer of 2003.

The results of Fig. 3 suggest a linkage between the evolu-
tion  of  intraseasonal  SAT  anomalies  and  the  life  cycle  of
the heatwave event. Once the model captures the evolution

of  intraseasonal  SAT  anomalies,  a  higher  skill  can  be
achieved  in  predicting  the  occurrence  period  and  the  amp-
litude  of  the  heatwave.  The  intraseasonal  SAT  anomalies
and heatwave occurrence are evidently controlled by the back-
ground large-scale circulation anomalies (Hsu et al., 2017).
Thus,  the  modulations  of  SAT  anomalies  by  the  intrasea-
sonal  circulation  anomalies  shown  in  the  observation  and
the three models’ predictions are compared in Figs. 4–6.

Observationally (Figs. 4a–d), the positive intraseasonal
SAT  anomaly  appeared  in  the  southeast  coastal  areas  of
China in the developing period, and then developed northwest-
wards  and  strengthened  continually  during  the  heatwave
occurrence periods (peak periods I  and II).  In  the develop-
ing  period,  the  amplitude  of  SAT  anomalies  started  to
decrease  over  the  YRB  (Fig.  4d).  All  three  models  pre-
dicted  the  positive  SAT  anomalies  in  the  YRB  at  the  lead

 

 

Fig. 4. Distributions of intraseasonal SAT anomalies (units: ℃) in the developing period (a, e, i, m), peak period I (b, f, j, n),
peak period II (c, g, k, o) and decaying period (d, h, l, p) of the 2003 mega-heatwave event. Blue boxes delineate the YRB
area:  (a–d) observations,  and (e–h) CMA, (i–l)  NCEP and (m–p) ECMWF model prediction results  at  the lead time of 10
days. Area-averaged SAT anomalies over the YRB are given at the bottom of each panel.
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time of 10 days, while they underestimated the heatwave amp-
litude (Figs. 4e–p), due partly to the biased locations of the
SAT maximum center. The CMA model did not predict the
heatwave  occurrence  (Figs.  2c and 3)  during  the  observed
heatwave period because the SAT anomaly was too small in
the  peak  periods  I  and  II,  and  it  was  confined  to  southern
China without moving northwards towards the YRB during
the peak phases (Figs. 4f–g). The center of the SAT anom-
aly in the decaying period was also incorrectly predicted by
the CMA model  (Fig.  4h).  The NCEP model  predicted the
development  of  positive SAT anomalies  from South China
towards  the  YRB,  reaching  their  maximum in  peak  period
II,  although  the  amplitude  of  the  SAT  anomalies  was
around half that of the observed (Figs. 4i–l). Thus, the heat-
wave identified by the NCEP prediction is of weaker amp-
litude  and  shorter  duration  (Figs.  2c and 3).  The  ECMWF
model  shows  good  prediction  skill  in  both  the  amplitude
and evolution of the SAT anomalies (Figs. 4m–p), being sim-
ilar  to  the  observation  (Figs.  4a–d).  As  a  result,  the
ECMWF  model  successfully  captures  the  duration  and
strength  of  this  heatwave  event  at  a  10-day  lead  (Figs.  2c
and 3).

The  variation  of  SAT  anomalies  is  connected  with
large-scale circulations, in particular the high pressure anom-
aly-induced  adiabatic  heating  effect  (Black  et  al.,  2004;
Zhang et  al.,  2005; Zhang and Zhang,  2010).  In Fig.  5,  an

anomalous high-pressure anomaly in the mid-troposphere (a
positive H500 anomaly) can be seen over the western North
Pacific  in  the  developing  period  (Fig.  5a),  which  propag-
ates  northwestwards  to  East  Asia  (including  the  YRB
region) during the heatwave period (Figs. 5b–c), and then con-
tinually moves towards inland China in the decaying period
(Fig.  5d).  The  location  and  amplitude  of  the  H500  anom-
alies varies consistently with the SAT anomalies. In the initi-
ation  and  developing  stages  before  the  heatwave  occur-
rence,  only  the  ECMWF  model  predicted  the  northwest–
southeast tilted structure of the H500 anomaly over the west-
ern North Pacific at the lead time of 10 days (Figs. 5e, i and
m). The ECMWF model also correctly represents the strength-
ening  and  northwestward-propagating  features  of
intraseasonal circulation anomalies during the observed heat-
wave occurrence period (Figs.  5n and o).  The PCCs of the
intraseasonal H500 anomalies between the observation and
ECWMF predictions are high (0.84–0.96) during the entire
period associated with heatwave evolution. Lower PCCs of
large-scale  circulation  anomalies  were  produced  by  the
NCEP and CMA models (Figs. 5e–h and 5i–l). The less skill-
ful  predictions  for  the  spatial  and  intensity  evolutions  of
intraseasonal  H500  anomalies  will  be  the  source  of  biases
for  anomalous  SAT and heatwave  predictions  in  the  CMA
and NCEP models.

To  compare  the  relative  contributions  of  the  two  dis-

 

 

Fig.  5.  As  in Fig.  4 but  for  the  distributions  of  intraseasonal  H500  anomalies  (units:  gpm).  PCCs  between  observations  and
predictions over the Eurasian continent and western North Pacific (0°–60°N, 80°–160°E) are given at the bottom of each panel.
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tinct  modes  of  intraseasonal  variability  (30–90-day  MJO
and  10–30-day  QBWO)  to  the  formation  and  maintenance
of this mega-heatwave event, we analyzed the typical evolu-
tions of convection and circulation associated with the MJO
(Figs. 6a–d) and QBWO (Figs. 6f–i) and their states during
the heatwave period (Figs. 6e, j). Note that the evolution of
intraseasonal H500 anomalies throughout the lifespan of the
mega-heatwave  (Fig.  5)  resembles  the  northwestward-
propagating QBWO (Figs. 6f–i). This is clear in the phase dia-
grams  of  the  MJO  and  QBWO.  The  QBWO  signals  at
phases  6–8  and  1  were  enhanced  during  the  heatwave
period (Fig. 6j), while the MJO signals were relatively weak
(Fig. 6e). The results of Figs. 5 and 6 suggest that the predic-
tion skill of this mega-heatwave event is closely linked with
the model capability in predicting the QBWO-related circula-
tion anomalies. The three models all predicted weak MJO sig-
nals  during  the  heatwave  period,  consistent  with  observa-
tion (Fig. 6e). In contrast, the skills of the three models in rep-
resenting the activities of the QBWO were diverse. Among
the three models, the performance with respect to the phase
evolution and intensity was the best in the ECMWF model
(green curve in Fig. 6j).  The NCEP and CMA models pre-

dicted  biased  evolutions  of  QBWO  phase  and  associated
intensity (blue and red curves in Fig. 6j). Therefore, the pre-
diction  skill  of  this  heatwave  event  seems  related  to  the
model prediction skill in terms of the QBWO activity, as the
MJO effect was weak for this case. In other words, whether
the models are able to correctly predict the occurrence of a
heatwave  with  long-lasting  high  SAT  anomalies  depends
largely  on  the  predicted  pattern  and  amplitude  of  intrasea-
sonal circulation anomalies.

Through  the  atmosphere–land  feedback,  the  clear  sky
induced  by  intraseasonal  high-pressure  anomalies  will
enhance  the  surface  shortwave  radiation  flux,  which  heats
the  land  surface  and  further  favors  increased  upward  sens-
ible heat flux that strengthens and maintains the local SAT
anomalies  (Black  et  al.,  2004; Zhang  et  al.,  2005; Zhang
and  Zhang,  2010).  The  soil  conditions  beneath  the  surface
also  play  a  role  in  heatwave  intensity  through  influencing
the  surface  heat  fluxes,  particularly  the  evapotranspiration.
Sufficient soil moisture may trigger an evaporative cooling
effect; on the contrary, dried-out soils associated with a dry
and hot spell tend to amplify the extreme high-temperature
state (Fischer et al., 2007). Following the analysis of atmo-

 

 

Fig.  6.  Composites  of  OLR  (shading;  units:  W  m−2)  and  H500  (contours;  units:  gpm)  anomalies  for  (a)  phases  2–3,  (b)
phases  4–5,  (c)  phases  6–7,  and  (d)  phases  8  and  1  of  the  MJO relative  to  the  weak  phases  (when  the  MJO amplitude  is
smaller than 1), based on the observational data. (f–i) As in (a–d) but for phase composites of the QBWO. Only the fields
exceeding the 95% confidence level based on the Student’s t-test are shown. Panels (e) and (j) display the evolutions of MJO
and QBWO phase indices during the heatwave occurrence period (27 July to 3 August 2003),  respectively,  in observation
(black) and the 10-day lead predictions (red, CMA; blue, NCEP; green, ECMWF). The start date of 27 July is denoted by
solid dots.
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spheric circulation anomalies (Figs. 5 and 6), we further dia-
gnosed  the  anomalous  sensible  heat  flux,  standardized  soil
moisture anomaly, and precipitation anomaly for understand-
ing the  effects  of  land–atmosphere  coupling on the  predic-
tion of this YRB mega-heatwave. As expected, positive anom-
alies of sensible heat flux were recorded over the YRB dur-
ing the developing period and the occurrence periods (peak
periods  I  and  II)  of  the  heatwave  (Figs.  7a–c),  while  the
degree of positive heat flux anomalies was decreased when
the  heatwave  intensity  started  to  decay  in  the  decaying
period  (Fig.  7d).  The  increases  in  sensible  heat  flux  and
SAT  were  generated  by  the  combined  effects  of  atmo-
spheric  high-pressure  anomalies  (Figs.  5a–d)  and  the
decreases in soil moisture due to deficient precipitation long
before  the  heatwave’s  occurrence  from  early  July  (black
curves  in  the  middle  and  bottom  panels  of Fig.  8).  The
observed SAT and soil moisture anomalies before and dur-
ing the heatwave period (10 July to 5 August) show a high

TCC of −0.72, confirming the intense land–atmosphere coup-
ling  for  heatwave  occurrence  and  maintenance  (black
curves  in  the  top  two  panels  of Fig.  8).  The  assessments
here of model predictions in terms of atmosphere–land inter-
action  show  that  the  heatwave  prediction  skill  depends  on
the accuracy of  the predicted circulation anomalies  as  well
as  the  soil  moisture  related  to  precipitation  anomalies.  For
example, the surface sensible fluxes predicted by the CMA
model  at  a  10-day  lead  were  mostly  opposite  to  the
observed (Figs. 7e–h), which could be related to the biased
prediction of atmosphere–land coupling. We analyzed the pre-
diction initiated on 17 July (blue curves in Fig. 8), which is
about  10  days  ahead  of  the  heatwave’s  occurrence,  and
found  that  the  CMA  model  predicted  small  precipitation
anomalies and near-normal soil moisture (lack of a dry land
surface) during the observed heatwave period (Figs. 8b and
c).  Therefore,  the  predicted  SAT  anomalies  showed  small
amplitude (Figs. 4e–h) that failed to meet the heatwave cri-

 

 

Fig. 7. As in Fig. 4 but for the surface sensible heat flux anomalies over the land area (units: W m−2).
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terion (Fig. 2c). The NCEP model also displayed a biased pre-
diction of soil moisture after integration for a few days from
17 July (blue curve in Fig. 8e). Accompanied by an increas-
ing  trend  in  precipitation  (Fig.  8f),  soil  moisture  did  not
decrease  continually  as  observed  (Fig.  8e).  Thus,  a  wetter
land  surface  would  have  favored  evaporative  cooling  and
led  to  insignificant  increases  in  SAT  anomalies  (Fig.  8d).
On the other hand, the ECMWF model predicted a decreas-
ing trend in soil moisture induced by reduced precipitation,
consistent  with  the  observation  (blue  and  black  curves  in
Figs.  8h–i).  The  drying  of  soil  moisture  (Fig.  8h)  would
have contributed to the maintenance of positive SAT anom-
alies (Fig. 8g). The superior capability of ECMWF model in
predicting  the  soil  moisture  over  China  was  also  docu-
mented by Zhu et al. (2019).

By comparing the land surface processes related to this
mega-heatwave case predicted at different initial times (differ-
ent  colors  in Fig.  8),  we  note  that  the  biases  in  SAT  con-
curred with the anomalous land conditions. Thus, the predic-
tion skill seems not to be sensitive to the model initial condi-
tions  a  long  time  ahead  of  the  heatwave’s  occurrence.  As
long as the model’s integrations correctly reproduce the atmo-
sphere–land feedback, the SAT anomalies (and thus the heat-
wave  events)  will  be  better  predicted.  For  instance,  the
CMA  model  predicted  near-normal  precipitation  and  soil
moisture  (without  decreasing  trends)  after  model  initiation
at different initial dates (Figs. 8b–c), and the predicted SAT
anomalies maintained a flat curve without rising up to form

a heatwave event (Fig. 8a). For the NCEP and ECMWF mod-
els, the dry soil associated with reduced precipitation was pre-
dicted  correctly  when  the  models  were  initiated  5  days
ahead  of  the  heatwave’s  occurrence  (red  curves  in Figs.
8e–f and h–i),  and thus  the  predicted SAT anomalies  were
close to the observation (Figs. 8d and g). For the prediction
initiated 10 days ahead of  the heatwave’s  occurrence (blue
curves), the NCEP model started at a dry condition while it
predicted  an  increasing  tendency  of  precipitation  and  soil
moisture (Figs. 8e–f), leading to small increases in SAT anom-
alies (Fig. 8d). Likewise, the underestimation of SAT anom-
alies  was  apparent  in  the  ECMWF  prediction  initiated  15
days  in  advance  of  the  heatwave  (green  curves)  when  the
model did not capture the decreasing soil moisture and precip-
itation  (Figs.  8  h–i).  Note  that  these  precipitation  and  soil
moisture  anomalies  are  highly  linked  to  the  evolution  of
intraseasonal  circulation  anomalies  (Figs.  6–7),  suggesting
the leading role of intraseasonal oscillation in the predictabil-
ity of YRB heatwaves (Qi and Yang, 2019).

4.    Influences  of  biases  in  intraseasonal
circulation  anomalies  and  air–land
feedback on the heatwave prediction skill

In the previous section, we found that the superior predic-
tion  skill  of  the  ECMWF  model  with  respect  to  the  2003
YRB mega-heatwave prediction at the lead time of 10 days,
at  which  the  other  two  models  predicted  either  none  or  a

 

 

Fig. 8. Temporal evolutions of the area-averaged (YRB-averaged) (a, d, g) SAT anomaly (units: ℃), (b, e, h) standardized
soil  moisture  anomaly,  and  (c,  f,  i)  precipitation  anomaly  (units:  kg  m−2)  during  the  period  of  10  July  to  5  August  2003,
predicted  by  the  (a–c)  CMA,  (d–f)  NCEP  (middle),  and  (g–i)  ECMWF  models.  Black  solid  curves  represent  the
observations; red, blue and green dashed curves denote the predictions initialized on 12 (green), 17 (blue) and 22 (red) July,
which are 5, 10, and 15 days ahead of heatwave initiation, respectively. The gray shading indicates the observed heatwave
occurrence period.
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weak  heatwave,  could  be  the  result  of  its  better  prediction
skill  in  capturing  the  evolution  and  intensity  of  QBWO-
related high-pressure anomalies and the drying of soil mois-
ture  induced  by  reduced  precipitation.  To  further  verify
whether  the  intraseasonal  circulation  anomalies  (associated
with the MJO and QBWO) and the land–atmosphere interac-
tion  play  crucial  roles  in  the  skillful  prediction  at  the  sub-
seasonal  time  scale  for  other  YRB  heatwave  cases,  we
examined  the  biases  in  circulation  anomalies  (Figs.  9 and
10) and soil moisture anomalies (Fig. 11) against the biases
in SAT anomalies associated with all  YRB heatwaves dur-
ing summers in 1999–2010 at different forecast leads.

The 2003 mega-heatwave case study shows that the fail-
ure  of  models  to  capture  the  timing  and  duration  of  heat-
wave occurrence results  from the errors  in predicted atmo-
spheric circulation anomalies related to the intraseasonal oscil-
lation  (Figs.  3b, 5 and 6j).  Considering  all  YRB heatwave
events  in  1999–2010, Figs.  9 and 10 compare  the  relative
effects of misrepresentations of MJO- and QBWO-related cir-
culation patterns and amplitudes on the errors in heatwave pre-
dictions at the forecast lead time of 15 days. When the mod-
els failed to predict heatwaves (but they did occur in observa-
tions), all three models were generally able to predict the pre-
valence  of  high-pressure  anomalies  over  the  YRB  (Figs.
9a–c, g–i, and m–o) but tended to underestimate their intensit-
ies, with about half the amplitude of the observed H500 anom-
alies (not shown). As a result, the SAT anomalies were too
small to reach the heatwave criterion. On the contrary, if the
models  predict  strong  high-pressure  anomalies  associated
with  intraseasonal  oscillation  (10–90-day signals),  they are
more likely to predict the occurrence of a heatwave, even if
these heatwaves did not exist (Figs. 9d, j and p). Moreover,
the  causes  of  false  alarms seem to  be  more  relevant  to  the
MJO-related H500 anomalies (Figs.  9f, l and r) than to the

QBWO signals (Figs. 9e, k and q).
In Fig. 10, we further quantitatively compare the biases

in  the  strength  of  H500  anomalies  associated  with  the
QBWO  (orange  dots)  and  MJO  (blue  dots)  against  the
biases in SAT anomalies for all heatwave days in the observa-
tion.  Unsurprisingly,  the  biases  in  SAT anomalies  of  heat-
waves  increase  as  the  forecast  lead  times  become  longer
from a  10-day lead to  15-day and 20-day leads.  Prediction
errors  in  the  amplitude  of  SAT  anomalies  are  small  and
mostly underestimated (with mean biases of −0.71 to −1.2)
at the 6–10-day forecast lead (Figs. 10a, d, g), and they rise
up  to  the  range  of  −1.15  to  −1.67  at  the  forecast  leads  of
11–20 days (bottom two panels in Fig.  10).  The prediction
errors  in  the  amplitude  of  H500 anomalies  associated  with
the activities of both the QBWO and MJO are positively cor-
related  with  the  biases  in  amplitude  of  SAT  anomalies.
These positive correlation coefficients are statistically signific-
ant, suggesting that the underestimations of SAT anomalies,
which cause the underestimations of heatwave duration and
intensity,  come  mostly  from  the  biases  in  the  strength  of
large-scale circulation anomalies related to intraseasonal oscil-
lation.  We  further  found  that,  for  a  shorter  forecast  lead
time (Figs. 10a, d and g), the effects of QBWO- and MJO-
related  H500  biases  on  the  fidelity  in  SAT  predictions  are
comparable.  As the lead times become longer  (Figs.  10c, f
and i), the MJO-related H500 biases show a tighter connec-
tion with SAT biases (with a higher correlation coefficient).
The higher correlation coefficients of biases between MJO-
related  H500  and  SAT  anomalies  than  those  between
QBWO-related  H500  and  SAT  anomalies  were  shown  in
the  predictions  of  all  three  models  at  the  forecast  lead  of
16–20  days,  implying  that  the  MJO  activity  provides  a
source of YRB heatwave prediction skill at the subseasonal
timescale beyond a 10-day forecast lead (Yang et al., 2018;

 

 

Fig. 9. Composites of intraseasonal circulation H500 anomalies (units: gpm) during the dates when models show errors in heatwave
prediction at the 15-day forecast lead. (a–c) Composites of 10–90 d, 10–30 d, and 30–90 d H500 anomalies when the CMA model
missed  the  heatwaves  (i.e.,  heatwaves  were  not  predicted  to  occur,  but  did  occur),  respectively.  (d–f)  As  in  (a–c)  but  for  the
composites of false alarm cases (i.e., heatwaves were predicted to occur but did not occur) in the CMA model. Panels (g–i, m–o) and
(j–l, p–r) are the same as (a–c) and (d–f), except for the results of the NCEP and ECMWF models, respectively.
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Hsu et al., 2020). For a shorter forecast lead time (e.g., 6–10
days), the model’s capability in representing the QBWO activ-
ity  is  also  important  for  a  skillful  prediction  of  YRB heat-
waves (Figs. 6 and 10).

A correct prediction of soil moisture anomalies affected
by anomalous precipitation is another source of heatwave pre-
diction skill  at  the subseasonal time scale,  according to the
prediction  evaluations  of  the  2003  YRB  mega-heatwave
event (Fig. 8). When the ECMWF model predicted the con-
tinuous  drying  of  soil  moisture  due  to  a  lack  of  precipita-
tion,  positive  SAT  anomalies  occurred  and  endured  for
more  days.  The  CMA  and  NCEP  models  failed  to  predict
the dryness in the land surface condition, and the SAT anom-
alies  revealed  little  change  without  forming  a  heatwave
event.  Based  on  the  assessments  of  all  YRB  heatwave
events, Fig.  11 confirms  the  effect  of  preceding  soil  mois-

ture changes on the prediction bias of  SAT anomalies dur-
ing the observed heatwave periods. The SAT anomalies dur-
ing  the  heatwave  periods  (y-axis)  are  all  negatively  correl-
ated with the anomalous soil moistures in advance of heat-
wave occurrence (x-axis). In the case of predictions at a 20-
day lead, the soil moisture shows a smaller bias at the begin-
ning  of  prediction  (green  dots  for  prediction  11–15  days
ahead of heatwave occurrence) and the biases in soil mois-
ture have a relatively weak linkage with the SAT anomalies
associated  with  heatwave  occurrence  (correlation  coeffi-
cients  are  0.19,  0.07  and  0.1  for  the  CMA,  NCEP  and
ECMWF  models,  respectively).  The  correlation  coeffi-
cients increase along with the increased time of model integra-
tion (blue and red colors for conditions 6–10 days and 1–5
days  before  heatwave  occurrence,  respectively),  indicating
that the errors in SAT prediction associated with heatwaves

 

 

Fig.  10.  Scatterplots  for  (a–c)  CMA,  (d–f)  NCEP  and  (g–i)  ECMWF  model  prediction  biases  in  SAT  anomalies
(units: ℃, y-axis) against the intraseasonal H500 anomalies (units: gpm, x-axis) associated with the MJO (blue dots)
and QBWO (orange dots) for all heatwave days over the YRB during 1999–2010: predictions at lead times of (a, d,
g)  6–10  days,  (b,  e,  h)  11–15  days,  and  (c,  f,  i)  16–20  days.  The  linear  fit  curves  for  blue  and  orange  dots  are
presented  in  dark  blue  and  red,  respectively.  The  average  of  biases  (M)  for  each  variables  and  the  correlation
coefficient  (R)  between  SAT  biases  and  H500  biases  are  given  in  each  panel.  R  with  an  asterisk  indicates  the
correlation coefficients are significant at the 95% confidence level based on the Student’s t-test.
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are closely related to the predicted biases in soil moisture in
advance. In other words, once the biases in soil moisture pre-
diction grow, they will cause a larger bias in the predictions
of SAT anomalies through the land–atmosphere interaction,
and  thus  the  errors  in  heatwave  prediction.  Therefore,  an
accurate  prediction  of  soil  moisture  evolution  is  important
to a longer lead (such as the subseasonal time range) predic-
tion for heatwaves over the YRB.

5.    Summary

The YRB is one of the most densely populated regions
in  China,  and  has  begun  to  suffer  from  frequent  extreme
high-temperature  hazards  during  boreal  summer  (Fig.  1e).
Understanding  the  prediction  skill  of  heatwaves  in  opera-
tional  forecast  models  and  the  key  sources  of  prediction
skill  and/or biases is the basis to improve the forecast skill
of  heatwaves  with  longer  lead  times  (Vitart  et  al.,  2017;
Vitart  and  Robertson,  2018; Yang  et  al.,  2018).  Here,  we
used  the  reforecast  data  of  1999–2010  from  the  CMA,
NCEP and  ECWMF models  that  participated  in  the  WMO
S2S project to assess the prediction skill of heatwaves over
the  YRB  and  discuss  the  effects  of  errors  in  predicted
intraseasonal  circulation anomalies and land surface condi-
tions on the prediction of heatwaves at the subseasonal times-
cale beyond 10 days.

For  the  prediction  of  SAT  in  summer  (JJA),  all  the
three  models  show  underestimated  temperature  (cold
biases)  in  southeastern  China,  including  the  YRB (Fig.  1).
Based on the relative criteria of high temperature at the 90th
percentile in the summer season climatologically for the indi-
vidual  models,  we  defined  predicted  YRB  heatwaves  as
when  the  area  (YRB)-averaged  SAT  exceeded  a  threshold
of  no  less  than  3  days.  Assessments  of  the  three  models’
HSS, used to measure the proportion of correct predictions
for  heatwave  days  during  the  summers  of  1999–2010,
revealed that the three models lost their skill  (with an HSS
around zero) beyond the forecast lead time of 15 days (Fig.
2b).  At  the  forecast  lead  of  10  days,  the  three  models

showed  diverse  skill  in  their  YRB  heatwave  predictions.
The NCEP and ECMWF models performed better than the
CMA model.  To understand the  sources  of  prediction  skill
in these three operational models, the 2003 mega-heatwave
event with extreme hot days that lasted for 8 days over the
YRB was first analyzed. The key factors causing the predic-
tion  biases  of  the  heatwave  were  then  confirmed  and  dis-
cussed  in  more  depth  by  considering  all  heatwave  predic-
tions in the model reforecast period (1999–2010).

For the predictions of the 2003 mega-heatwave event at
a  10-day  forecast  lead,  the  ECMWF  model  captured  the
intensity and duration of  high SAT anomalies and thus the
long-lasting heatwave event, while the NCEP model underes-
timated  the  persistence  of  high  SAT  anomalies  and  the
lifespan  of  the  heatwave.  The  CMA  model  unfortunately
failed  to  predict  the  heatwave  observed  (Figs.  2c and 3).
The  better  prediction  skill  of  the  ECMWF model  could  be
attributable to its good skill in predicting the amplitude and
evolution  of  high-pressure  (H500)  anomalies  associated
with  intraseasonal  oscillation  (Figs.  4–6)  and  the  relevant
land  surface  process  (Figs.  7 and 8).  Observationally,  the
high-pressure  anomalies  induced  by  the  northwestward-
propagating QBWO favored the persistent high SAT anom-
alies  over  the  YRB  (Figs.  5a–d and 6j).  Along  with  the
reduced precipitation before the occurrence of the heatwave,
the drying of soil moisture also contributed to the mainten-
ance of high SAT anomalies (black curves in Fig. 8). The pos-
itive  roles  of  intraseasonal  oscillation  and  soil  moisture
have been documented in both observational and modeling
studies (Fischer et al., 2007; Dirmeyer et al., 2009; Yang et
al., 2018; Wang et al., 2019; Hsu et al., 2020). In this study,
we  emphasize  their  effects  on  heatwave  prediction  in  the
S2S models. When the NCEP and CMA models biasedly pre-
dicted  the  evolution  and  intensity  of  the  QBWO  (Fig.  6j),
the  occurrence  timing  and  amplitude  of  high  SAT  anom-
alies showed errors (Fig. 3), leading to limited skill in heat-
wave  prediction  (Fig.  2c).  The  weak  circulation  anomalies
in  the  NCEP and CMA models  could  further  induce  smal-
ler  decreases  in  precipitation  and  soil  moisture,  which  res-

 

 

Fig. 11. As in Figs. 10c, f and i but showing scatterplots between the SAT biases during heatwave days against the
soil moisture biases at 1–5 days (orange dots), 6–10 days (blue dots) and 11–15 days (green dots) in advance of YRB
heatwave occurrence.
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ult in near-normal SAT anomalies via the land–atmosphere
coupling (Fig. 8). In contrast, the ECMWF model correctly
predicted the propagation of enhanced QBWO-related high-
pressure anomalies and the decreasing tendency of soil mois-
ture  (Figs.  6j and 8),  meaning  the  amplitude  and  persist-
ence of high SAT anomalies, as well as the heatwave dura-
tion,  predicted  by  this  model  was  closer  to  observation
(Figs. 2c and 3).

The findings with respect  to the major factors influen-
cing the prediction skill as revealed by the evaluation of the
2003 YRB mega-heatwave event were confirmed by the ana-
lyses  using  the  three  models’ predictions  for  all  heatwave
events  in  1999–2010  (Figs.  9–11).  A  correct  prediction  of
QBWO circulation anomalies plays a crucial role in the accur-
acy  of  the  2003  mega-heatwave  prediction  as  the  MJO
shows little effect on this case; however, for most YRB heat-
wave  events,  both  the  MJO and  QBWO circulation  anom-
alies  predicted by the models  affect  the prediction skill  for
YRB heatwaves in summer (Figs.  9 and 10).  In this  study,
we further found that for a shorter forecast lead time (e.g., a
10-day lead), the effects of QBWO- and MJO-related H500
prediction skill on the fidelity in SAT predictions are compar-
able.  As  the  lead  times  become  longer  (over  15–20  days),
the  biases  in  MJO  circulation  predictions  cause  a  signific-
ant degrading of SAT predictions and thus heatwave predic-
tion  skill  (Fig.  10).  Thus,  the  MJO activity  over  the  Asian
monsoon  regions  could  be  the  vital  source  of  YRB  heat-
wave prediction skill at the subseasonal timescale.

Through  the  land–atmosphere  interaction,  the  predic-
tion errors  in  soil  moisture  induced by precipitation anom-
alies  are  also  a  factor  influencing  the  prediction  skill  of
SAT  anomalies  (Fig.  11).  If  the  models  successfully  pre-
dicted  soil  moisture  anomalies  and  precipitation  changes,
which  are  largely  influenced  by  the  intraseasonal  circula-
tion anomalies, before the heatwave occurrence, they could
also better predict the amplitude and duration of SAT anom-
alies associated with the heatwave. In other words, the skill
of  the  models  in  representing  the  land–atmosphere  coup-
ling  is  closely  connected  with  the  YRB  heatwave  predic-
tion skill  at  the  subseasonal  range,  similar  to  the  results  of
Ford  et  al.  (2018) who  focused  on  evaluating  U.S.  heat-
wave predictions.

The  contributions  of  skillful  predictions  of  intrasea-
sonal  circulation  anomalies  and  the  land  surface  condition
to the prediction of YRB heatwaves found in this study call
for further investigation into how to improve the model pre-
diction  skill  for  intraseasonal  oscillation  and  land–atmo-
sphere  coupling.  Identifying  the  factors  and  key  processes
affecting  the  phase  evolution  and  strength  of  the  QBWO
and  MJO  in  the  S2S  models  (He  et  al.,  2019),  as  well  as
their influences on the land surface processes, are the aims
of our ongoing research. Besides, the findings of this study
are based on assessment and analysis of S2S models’ refore-
cast data. Recent studies found that moisture initialization is
important for accurate prediction of the MJO and its telecon-
nection patterns (Ren et al., 2016; Wu et al., 2020). To what

extent  the  initial  atmospheric  and  soil  moisture  anomalies
exert  impacts  on  the  prediction  skill  of  YRB heatwaves  at
the subseasonal time scale is worth further studying by con-
ducting forecast experiments.
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