
1.  Introduction
Aerosols have great effects on the Earth's radiation budget by scattering and absorbing solar radiation, as 
well as complexly affecting the microphysical properties and lifetime of clouds, and hence impact the Earth's 
climate and hydrological cycle (Chylek & Wong, 1995; Ramanathan et al., 2001; Twomey, 1974, 1991). De-
spite numerous aerosol studies, currently, the aerosol particles influencing radiative forcing, especially aero-
sol-cloud interaction, are still one of the largest uncertainties in model simulations for global climate projec-
tion (Boucher et al., 2013; Haywood & Boucher, 2000; Myhre, Shindell, et al., 2013). One of the key factors 
resulting in such large uncertainty in model radiative forcing and its climatic effect can be attributed to the 
diversity in aerosol optical properties and their spatial-temporal distributions (Myhre, Samset, et al., 2013).

In the past decades, information about the aerosol optical properties were obtained from various evolv-
ing aerosol observing systems, including ground-based global networks such as the AERONET (AErosol 
RObotic NETwork; Holben et al.,  1998) and CARSNET (China Aerosol Robot Sunphotometer NETwork; 
Che et al., 2009), and space-based remote sensing platforms such as MODIS (Moderate Resolution Imag-
ing Spectroradiometer; Remer et al., 2005), MISR (the Multi-angle Imaging SpectroRadiometer; Martonchik 
et al., 1998), AHI (Advanced Himawari Imager; Bessho et al., 2016), CALIPSO (the Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite; Winker et  al., 2013), AATSR (Advanced Along-Track Scanning Radiometer; 
Bevan et al., 2012), SeaWiFS (Sea-viewing Wide Field-of-view Sensor; Hsu et al., 2019), VIIRS (Visible Infra-
red Imaging Radiometer; Hsu et al., 2019), and POLDER (Polarization and Directionality of Earth's Reflec-
tance; Dubovik et al., 2011; 2014). The highly accurate ground-based observations of aerosols could be used 
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to evaluate satellite retrievals, while remote sensing can overcome the limitations of spatial coverage of these 
ground measurements with various spatial-temporal resolutions (Kittaka et al., 2011; Remer et al., 2005). 
Despite this continuous progress, however, large diversities still remain among various satellite observations 
(Ma et al., 2013), including limited understanding of the global aerosols distribution. The aerosol products 
of AATSR Dual View (ADV) and SeaWiFS showed relatively lower spatial coverage with numerous missing 
values over MODIS products, which cover most areas (average of 87%) of the world (Wei et al., 2019). The 
satellite data sets showed varying levels of consistency, depending on the region (Holzer-Popp et al., 2013; 
Nabat et al., 2013), with the largest discrepancies seen in regions with persistent heavy cloud cover (Sayer 
et al., 2018).

Due to a lack of knowledge about the accurate spatial and temporal distributions of aerosol optical properties, 
global aerosol transport models, which are coupled with the general circulation model or chemical transport 
model (CTM), have emerged as important tools for filling in these observational gaps to simulate aerosol optical 
properties, such as aerosol optical depth (AOD), Ångström exponent (AE), and single scattering albedo (SSA), 
for radiative forcing estimation. To date, however, different models still show a large diversity of global aerosol 
distribution (Cesnulyte et al., 2014; Dai et al., 2015; Ma & Yu, 2015; Pozzer et al., 2015; Sheel et al., 2018). An 
important way in which to reduce this diversity is by observation and evaluation of the model performances 
with respect to the aerosol optical properties, which can lead to model improvements in the aerosol size distri-
bution, hygroscopic growth, refractive indices, mixing state, emissions, and other aspects to better quantify the 
spatial and temporal distribution of aerosols and study their global climatic effects (Chin et al., 2009; Lamarque 
et al., 2012; Liu et al., 2016; Ma & Yu, 2015; Mann et al., 2014; Seinfeld & Pandis, 2006; Tsigaridis et al., 2014).

The Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) 
model developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophys-
ical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), CAS (Bao et al., 2019; He et al., 2019; J. 
Li et al., 2019), has continuously contributed to the Coupled Model Intercomparison Project (CMIP) from the 
initial phase to the current phase of the CMIP6, and to the assessment reports of the Intergovernmental Panel 
on Climate Change (IPCC; Zhou et al., 2015). A significant advantage of FGOALS-f3-L is that a higher reso-
lution simulation (∼25 km) can be performed with the updated dynamical core using a finite volume on the 
cubed-sphere grid (S. J. Lin, 2004; Putman & Lin, 2007). To date, however, CAS-FGOALS-f3-L only reproduces 
the direct aerosols radiation effect offline and lacks the interactions between aerosols and cloud. The prescribed 
aerosols are taken from the National Center for Atmospheric Research (NCAR) CAM-Chem model (Lamarque 
et al., 2012), which are unable to match the meteorological fields of the model for every time step and hampers 
the study of the climate effects, such as assessing the effective radiative forcing of anthropogenic aerosols.

In this study, we implement an existing aerosol module named Spectral Radiation Transport Model for Aer-
osol Species (SPRINTARS; Takemura et al., 2005) in the CAS-FGOALS-f3-L model. An important feature of 
the new version is that of replacing the offline aerosol with the online aerosol model and adding the interac-
tion between aerosol and cloud. The main objective of this study is to evaluate the performance of the new 
coupled aerosol model with multiple platform observations. We simulate the global aerosol distributions 
over the 2002–2014 period. The simulated surface mass concentrations of each aerosol species are evaluat-
ed with in situ observations, and the simulated aerosol optical properties are evaluated with satellite-based 
MODIS, MISR, AATSR-SU, and SeaWiFS and surface-based AERONET observations.

This study is organized as follows. In Section 2, we describe the newly developed aerosol online coupled 
model and observations used for evaluation. In Section 3, the performances of the simulated aerosols are 
evaluated with comparisons between the surface mass concentration observations, the MODIS, MISR, 
AATSR-SU, and SeaWiFS as well as the AERONET observations. In Section 4, we discuss the overall model 
results. The brief conclusions are given in Section 5.

2.  Model and Observations
2.1.  Model Description

CAS FGOALS-f3-L is the latest-generation global climate model (GCM), which is developed by the LASG, 
IAP, and CAS. Replaced with the former Spectral Atmosphere Model (SAMIL; Bao et al., 2010, 2013; Wu 

WANG ET AL.

10.1029/2019JD032097

2 of 32



Journal of Geophysical Research: Atmospheres

et al., 1996), version 2 of the Finite-volume Atmospheric Model (FAMIL2; 
Bao et al., 2019; He et al., 2019; J. Li et al., 2019; Zhou et al., 2015), as the 
latest generation the atmospheric component, it is used in the atmospher-
ic model of LASG. The dynamical core of FAMIL2 uses a finite volume on 
a cubed-sphere grid (S. J. Lin, 2004; Putman & Lin, 2007) that covers the 
globe with six tiles; each tile can contain a minimum of number of grid 
cells (C48, about 200 km) to a maximum of number of grid cells (C1536, 
about 6.25 km) (J. X. Li et al., 2017; Zhou et al., 2012). Compared with the 
previous spectral longitude-latitude grid (Bao et al., 2013), the unique de-
sign of the cubed-sphere grid of FAMIL2 resulted in a higher resolution 
simulation to be performed. Hybrid coordinates over 32 layers are used 
in the model, which extend from the surface to 1 hPa. A new turbulence 
parameterization scheme with a nonlocal high-order closure (Brether-
ton & Park,  2009) replaced the previous “nonlocal” first-order closure 
scheme. The single-moment microphysical parameterization used in FA-
MIL2 can explicitly treat the mass mixing ratio of six hydrometeor species 
(water vapor, cloud water, cloud ice, rain, snow, and graupel) (Harris & 
Lin, 2014; Y. L. Lin et al., 1983; Zhou et al., 2019). More precise cloud 
fractions can be diagnosed by the scheme of diagnosing the cloud frac-

tions, which consider both relative humidity (RH) and cloud mixing ratio (Xu & Randall, 1996) as used in 
FAMIL2. A convection-resolving precipitation parameterization (Bao et al., 2019) is used in FAMIL2, which 
can calculate the microphysical processes in the cumulous scheme for both deep and shallow convection 
explicitly. In addition, a new radiation transfer scheme Rapid Radiative Transfer Model for GCMs (RRT-
MG), which used the correlated-k approach (Clough et al., 2005) to calculate the irradiance and heating 
rates are introduced into FAMIL2. The land and sea ice models adopt version 4.0 of the Community Land 
Model (CLM4; Oleson et al., 2010) and version 4 of the Los Alamos sea ice model (CICE4; Hunke & Lip-
scomb, 2010), respectively. The coupled module used the version 7 coupler (CPL7) from the NCAR (http://
www.cesm.ucar.edu/models/cesm1.0/cpl7/) to exchange the flux among these components.

The aerosol module called SPRINTARS (Goto et  al.,  2011; Takemura et  al.,  2000, 2002, 2005, 2009) has 
been online coupled with the FAMIL2 in this study. A single-moment scheme is used to calculate the mass 
mixing ratios of the main tropospheric aerosol components (soil dust, sea salt, sulfate, and carbonaceous 
aerosols) and the precursor gases of sulfate. The main aerosol processes are treated, including emission, 
advection, convection, diffusion, sulfur chemistry, dry deposition, wet deposition, and gravitational settling.

In SPRINTARS, the soil dust particles are divided by radius into 10 bins from 0.1 to 10  μm. The emis-
sion mass flux F is calculated at each model time step with the parameterization scheme as follows (Dai 
et al., 2018; Takemura et al., 2000):

    2 9
10 10 10gt g

t
gt

W W
F f r C u

W
   
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 

� (1)

where |υ10| is the surface wind speed at a 10 m height, Wg is the soil moisture, f(r) is the normalized emission 
intensity related to the dust effective radius r, C is the coefficient depending on the different dust source 
areas (Figure 1c and Table 1 in Dai et al., 2018), Wgt is the threshold soil moisture depending on the region, 
and ut is the threshold set to 6.5 ms−1. The sea salt particles are divided by radius into four bins from 0.1 to 
10 μm (Takemura et al., 2009). The emission flux F, which is a function of the wind speed at a 10 m height 
and the particle radius based on Monahan et al. (1986), is calculated at every model time step.

The emission sources of carbonaceous aerosols are divided into five categories in the model as follows: an-
thropogenic black carbon source (ANTBC), biomass burning black carbon source (BBBC), anthropogenic 
organic carbon source (ANTOC), biomass burning organic carbon source (BBOC), and the gas-to-particle 
conversion of terpene. The first four emission inventories are all from the Community Emissions Data 
System (CEDS; Hoesly et al., 2018; van Marle et al., 2017) for CMIP6 (https://esgf-node.llnl.gov/search/
input4mips/). The terpene emissions data is from the MEGANv2.10 biogenic emission inventories (https://
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Emission source Species OC/BC mass ratio

ANTBC (50%) BC Pure BC

Terpene SOC Pure SOC

BBOC OC/BC (1) 8.28

BBBC OC/BC (2) 6.92

ANTBC (50%) OC/BC (3) 3.33

ANTOC OC/BC (4) 5.64

Abbreviations: ANTBC: anthropogenic black carbon source, terpene: 
secondary organic carbon (SOC) from the gas-to-particle conversion of 
the terpenes emitted from vegetation, ANTOC: anthropogenic organic 
carbon source; BBBC: biomass burning black carbon source; BBOC: 
biomass burning organic carbon source.

Table 1 
Summary of the Emission Source, Species, and Mass Ratio of OC and BC 
for Carbonaceous Aerosols

http://www.cesm.ucar.edu/models/cesm1.0/cpl7/
http://www.cesm.ucar.edu/models/cesm1.0/cpl7/
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https://eccad3.sedoo.fr/
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eccad3.sedoo.fr/). In SPRINTARS, two factors with values of 1.6 and 2.6 for ANTOC and BBOC are applied 
for the conversion of organic carbon into organic matter (Malm et al., 1994, 2003), respectively. The internal 
mixtures of BC and OC (OC/BC) are considered (Takemura et al., 2009). The mass ratio of OC and BC for 
each source in the model is listed in Table 1, following Takemura et al. (2002). A 50% mass of ANTBC is 
considered as an external mixture (i.e., pure BC), and pure OC is produced from the terpenes using a 5% 
yield rate (Liousse et al., 1996). The particle size distributions of carbonaceous aerosols (BC, OC, and OC/
BC) are assumed to be monomodally lognormal size distributions with dry modal radii of 0.0118, 0.02, and 
0.1 μm, respectively, while the geometric standard deviations are 2.0, 1.8, and 1.562, respectively. These 
assumptions are the same as those in Dai et al. (2014).

The precursor gases of sulfate aerosols are from the three following categories: dimethylsulfide (DMS), 
anthropogenic sulfur dioxide source (ANTSO2), and biomass burning sulfur dioxide source (BBSO2). The 
emission flux of DMS from oceanic phytoplankton is parameterized as a function of the downward surface 
solar flux (Takemura et al., 2000). The emissions inventories of ANTSO2 and BBSO2 are all from the CEDS 
for CMIP6. For SPRINTARS, the sulfur chemistry has been described in detail by Takemura et al. (2000). 
Briefly, DMS is oxidized by OH radicals to form SO2 and sulfate in the gas phase, and SO2 mainly reacts with 
OH radicals in the gas phase and H2O2 and O3 in the liquid phase, which are calculated using three-dimen-
sional monthly oxide fields of three free radicals (OH, O3, and H2O2) prescribed from CHASER, a global 
CTM (Sudo et al., 2002). The particle size distribution of the sulfate follows that of Dai et al. (2014), using 
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Figure 1.  (a, c, e, and g) The spectra of the mass extinction coefficient (MEC) and (b, d, f, and h) single scattering 
albedo (SSA) of each species for the dry particle aerosols.

https://eccad3.sedoo.fr/


Journal of Geophysical Research: Atmospheres

a monomodally lognormal size distribution with dry modal radii of 0.0695  μm and geometric standard 
deviations of 1.526.

The aerosol densities and refractive indices of all aerosols are the same as those used by Takemura 
et al. (2002) and Dai et al. (2014). Meanwhile, except for the hydrophobic aerosols of dust and pure BC, the 
hygroscopic aerosols of the sea salt, sulfate, OC, and OC/BC are parameterized as a function of RH (Take-
mura et al., 2002, Table 4), and the mass extinction coefficient and absorption coefficient are calculated at 
eight RH using the Mie scattering algorithm (Dai et al., 2014). The simulated optical properties can be cal-
culated with the precalculated optical parameters and simulated mass concentration of each species. AOD 
represents the aerosol extinction capacity in the atmospheric column and is derived as the mass extinction 
coefficient multiplied by the aerosol mass. AE represents the spectral change in AOD and characterizes the 
size of the aerosol particles and is calculated according to    870nm 440nm 870nm 440nmlog / / log /    , where τ 
and λ represent AOD and wavelengths, respectively. SSA represents the aerosol scatter capacity and is cal-
culated as the ratio of the scattering optical depth and extinction optical depth.

Figure 1 shows the spectra of the mass extinction coefficient and single-scattering albedo of each species for 
the dry particle aerosols used in the model. Generally, the mass extinction coefficient of the fine mode aero-
sols (e.g., sulfate and carbonaceous aerosols) at short wavelengths (0.2–12.2 μm in the model with RRTMG 
radiation transfer scheme) decreases as the wavelength increases, whereas the mass extinction coefficient 
of the coarse mode aerosols (e.g., dust and sea salt aerosols) at short wavelengths does not change with the 
wavelength, which implies a much lower AE for dust and sea salt than sulfate and carbonaceous aerosols. 
The single-scattering albedos of sea salt and sulfate almost reach 1, indicating that their absorptions are 
quite weak and negligible. In addition, a weak absorption for dust aerosols and a strong absorption for BC 
aerosols are found. The internal mixture of carbonaceous aerosols also reveals a stronger absorption than 
that of OC but weaker absorption than that of BC.

For the interaction of aerosol and cloud, the aerosol number concentration can be calculated by predicted 
aerosol mass mixing ratios, pre-prescribed particle size (dry mode radius and standard deviations), and 
particle density in each model time step in SPRINTARS. The activation scheme named ARG (Abdul-Razzak 
& Ghan, 2000; Takemura et al., 2005), considering particle size, aerosol chemical component, and updraft 
velocity, is used in the model for water stratus clouds. The berry-type autoconversion scheme (Berry, 1968) 
is adopted in the model, which includes a cloud condensation nuclei (CCN) effect and its formula is the 
same as that used by Sato et al. (2018).

2.2.  Observations Data Set

2.2.1.  AERONET

AERONET is a global ground-based Sun photometer network deployed for measurement of aerosol optical 
properties with high spectral-temporal resolutions (Holben et al., 1998). The network imposes standardi-
zation of instruments, calibration, processing, and distribution. Due to the uncertainty of AERONET AOD 
at Level 2.0 (quality assured) being ∼0.01–0.02 (Smirnov et al., 2000), it can serve as a truth value to as-
sess AOD and validate satellite-retrieved AOD. In addition, it is noticed that the uncertainty of AERONET 
SSA can increase significantly in low AOD situations due to the limitation of instrument sensitivity. The 
AERONET SSA has an uncertainty of 0.03 when AOD (440 nm) is great than 0.2 and 0.05 to 0.07 when 
AOD (440 nm) is less than 0.2 (Dubovik et al., 2000). In the present study, we use the cloud-screened and 
quality-assured AERONET Level 2.0 daily average data (https://aeronet.gsfc.nasa.gov/cgi-bin/combined_
data_access_inv) for comparison. As not all the sites have large temporal coverage, we choose those sites 
with more than 5 days' observations every month and at least 12-month data available over the period of 
2002–2014 for our analysis; we further eliminate the sites with a low spatial domain (<300 km) according to 
the site assessment from Kinne et al. (2013). The AOD and SSA at 550 nm obtained by spectral interpolation 
at both 440 and 675 nm are used under the assumption that they are proportional to the wavelength on a 
logarithmic scale (Dai et al., 2014). The AE calculated from AODs at 440 and 870 nm is used. Finally, the 
simulated values of aerosol optical properties (AOD, AE, and SSA) are sampled consistently with AER-
ONET site measurements for comparison.
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2.2.2.  MODIS, MISR, AATSR-SU, and SeaWiFS

The MODIS is a key instrument aboard the Terra and Aqua satellites (Salomonson et al., 1989). It views 
the entire Earth's surface every 1–2 days with a swath of 2,330 km, acquiring data in 36-spectral bands 
(0.41–14.4 μm), and is a well-calibrated spectroradiometer with spatial resolutions of 250, 500, and 1,000 m 
(Levy et  al.,  2010; Remer et  al.,  2008). After continuous validations and evaluations, one MODIS AOD 
product retrieved by a dark target (DT) algorithm, which has limitations over bright surfaces in visible 
channels, has clear expected errors (EEs): [±(0.05 + 0.15 AOD)] over land and [+(0.04 + 0.10 AOD), −
(0.02 + 0.10 AOD), asymmetric] over ocean (Levy et al., 2013). Another MODIS AOD product which can be 
better retrieved from desert surfaces by a deep blue (DB) algorithm is applied only over land, and its EEs are 
∼[ ± (0.03 + 0.21 AOD)] for “arid” and [ ± (0.03 + 0.18 AOD)] for “vegetated” path (Hsu et al., 2013). The 
MODIS Level 3 AOD product is created by aggregating the MODIS Level 2 AOD product that considers only 
the best cloud-free pixels as a preprocessing step (Martins et al., 2002; Remer et al., 2005). In the present 
study, the daily MODIS Collection 6.1 Level 3 AODs combined with the DT and DB algorithms (variable 
name “AOD_550_Dark_Target_Deep_Blue_Combined_Mean”) at a 1 × 1° resolution from both the Terra 
and Aqua satellites are used, which can be considered as a “best-of” AOD product that combines DB, DT-
land, and DT-ocean based on a simple merge for increasing the spatial coverage (Levy et al., 2013). The  
Terra AODs are available since early 2000, whereas the Aqua AODs are available since mid-2002. In order to 
make full use of these data, we average the available MODIS L3 AOD retrievals from both Terra and Aqua 
over the period 2002–2014 for our analysis.

The MISR (Martonchik et al., 1998) is one of the first multiangle, multispectral space-based imagers on 
the Terra satellite, which is designed to improve our understanding of the fate of sunlight in the Earth's 
environment. It has an assembly of nine cameras with four spectral channels (blue, green, red, and near-in-
frared) at nine different viewing angles, swathing about 380 km. The observation with a well-calibrated and 
georectified multiangular imagery enables the generation of long-term data records, including aerosol prop-
erties over land and ocean. Recently, a new method is introduced to improve the retrieving AOD over dark 
water and screen high-AOD retrieval blunders through the use of thresholds on different cost functions 
(Witek et al., 2018). In this study, the latest MISR Version 23 monthly globally gridded aerosol mean AOD at 
555 nm (green band) in 0.5 × 0.5° resolution over the period 2002–2014 is used for comparison.

The AATSR aboard on ENVISAT is used to observe the Earth by dual-view, which is a part of Climate 
Change Initiative (CCI). The AOD retrieval algorithms of AATSR-SU is the Swansea algorithm (SU) by the 
University of Swansea (Xie et al., 2017), which employs a simple model to estimate the water-leaving radi-
ance from the ocean at the red and infrared channels over the ocean. Over land, the SU algorithm estimates 
the surface spectral reflectance using the dual-view feature (Bevan et al., 2012; North, 2002). In our study, 
the latest Version 4.3 monthly AATSR-SU products in 1 × 1° resolution over the period 2002–2011 are used.

SeaWiFS is the first mission on ocean-colors in the United States and internationally, which can provide a 
long-term record of optical properties and ocean biology for climate research (Hooker & McClain, 2000). 
The multi-spectral radiometer of SeaWiFS can collect data over a wide swath with a resolution of ∼1 km 
(McClain et al., 2004). SeaWiFS is mainly for providing ocean color measurements, and it generates aero-
sol products using the DB algorithm (Wei et al., 2019). One of the advantages of SeaWiFS aerosol optical 
products is that the SeaWiFS can avoid specular reflection of the Sun on the ocean surface (Hooker & Mc-
Clain, 2000). In our study, the SeaWiFS Version 4 monthly aerosol products with 1 × 1° resolution which 
are available over the period 2002–2010 are used.

2.2.3.  Surface Mass Concentrations

Four freely available compilations of aerosol surface concentrations, which represent the present-day cli-
matology of aerosol surface concentration observations, are used to evaluate the simulated aerosol sur-
face concentrations. The first data set was managed by the Rosenstiel School of Marine and Atmospheric 
Science at the University of Miami, which are based partly on measurements taken during the sea/air ex-
change (SEAREX) program in 1979 (Prospero et al., 1989). Most measuring sites are located far downwind 
of dust emission sources. Here, we use dust and sea salt surface concentrations data covering the period 
of 1981–1998 for climatological comparison. The second data set is from the Interagency Monitoring of 
Protected Visual Environment (IMPROVE) database (http://views.cira.colostate.edu/fed/QueryWizard/
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Default.aspx). IMPROVE is designated as the visibility monitoring network in the United States and was 
initially established as a national visibility network in 1985, which is mainly used for observation of aer-
osols, air quality, and optical parameters. We select sulfate, OC, and BC surface concentrations from 160 
sites with more than 5 days of observation every month and at least 12 months' data available over the 
period 2002–2014 for comparison. The third data set is from the co-operative program for monitoring and 
evaluation of the long-range transmission of air pollutants in Europe (unofficially “European Monitoring 
and Evaluation Programme,” EMEP). The data are subject to national quality assessment and can be down-
loaded freely from the website (https://projects.nilu.no//ccc/emepdata.html). Similar to IMPROVE data 
sample method, a total of 46 sites are selected for sulfate concentrations comparison and 6 sites for OC and 
BC concentrations comparison. The last data set is from 14 long-term observational stations within China 
and monthly mean mass concentration are collected during 2006 and 2007 (Zhang et al., 2012). After we 
eliminate the Xi'an site that is influenced a lot by local construction activity, the 13 sites, which measured 
mass concentrations of BC, OC, and sulfate in 2006, are selected for comparison.

3.  Results
In order to evaluate the performance of this new coupled aerosol model with multiple-platform observa-
tions, an AMIP-like experiment is performed in this study. It is noted that the CMIP6 forcing data go until 
2014, and most observational data can be obtained after the 20th century. Therefore, the period 2002–2014 
is selected for simulation and comparison, despite missing out on all the observational data sets that have 
been assembled in recent years.

For quantitative comparison, model performances against the observations are measured by four statistical 
metrics: correlation coefficient (R), mean bias (B), root-mean-square error (E), and skill score (S). B is de-
fined as the average difference between all model-observed pairs (Chin et al., 2009) and can be written as

 
1

1 N
m o

i
B C C

N 
 � (2)

where Cm is the simulated value, Co is the observed value, and N is the total number of observations. E is a 
frequently good overall measure of the differences between all model-observed pairs and is defined as the 
following formula:
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The skill score S is a relatively comprehensive statistical index for the model evaluation, which relates to R 
and the standard deviation of the model and observed results. It is calculated as
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where σf is the result of the standard deviation of model outputs divided by the standard deviation of obser-
vations, and R0 is set to 1, which is the maximum of R (Chin et al., 2009; Taylor, 2001).

3.1.  Aerosol Lifecycles

Figure 2 shows the spatial distribution of the annual average aerosol emission rates of dust, sea salt, BC, 
OC, and sulfur over the 2002–2014 period that are used in the model. It is obvious that the major dust 
sources are in the Sahara, the Middle East, and Asia deserts. The maximum sea salt emission exists in 
the mid-high latitude area, especially in the Southern Ocean, which has strong winds. Higher BC and 
OC emissions are found in East Asia, South Asia, South America, and South Africa. Sulfate aerosols 
can be produced by the chemical reaction of SO2. A minor SO2 source is from the DMS produced by 
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phytoplankton in the ocean, and the major SO2 sources in the East Asia, South Asia, Europe, North 
America, and South Africa are apparent and are usually associated with human activities and economic 
development.

Table 2 shows the global annual average aerosol emissions, burdens, lifetimes, and loss frequencies. The 
loss frequencies, namely, removal rate coefficients, are calculated as in Textor et  al. (2006, Equation 7). 
The emission flux of natural aerosols (such as dust and sea salt) accounts for the largest emission flux of 
all aerosol species in the model. For the dust aerosols, a shorter dust lifetime (∼2 days) is mainly induced 
by stronger dry deposition (dry deposition = turbulent dry deposition + sedimentation) in the model, es-
pecially turbulent dry deposition, as its removal rate is five times of that for sedimentation through further 
analysis. These results are similar to a previous study on SPRINTARS (Takemura et al., 2000, Figure 5), 
which implies that the lifetime of dust aerosol mainly depends on the dust emission scheme and deposition 
scheme. For sea salt aerosol, the shortest lifetime in the model is mainly due to strong wet deposition and 
dry deposition. In addition, black carbon, particles of organic matter, and sulfate are dominated by fine 
modes and wet removal processes.
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Figure 2.  Annual average aerosol emission rates of dust, sea salt, BC, OC, and sulfur over the 2002–2014 period used 
in the model. The global annual average values are labeled at the top-right of each subplot.
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Species

Emissions Burden Lifetime kwet kdry

(Tgyr−1) (Tg) (days) (days−1) (day−1)

Dust 3521.90 ± 244.35 18.91 ± 1.47 1.96 ± 0.10 0.079 ± 0.004 0.719 ± 0.007

Sea salt 4712.47 ± 42.91 4.70 ± 0.03 0.36 ± 0.00 0.871 ± 0.006 2.187 ± 0.008

Black carbon 9.47 ± 0.62 0.18 ± 0.01 7.08 ± 0.13 0.111 ± 0.001 0.058 ± 0.001

POM 101.63 ± 4.55 1.34 ± 0.06 4.80 ± 0.11 0.176 ± 0.001 0.062 ± 0.002

Sulfate (S only) 41.54 ± 1.00 0.58 ± 0.02 5.12 ± 0.17 0.173 ± 0.000 0.045 ± 0.001

Note. For each cell, the top number is the multiyear mean (±standard deviation) result of the CAS FGOALS simulations 
for the 2002–2014 period, kwet and kdry representing wet and dry removal rate coefficients, both are calculated as in 
Textor et al. (2006, equation 7).
Abbreviation: POM, particles of organic matter.

Table 2 
Global Annual Average Aerosol Emissions, Burdens, Lifetimes, and Loss Frequencies

Figure 3.  Annual average aerosol surface concentrations (μg m−3) of dust, sea salt, BC, OC, and sulfate for the 
2002–2014 period. Four symbols represent site observations from different sources: square = University of Miami sites 
(global); triangle = IMPROVE (America); circle = East Asia sites; and rhombus = EMEP (Europe). Both the simulated 
results and observations have the same color bar. EMEP, European Monitoring and Evaluation Programme; IMPROVE, 
Interagency Monitoring of Protected Visual Environment.
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3.2.  Aerosol Surface Mass Concentrations

Figure 3 shows the spatial distributions of the simulated annual average aerosol surface mass concentra-
tions. The sites are marked with different symbols to represent different data sources. It is clear that the 
surface concentrations are closely related to the emission intensity of the aerosols or their precursors and 
are affected by atmospheric circulation. The maximum concentrations tend to occur in high-emission areas. 
Aerosol plumes can extend to the northeast corner of South America from North Africa (such as dust, BC, 
and OC) and the northwest Pacific from East Asia (such as dust, BC, OC, and sulfate). Figures 3 and 4 both 
show that the simulated aerosol surface concentrations have similar regional variability and magnitude 
with the observations. The modeled dust surface concentrations (Figure 4a) are well correlated with the 
observations (R = 0.73), suggesting that the model can reasonably characterize the dust surface distribution. 
According to reanalysis data, the noticeable low bias (B = −7.35) in dust concentration, partly due to the 
wind speed in 1980–1990s (dust concentration measurement period), is stronger than that in the period 
2002–2014s (simulation period) in most land areas. The modeled sea salt surface concentrations (Figure 4b) 
are poorly correlated with the observations (R = −0.03) and have a significant low bias (B = −17.77), this 
is possibly in part due to the resolution in our model being too large (∼200 km), which can smooth the ex-
treme points. In addition, Fei et al. (2019) recently pointed out that large particle size sea salt (radius of the 
dry particle >10 μm) can account for ∼28.5% of the total sea salt mass, so the neglect of large particle size 
sea salt may also lead to an underestimation of the sea salt mass concentration. According to comparisons 
of the simulated BC, OC, and sulfate aerosol surface concentrations with the site observations (Figures 4c–
4e), the modeled results are well correlated with the surface observed concentrations for BC (R = 0.86), OC 
(R = 0.75), and sulfate (R = 0.86), with a slight low bias for BC (B = −0.28), OC (B = −0.44), and sulfate 
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Figure 4.  Scatterplot of modeled versus site-observed surface mass concentrations. (a) Dust, (b) Sea salt, (c) Black carbon (BC), (d) Organic carbon (OC), 
(e) Sulfate. The black continuous line is the 1:1 line, whereas the black dotted lines correspond to the 10:1 and 1:10 lines. The symbols representing the sites 
observations are the same as in Figure 3. R = correlation coefficient, B = absolute bias, E = Root mean square error, S = skill score, and N = total number of 
observation sites.
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(B = −1.25), suggesting that the model can capture the regional variability and magnitude of the three aer-
osol compositions (BC, OC, and sulfate) from the observations.

3.3.  Aerosol Optical Depth

3.3.1.  Species AOD

Figure 5 shows the annual average AOD of dust, sea salt, carbonaceous, and sulfate aerosols during the 
2002–2014 period. High AOD values (>0.2) for dust aerosols are found in the main dust emission source 
regions which have been mentioned previously, such as North Africa and East Asia. The plumes are found 
in the downwind direction of the dust source regions, indicating that dust aerosols can be transported to the 
mid-Atlantic and western Pacific and even across the ocean to the South American continent. For sea salt 
aerosol, a high-value band appears in the mid-high latitudes of the Southern Hemisphere, which is related 
to surface wind. Since the carbonaceous aerosols in our model are internally mixed, the optical properties 
of the black carbon and organic carbon could not be separated. Carbonaceous aerosols are prominent in 
South America, Central and South Africa, and Southeast Asia, with maximal AOD values of >0.15. The 
high AOD (>0.3) for sulfate in East Asia and South Asia is obvious, which can be mainly attributed to the 
rapid industrialization process and the high consumption of fossil fuels (Hoesly et  al.,  2018; van Marle 
et al., 2017). The lower AOD of the sulfates is located in industrialized and developed areas such as eastern 
America and Europe.
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Figure 5.  Annual average aerosol optical depth of dust, sea salt, carbonaceous, sulfate, and total aerosol during the 
2002–2014 period. The global average of each aerosol component is labeled at the top-right of each subgraph, and its 
contribution to the total AOD is labeled in parenthesis. AOD, aerosol optical depth.
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3.3.2.  Comparisons With Multisource Satellites

Figure 6 shows the multiyear average AOD from (a) MODIS, (b) MISR, (c) AATSR-SU, and (d) SeaWiFS 
and the absolute difference between the modeled AOD and the four satellite AOD products. To compare 
the modeled AOD with the satellite AOD, we should principally select the satellite observation time and the 
observation range under clear sky conditions in the model. Some studies (Colarco et al., 2010) have pointed 
out that the diurnal variation in AOD is negligible compared with sampling the model with satellite obser-
vations under clear sky conditions. Therefore, only the modeled AOD from days with clear sky conditions is 
used in this study. In addition, it is noticed that the definition of the clear sky condition between the model 
and the satellite is different, and the model screening clear sky when the whole layer of cloud amount in the 
model grid is less than 0.2. In general, the spatial distribution of AOD is consistent for all satellite AODs, es-
pecially in regions with large magnitudes of AOD, such as East Asia, South Asia, the Middle East, and North 
Africa, while there are significant differences over the ocean. MODIS and MISR AODs are both higher 
than those from AATSR-SU and SeaWiFS. Some research has pointed out that MODIS and MISR could be 
contaminated with clouds (e.g., cirrus, stratocumulus, and broken cumulus clouds), especially at mid-high 
latitudes (Toth et al., 2013). Although the updated MISR V23 data set has screened high-AOD retrieval blun-
ders caused by cloud contamination over dark water, some known issues and limitations still exist (Witek 
et al., 2018). Another obvious difference could be seen between AATSR-SU and the other three satellites on 
land, especially on bright land surfaces (such as North Africa). Bevan et al. (2012) also pointed out that the 
AATSR-SU overestimated the North African regional AOD compared with AERONET. This may be caused 
by the land algorithm used in AATSR, which uses a surface model that lacks a priori information about the 
spectral properties (North et al., 1999).

The differences in AOD between the model and satellites (Figures 6e–6g) show that the modeled AOD is 
lower in some continental regions, especially East Asia, northern India, the Middle East, and the western 
coast of Central Africa, but higher on the Asian Gobi Desert. The modeled AODs over the ocean are con-
sistent compared with AATSR-SU and SeaWiFS, and underestimations relative to MODIS and MISR are 
expected.

Overall, the global mean differences between the model and the satellites are −0.078, −0.067, −0.043, and 
−0.026. Figure 7 shows the spatial difference in AOD in the different seasons. The maximum positive bias 
in the Gobi Desert occurs in MAM and JJA, and the maximum negative bias in the Middle East occurs in 
DJF and MAM. Large negative biases are found over Central Africa and central North Africa in MAM and 
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Figure 6.  (a–d) Multiyear averaged AOD from MODIS, MISR, AATSR-SU and SeaWiFS and the (e–h) absolute differences between the modeled AOD and 
MODIS, MISR, AATSR-SU, and SeaWiFS in clear sky conditions. L: Land mean, O: Ocean mean. The global annual mean is shown at the top-right of each 
subplot. AATSR, Advanced Along-Track Scanning Radiometer; AOD, aerosol optical depth; SeaWiFS, MISR, Multi-angle Imaging Spectroradiometer; MODIS, 
Moderate Resolution Imaging Spectroradiometer; Sea-viewing Wide Field-of-view Sensor; SU, Swansea algorithm.
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JJA, respectively. South America and South Africa also show great negative bias in SON during the biomass 
burning season. The difference between the model and the satellites in the other areas is less than 0.1 in 
almost all the seasons.

Some biases in dust source regions (e.g., Asia Gobi Desert, Middle East and central North Africa), may be 
attributed to the bias in the dominant dust aerosol. The dust emission mass flux is calculated for each model 

time step with the parameterization scheme according to Equation 1 (Dai 
et al., 2018; Takemura et al., 2000).

In this study, the simulation performed in this study is an AMIP-like ex-
periment, which is forced by the prescribed monthly sea surface temper-
ature (SST) and not nudged with any meteorological factors. Therefore, 
the biases in wind speed and soil moisture between the model and ob-
servation are expected. Three dust source areas (the Gobi Desert, Middle 
East, and central North Africa) are selected (Figure 8). Figure 9 shows 
the multiyear mean results by comparing the daily model output and dai-
ly NCEP reanalysis data of the wind speed and soil moisture in these 
dust source areas. The monthly variations in the modeled wind speed and 
soil moisture are consistent with the NCEP data in most areas, while the 
model overestimates the wind speed at a 10 m height (Figures 9a–9c) and 
underestimates the soil moisture (Figures 9d–9f) systematically in all the 
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Figure 7.  The seasonal mean differences between the modeled AOD and MODIS (a, e, i, and m), MISR (b, f, j, and n), AATSR-SU (c, j, k, and o) and SeaWiFS 
(d, h, l, and p). The global annual mean is shown at the top-right of each subplot. L: Land mean, O: Ocean mean. AATSR, Advanced Along-Track Scanning 
Radiometer; AOD, aerosol optical depth; SeaWiFS, MISR, Multi-angle Imaging Spectroradiometer; MODIS, Moderate Resolution Imaging Spectroradiometer; 
Sea-viewing Wide Field-of-view Sensor; SU, Swansea algorithm.

Figure 8.  Three dust source areas were selected in this study (1, Gobi 
Desert; 2, Middle East; 3, central North Africa).



Journal of Geophysical Research: Atmospheres

months in the three dust source areas. According to Equation 1, the emission flux of dust mainly depends 
on the cube of wind speed, therefore, the emission flux of dust can be simplified as the cube of wind speed 
multiplied by the tuning coefficient C. If we do not consider C, that is, C is constant 1, the cube of wind 
speed is depicted in Figures 9g–9i, it shows that all model values (red line) are larger than the NCEP values 
(black line), which implies that the modeled AOD would be overestimated significantly in these dust source 
areas. It should be noted that the tuning coefficient C in Equation 1 depended on the different dust source 
areas, which are set to the value of 1.0, 2.0, and 2.0 in Dai et al. (2018). To make the modeled AOD compa-
rable to the observations, that is, making the red line close to the black line in Figures 9g–9i. C is reduced to 
0.32, 0.22, and 0.33 for the Gobi Desert, Middle East, and central North Africa in this study, which is shown 
in Figures 9j–9l. Although the dust emission in the tuned model (Figures 9j–9l, blue line) maintains the 
same level as the reanalysis results (Figures 9j–9l, black line), biases still exist in some seasons. The max-
imum positive bias in the Gobi Desert occurs in MAM and JJA (Figure 9j), while the maximum negative 
bias in the Middle East occurs in DJF and MAM (Figure 9k), and the maximum negative bias in central 
North Africa occurs in MAM and JJA (Figure 9l), which are consistent with the biases of the AODs in these 
regions (Figure 7). In addition, since most areas in the Gobi Desert in DJF do not satisfy the conditions 
that the snow amount in dust emission areas should be less than 2 kgm−2, the biases in the dust emissions 
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Figure 9.  Comparison with the daily model output and daily NCEP reanalysis data in dust source areas (Gobi Desert, Middle East, and central North Africa). 
(a–c) Wind speed at 10 m height, (d–f) soil moisture, (g–i) cube of wind speed at 10 m height, and (j–l) cube of wind speed at a 10 m height but the model tuned 
with coefficient c.
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induced by the bias of wind speed are negligible. Therefore, we can infer that the tuning coefficient C is the 
main reason for the overestimation of dust AOD in the Gobi Desert and underestimation of dust AOD in the 
Middle East and North Africa. The dust emission mass flux is affected nonlinearly by wind speed (roughly 
cubic relationship) and linearly by C. Therefore, it is insufficient to tune the dust emission mass flux F only 
with the coefficient C when the modeled wind speed is poorly consistent with the observations.

Figure  10 shows a general overview of the comparison of the climatologically averaged AODs between 
the models and satellites over land and ocean. The modeled all-sky AOD values (FAMIL2-SPRINTARS,  
CMIP6 emission, all sky) are higher than the modeled clear sky AOD (cloud amount less than 0.2 de- 
fined in the model) (FAMIL2-SPRINTARS, CMIP6 emission, all sky), which are mainly due to higher ambi-
ent RH under all sky condition. It should be noted that the satellite monthly mean values are averaged from 
the observation time when the satellite overpassed under clear sky conditions, and data may be missing in the 
polar region, but the model AOD means are averaged in all grids in every step time with cloud cover of less 
than 0.2. This may lead to the discrepancy between the model and the satellites. Over land, all models except 
MOZART significantly underestimate the AOD values. Comparing AGCM (CCSR/NIES/FRCGC)-SPRIN-
TARS and FAMIL2-SPRINTARS (CMIP6 emission, all sky) in the same simulation period of 2002–2008, al-
though both of them are coupled with the global aerosol model SPRINTARS, FAMIL2-SPRINTARS (CMIP6 
emission, all sky) displays better agreement with the satellite AOD. To further analyze the difference in 
AOD, another experiment of FAMIL2-SPRINTARS (ACCMIP emission, all sky) using the same emission 

inventories as AGCM (CCSR/NIES/FRCGC)-SPRINTARS is performed. 
The relative difference in emissions between BC, OC, and SO2 are 14%, 
−5%, and 12% according to the comparison of CMIP6 with the ACCMIP 
emission inventory (Table 3), which contribute to a weak difference in 
the modeled AOD. Comparing AGCM (CCSR/NIES/FRCGC)-SPRIN-
TARS with FAMIL2-SPRINTARS (ACCMIP emission, all sky), the latter 
has larger carbonaceous AOD, which is mainly due to the updated larger 
extinction coefficient of carbonaceous aerosols (Dai et al., 2014) used in 
the current SPRINTARS model. Over the ocean, it is expected that the 
carbonaceous AOD values of FAMIL2-SPRINTARS (ACCMIP emission, 
all sky) could be larger than those from AGCM (CCSR/NIES/FRCG-
C)-SPRINTARS. Because the emission flux of sea salt is nonlinearly af-
fected by the wind speed at 10 m height, FAMIL2-SPRINTARS (ACCMIP 
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Figure 10.  Comparison of the global AODs between the models and multisource satellites retrieved for land and 
ocean. ACCMIP emission inventory, Emissions for the Atmospheric Chemistry and Climate Model Intercomparison 
Project; CMIP6 emission inventory, Community Emissions Data System (CEDS) for CMIP6. AOD, aerosol optical 
 depth; CMIP, Coupled Model Intercomparison Project.

Emission inventory BC (Tgyr−1) OC (Tgyr−1) SO2 (Tgyr−1)

CMIP6 9.05 33.91 133.82

ACCMIP 7.95 35.86 119.18

CMIP6-ACCMIP 1.10 −1.96 14.64

(CMIP6-ACCMIP)/ACCMIP 14% −5% 12%

Abbreviations: ACCMIP, Atmospheric Chemistry and Climate Model 
Intercomparison Project; CMIP, Coupled Model Intercomparison Project.

Table 3 
Comparison of Global Annual Average Emission With the CMIP6 and 
ACCMIP Emissions Inventories During the 2002–2008 Period
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emission, all sky) produces a larger AOD for sea salt than AGCM (CCSR/
NIES/FRCGC)-SPRINTARS, which can be attributed to the modeled 
wind speed at 10 m height (7.8 ms−1) being larger by ∼19% than that of 
the NCEP reanalysis (6.6 ms−1) over the ocean.

3.3.3.  Comparisons With AERONET

Satellite-retrieved AOD has a certain degree of uncertainty, which is re-
lated to the surface conditions, cloud screening, aerosol inversion model, 
and so on (Ma & Yu, 2015). Direct ground-based observations tend to be 
more accurate. AERONET is one of the longest running and most widely 
observed global aerosol observation networks, and it can simultaneously 
retrieve AOD, AE, and SSA.

To further analyze the spatiotemporal variation in AOD, we choose six 
representative regions and classify them into three groups according to 
their emission sources (Ma & Yu, 2015), including industrial pollution 
regions: North America (NAM), Europe (EUR), and East Asia (EASA); 
dust dominant regions: North Africa (NAF); biomass burning dominant 

regions: South Africa (SAF) and South America (SAM) (Figure 11). In addition, we also eliminate sites with 
a small spatial domain (<300 km) and low data quality according to AERONET site assessments (Kinne 
et al., 2013).

Figure 12 shows a comparison of the model AODs with the AERONET AODs at six areas representing 
different aerosol regimes. Each panel shows interannual variation, seasonal variation, a scatterplot, and a 
probability distribution function of the model and AERONET AODs. Over the industrial pollution regions 
(NAM, EUR, and EASA), sulfate aerosols dominate, and the model can capture the pronounced interannual 
variations obtained from the AERONET AODs. The simulated AODs are well correlated with the observed 
AODs, with R values of 0.844 in NAM and 0.564 for EASA, respectively, but with a slight bias (NAM: 
B = 0.009; EASA: B = −0.062). The maximum AOD is found in summer, which can be mainly attributed 
to the large production of sulfate (rich free radicals and water vapors, etc.). In addition, the model under-
estimates the modeled AOD in EASA and EUR, possibly due to, in part, to the low production of sulfate 
aerosols (e.g., Goto et al., 2015). Additionally, secondary organic compounds and nitrates are missing in this 
model (e.g., Shrivastava et al., 2017). Over biomass burning dominant regions, the seasonal cycle of AOD for 
the model and AERONET in SAM and SAF both indicate that the highest AOD occurs in dry seasons. With 
respect to the interannual variation in the AERONET AOD, however, the model captures the AOD well in 
SAM (R = 0.876) but fails in SAF (R = 0.013). It should be noted that the number of AERONET sites in SAF 
(6 sites) is less than that in SAM (16 sites), leading to the zone-averaged AOD results being greatly affected 
by a single site. Additionally, a larger positive bias of the modeled AOD of sulfate aerosols is found in SAF 
in DJF, which is mainly because half of the AERONET sites in SAF are located in the southernmost part of 
Africa and are affected by industrial pollution aerosols (Hoesly et al., 2018; van Marle et al., 2017). For the 
dust dominant region (NAF), the general pattern of modeled AODs is comparable to that of the AERONET 
observations (NAF: R = 0.512) but with a high bias (NAF: B = −0.076), especially in the first half of the year. 
The higher bias can be mainly attributed to the model underestimations of the modeled AOD of the dust in 
the Middle East in DJF and MAM and central North Africa in MAM by tuning the dust emission coefficients 
without nudging the wind field, which has been analyzed in detail in section 3.3.2.

3.4.  Ångström Exponent

3.4.1.  Overall Comparison

In addition to AOD, we also analyze the AE, an important aerosol optical property that characterizes the 
particle size, calculated in every model time step according to    870nm 440nm 870nm 440nmlog / / log /    ,  
where τ and λ represent the AOD and wavelengths, respectively. High AE values indicate that the main 
aerosol components are fine mode aerosols, such as sulfate and/or carbonaceous aerosols. It should be not-
ed that the single species aerosol AE is not affected by its mass content, however, the modeled aerosol AE 
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Figure 11.  AERONET site locations and six regions used in the study 
(black, orange, and red represent industrial region, dust region, and 
biomass burning region, respectively). AERONET, Aerosol Robotic 
Network.
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is calculated by the total modeled AOD at 440 and 870 nm, which may be affected by the difference in the 
proportion of species content.

Figure 13 shows the modeled AE versus observed AEs from AERONET in the six regions. For the indus-
trial domain areas, the model can capture the overall interannual and seasonal variations in AE, while the 
modeled AE is systematically lower than the observation. The peak and valley values occur in summer 
and spring, respectively, mainly because sulfate aerosols are dominant in summer and more dust aerosols 
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Figure 12.  Modeled versus AERONET AODs in the six regions. The panels (from left to right) show a time series, seasonal cycle, scatter diagram, and 
fractional distribution histogram of the modeled AODs and observed AODs, respectively. The time series of AODs include contributions from each aerosol 
component and is compared with the observations from 2002 to 2014; light gray and dark gray represent JJA and DJF. The error bars over the curves denote 
the standard deviations in the seasonal cycle. Points are colored according to the seasons in the scatterplot. CA, carbonaceous aerosol; DU, dust; SU, sulfate; SS, 
sea salt. R, correlation coefficient; B, absolute bias; E, root mean square error; S, skill score, and N, total number of available observation months. AERONET, 
Aerosol Robotic Network; AOD, aerosol optical depth.
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are emitted in spring. Over the biomass burning dominant regions, the AERONET AEs present relatively 
large interannual variation, although it is not successfully being captured in the model. In the Southern 
Hemisphere, the modeled AE is overestimated in DJF and MAM and underestimated in JJA and SON. The 
possible reasons for the “antiphase” seasonal variation of AE are analyzed in Section 3.4.2. For the dust 
dominant region (NAF), the model reproduces the interannual variation fairly well (R = 0.668, B = −0.006). 
The model and the observations both show that the maximum occurs in winter and the minimum occurs 
in spring, which is mainly due to weak dust emissions in winter and strong dust emissions in spring (see 
Figure 12), leading to a larger proportion of dust in spring and a smaller proportion of dust in winter among 
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Figure 13.  Modeled versus AERONET AEs at six regions. The panel (from left to right) is a time series, seasonal cycle, scatter diagram, and fractional 
distribution histogram of the model and observations. The time series of AE is compared with the observations from 2002 to 2014. The error bars over the 
curves denote the standard deviations in seasonal cycle. The points in the scatterplot are colored according to the seasons. AERONET, Aerosol Robotic Network; 
AE, Ångström Exponent.
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other aerosol species. In addition, the modeled results agree well with the observations in NAF, implying 
that the simulated dust particle size distribution using the bins is reasonable.

3.4.2.  Bias Analysis

We attempt to find some reasons for the systematic underestimation of the AEs in the industrial areas in the 
model. Figure 14 shows the particle radius and AE as a function of relative humidity (RH) for sulfate and 
carbonaceous aerosols, respectively. The AE decreases significantly when RH is greater than 70%, which 
could be attributed to the hygroscopic growth of the sulfate and carbonaceous aerosols.

Figure 15 shows the comparison between the probability density function (PDF) of the daily modeled RH 
and daily NCEP reanalysis RH at 850 hPa in the six regions. Over the industrial pollution areas dominated 
by sulfate and carbonaceous aerosols, the model overestimates the frequency of the modeled RH signifi-
cantly when the RH is greater than 70%, which could contribute to the underestimation of the AE. In ad-
dition, the absence of nitrate aerosols and secondary organic aerosols (SOAs) in the model could also lead 
to an underestimation of the AE. For biomass burning dominant regions, both the RH of the model and 
NCEP have the same peak, with modeled values of 60% and 50% for SAM and SAF, respectively, while the 
model slightly overestimates the modeled RH frequency when the RH is greater than 80%. This may lead 
to an underestimation of the AE. However, the antiphase relationship of the AE between the model and 
observations could not be explained reasonably with this “RH effect.”

The modeled AE can be affected by the difference in the proportion of species content, and the maximum 
value of the sulfate aerosol AE (2.74) is much larger than that of the carbonaceous aerosol AE (OC/BC: 
1.27–1.54, BC: 1.39, OC 2.67) in the model. We further analyze the proportion of the species in different 
seasons.

In SAM, although carbonaceous aerosols are dominant (Figure 12), sulfate aerosols are presented in a 
certain proportion when the total AOD is very low (less than 0.1), and a slight underestimation of the 
total AOD exists in DJF and MAM. Therefore, we infer that an overestimation of AE is possibly due 
to a large proportion of sulfate and an underestimation of carbonaceous AOD in DJF and MAM. The 
observed value of the AE is ∼1.5 in September, which is larger than the maximum values of the AE in 
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Figure 14.  (a and c) The particle radius and (b and d) AE as a function of relative humidity (RH) for sulfate and 
carbonaceous aerosols, respectively. OC/BC(1), OC/BC(2), OC/BC(3), and OC/BC(4) represent the mass ratio of OC 
and BC and are 8.28, 6.92, 3.33, and 5.64, respectively. AE, Ångström Exponent.
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the carbonaceous aerosol (OC/BC: 1.27–1.54, BC: 1.39), except for OC (2.67). An underestimation of 
the AE in JJA and SON during the biomass burning season may in part be attributed to the assumption 
that carbonaceous particle sizes of 0.1 μm are too large in the model relative to those in other studies 
(e.g., Chin et al., 2009, 0.0212 μm; Heald et al., 2014, 0.064 μm). In SAF, the larger proportion of sulfate 
aerosols (Figure 12) may partly contribute to the overestimation of the AE in DJF and MAM. Similar to 
SAM, the larger prescribed carbonaceous particle sizes (0.1 μm) may cause the underestimation of the 
modeled AE in JJA and SON. For dust-dominant regions, because the dominant dust aerosol is hydro-
phobic in this study and the RH for the model and NCEP RH are both lower than 70%, the “RH effect” 
is negligible.

3.5.  Single Scattering Albedo

SSA is also an important aerosol optical property that can reflect the scattering capacities of aerosols to 
visible light at 550 nm, and it is critical for estimating the radiation forcing of aerosols. The spectra of the 
SSA of the dry particle aerosols for each species are shown in Figure 1, illustrating that scattering aerosols, 
such as sea salt and sulfate aerosols, scatter almost all visible light with quite weak absorption, dust aerosols 
exhibit weak absorption, and BC aerosols exhibit strong absorption. The internal mixture of carbonaceous 
aerosols also reveals a stronger absorption than OC but weaker absorption than BC.

The modeled aerosol SSA is calculated by the total extinction AOD and total scattering AOD (extinction 
AOD minus absorption AOD) at 550 nm, including all aerosol species in the model. Similar to AE, a sin-
gle-species aerosol SSA is not affected by its mass content; however, the modeled SSA could be affected by 
the difference in the proportion of species content.

Figure 16 shows the modeled SSA values versus the AERONET observed SSA values in the six regions. 
For the industrial domain areas, both the modeled and observed SSA values show weak interannual and 
seasonal variation, and remain with high (above 0.9) values in NAM and EUR, with low bias (NAM: 
B = −0.022; EUR: B = −0.007), which is mainly due to the sulfates AOD being dominant in all seasons 
(Figure 12). Strong and frequent dust events occur regularly in winter and spring in EASA, which are 
reflected in the low SSA values and strong interannual and seasonal variation in SSA in both the modeled 
and observed values. Similarly, in the biomass burning dominant regions, strong biomass burning events 
occur regularly in the dry season in SAM and SAF, significantly increasing the emissions of absorbing 
carbonaceous aerosols and sharply decreasing SSA (from ∼9.5 to 8.5). For the dust dominant region 
(NAF), both the model and observations show similar interannual and seasonal variations in SSA. The 
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Figure 15.  (a-f) The probability density function (PDF) of the modeled daily RH and NCEP reanalysis daily RH at 850 hPa in the six regions.
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proportion of dust aerosols in the total aerosols decreases with weak emissions in DJF (Figure 12), lead-
ing to an increase in the proportion of carbonaceous aerosols. In addition, a weak peak value of carbona-
ceous aerosol is also found in DJF (Figure 12), which enlarges the proportion of carbonaceous aerosols, 
leading to a decrease in SSA. The modeled SSA values are typically 0.04 lower than the observations, 
indicating that the absorption capacity of the dust aerosols is slightly overestimated in our model. In 
addition, it is worth noting that the sampling issue is probably also important because the level 2 AER-
ONET inversion data for SSA are valid when the AOD at 440 nm exceeds 0.2. The smaller AOD (<0.2) to 
some extent can increase the proportion of sulfate in some regions (e.g., EASA, NAF) and lead to a larger 
SSA relative to the larger AOD (>0.2), which indicates that the simulated SSAs in EASA and NAF may 
be more underestimated.
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Figure 16.  Same as Figure 13 but for AERONET SSA. AERONET, Aerosol Robotic Network; SSA, single scattering albedo.
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4.  Discussion
4.1.  Anthropogenic Emission Inventory

Anthropogenic aerosols are calculated primarily by reading the emission inventory, such as BC, OC, and 
SO2 emissions. In our model, we use the CEDS for CMIP6, which is gathered in eight sectors and has a 
monthly temporal resolution and a spatial resolution of 0.5°. To compare the differences between the differ-
ent emission inventories, in addition to the CMIP6 emission inventory, we also select the emission inventory 
of the Hemispheric Transport of Air Pollution, version 2 (HTAP_V2). The HTAP_V2 data set uses the latest 
national emissions data for 2008 and 2010, and has a monthly temporal resolution and a spatial resolution 
of 0.1°, which is recommended as the global emissions baseline (Janssens-Maenhout et al., 2015).

Figure 17 shows the comparison of BC, OC, and SO2 annual mean emissions in CMIP6 and HTAP for 2010. 
The spatial distributions of the emissions in the two emission inventories are very similar. The main anthropo-
genic emissions are concentrated in eastern China, northern India, and Europe and the eastern United States, 
however, there are still some obvious differences. Overall, the CMIP6 emissions are stronger than those of the 
HTAP, especially for BC (40% higher) and OC (139% higher). The difference in SO2 emissions is the smallest, 
at only 8% higher, but in East Asia, northern India, and the Middle East, the difference is still clear.

Interestingly, although we choose a stronger CMIP6 emission inventory in the previous assessment of the 
modeled AOD with multisource satellites and AERONET observations, we find that the model still tends to 
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Figure 17.  Comparison of annual mean emissions of BC, OC, and SO2 in the CMIP6 and HTAP emission inventories for 2010. CMIP, Coupled Model 
Intercomparison Project; HTAP, Hemispheric Transport of Air Pollution.
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underestimate the AOD values in East Asia and northern India. If we use the HTAP emissions, the simulat-
ed negative bias would be greater than that of the CMIP6 emissions. This seems to be more reasonable for 
the CMIP6 emission in our model. In the meantime, for the OC emission, there is such a large difference 
between the two emission inventories that further research is urgently required to reduce uncertainty.

4.2.  Impacts of Meteorological Fields on Simulated AOD, AE, and SSA

In this study, an AMIP-like simulation causes unrealistic wind fields in dust source regions and biased 
RH fields in industrialized regions relative to the reanalysis meteorological fields. These biases may be 
related to any deficiencies in the host atmospheric model FAMIL2. How strong is the biased meteorology 
impact on aerosol simulation and how large is its contribution to aerosol biases? Here, we further quan-
tify the contribution of meteorological fields to the biases of modeled aerosol properties by performing 
two additional sets of offline sensitivity experiments over 2002–2014. The two additional experiments 
read the wind speed at 10 m height and RH fields from NCEP/NCAR reanalysis 1 data set, respectively 
(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html). The reanalysis fields are four 
times every day (00, 06, 12, 18), which are linearly interpolated to the model grids in every integration 
time step (i.e., 30 min).

Figure 18 shows the impacts of wind speed at 10 m height (WS10) on the simulated global aerosol optical 
properties (AOD, AE, and SSA). “Online” and “Offline” represent the original AMIP-like simulation and re-
analysis data set diagnosis simulation, respectively. The simulated WS10 in the AMIP-like simulation is gen-
erally larger than that of the reanalysis data with global mean difference as of +1.0 ms−1 (Figures 18a–18c). 
The WS10 mainly impacts on dust and sea salt aerosols (Figures S1c, S1f, S1i, and S1l). Stronger wind speeds 
lead to larger emission fluxes of dust and sea salt aerosols, subsequently higher AOD over the dust dom-
inated regions (Figures S1a–S1f), and smaller AE (more coarse particles) in the North Hemisphere (NH) 
(Figure 18i). A weak increase in SSA indicates that the biases of wind fields have little impact on the SSA 
(Figure 18l).

Figure 19 shows the impacts of the WS10 on the regional monthly mean aerosol optical properties (AOD, 
AE, and SSA) in six different regions. In NH, such as NAM, EUR, and EASA, a weaker dust emission in the 
“Offline” experiment (blue line in Figure 19) leads to a slight decrease in AOD but a significant increase in 
AE, implying that the dust aerosol is partly responsible for the underestimation of AE over the industrial 
dominant regions. For the NAF, although the “Offline” experiment systematically underestimates the dom-
inated dust AOD, the seasonal variations can be better reproduced with a higher correlation coefficient as 
0.918 relative to that of the “Online” experiment (red line). The systematical negative biases in dust domi-
nant AOD and positive biases in AE can be tuned with the larger dust tuning coefficient C.

In our model, for the hydrophilic aerosols, such as sulfate and carbonaceous aerosols (except pure BC), their 
physical and optical properties can be changed by hygroscopic growth. A larger RH generally strengthens 
the extinction ability of hydrophilic aerosol particles and enlarges their size, that is, it induces the larger 
AOD and smaller AE. In addition, a larger RH can also enhance the scattering ability of hydrophilic carbo-
naceous aerosols, which means that the value of the SSA will become larger.

Similar to the above analysis about the wind fields but for the RH fields, Figure 20 shows the impacts of 
the RH fields on the simulated global aerosol optical properties (AOD, AE, and SSA). The RH values that 
are lower than 70% from the simulation and the NCEP/NCAR reanalysis 1 data set are both excluded in 
the comparison. Obviously, the simulated RH at 850 hPa in the AMIP-like simulation is generally larger 
than that of the reanalysis data with global mean difference as of +4.7% (Figures 20a–20c). The overesti-
mated RH induces the significant increase of hydrophilic aerosol AOD with global mean difference as of 
+0.035 (Figure 20f), especially in the industrialized regions and biomass burning dominant regions. The 
global mean species AODs are with differences as +0.012, +0.009, and +0.014 for the sea salt, carbona-
ceous, and sulfate aerosols, respectively (Figures S2f, S2i, and S2l). The slight decrease in AE (absolute 
difference = −0.048; relative difference = −6.0%) reveals that RH fields exert weak impacts on the AE 
(Figure 20i). The increased SSA ranges from about 0.02 to 0.05 in biomass burning dominated regions with 
the global mean value as of 0.014, suggesting that the biases of RH fields also have weak impacts on the 
SSA (Figure 20l).
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Figure  21 shows the impacts of the RH fields on the regional monthly mean aerosol optical properties 
(AOD, AE, and SSA) in six different regions. RH mainly impacts the sulfate, carbonaceous, and sea salt 
aerosols. In the industrial dominant areas, the lower RH induces a significant decrease of AOD in the “Of-
fline” experiment (blue line), which reveals that the RH fields are partly responsible for the biases of AOD. 
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Figure 18.  (a-c) The global distribution of modeled annual mean wind speed at 10 m height (WS10), (d-l) aerosol optical properties (AOD, AE, and SSA) 
from 2002 to 2014. (d-f) AOD, (g-i) AE, (j-l) SSA.“Online” and “Offline” represent the original AMIP-like simulation and NCEP reanalysis data set diagnosis 
simulation, Δ = the variate (WS10, AOD, AE, and SSA) difference between the “Online” and “Offline.” The global annual mean is shown at the top-right of 
 each subplot. AE, Ångström Exponent; AOD, aerosol optical depth; SSA, single scattering albedo.
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The weak increase in AE and weak decrease in SSA show that the RH fields exert little impact on the AE 
and SSA. It is noted that the size of the hydrophilic aerosol particles would change to smaller (higher AE) 
when the RH decreases, while the decreased AODs of hydrophilic aerosols may induce the proportion of 
dust AOD among the total species content to become larger (lower AE). Therefore, the comprehensive effect 
causes a slightly weak change in AE. In the biomass burning dominant regions, the “RH effect” is similar to 
that in the industrial dominant regions, that is, the biased RH fields are mainly responsible for the changes 
in AOD but weak influence in AE and SSA. Due to the hydrophobic dust aerosols assumed in the model, the 
RH fields have little impact on the aerosol optical properties over the dust dominant region.
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Figure 19.  The seasonal variation of modeled aerosol optical properties (AOD, AE, and SSA) in six different regions. The error bars over the curves denote the 
standard deviations in the seasonal cycle. “MODELon” and “MODELoff” represent the original AMIP-like WS10 (wind speed at 10 m height) simulation and 
NCEP WS10 reanalysis data set diagnosis simulation, R = correlation coefficient, B = absolute bias. AE, Ångström Exponent; AOD, aerosol optical depth; SSA, 
single scattering albedo.
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Overall, the seasonal variations of AOD in the dust dominant region can be better reproduced with more 
realistic wind fields at 10 m height relative to that from the AMIP-like simulation. The AEs in the industrial 
dominant regions are sensitive to the dust aerosol related to the wind fields, implying that the dust aerosol 
biases (i.e., wind fields biases) are partly responsible for the underestimation of AEs. The AODs in the in-
dustrial and biomass burning dominant regions are sensitive to the RH fields. The lower RH induces the 
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Figure 20.  Same as Figure 18 but for relative humility (RH) NCEP reanalysis data set.
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decrease in AOD significantly, but with weak changes in AE and SSA. Therefore, it is necessary to reduce 
the biases of wind fields and RH fields in the model to better simulate the aerosol optical properties.

4.3.  Model Development

CAS FGOALS-f3-L is the latest generation GCM, which is developed by LASG/IAP/CAS. A significant ad-
vantage is that the dynamical core of FAMIL2 used a finite volume on a cubed-sphere grid (S. J. Lin, 2004; 
Putman & Lin, 2007) that covers the globe with six tiles, and each tile can contain a minimum of number of 
grid cells 48 (C48, about 200 km) to a maximum of number of grid cells 1,536 (C1536, about 6.25 km) (J. X. 
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Figure 21.  Same as Figure 19 but for relative humility (RH) NCEP reanalysis data set.
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Li et al., 2017; Zhou et al., 2012). It has continuously contributed to the CMIP from the initial phase to the 
current phase of the CMIP6 and contributed to the assessment reports of the IPCC (Zhou et al., 2015). The 
previous version of the CAS-FGOALS-f3-L model reproduced only direct aerosols radiation effect offline 
and missed the interactions between aerosols and cloud. In this study, we implement an existing aerosol 
module named SPRINTARS online in the CAS-FGOALS-f3-L (atmospheric component: FAMIL2). There-
fore, a new feature of the model is that a higher resolution aerosol simulation can be performed in the 
FAMIL2, allowing us to conduct more detailed regional studies in complex terrain areas (e.g., Tibet Plateau 
aerosol transportation) and reproduce the microphysical processes at small scales (e.g., cloud). Another 
new feature of the model is that the interaction among aerosol, radiation, and cloud has been realized in 
our model, allowing us to further study aerosol climate effect.

However, some disadvantages of FAMIL2 and SPRINTARS are obvious. First, both the cloud microphysics 
in FAMIL2 and aerosol microphysics in SPRINTARS still use a single-moment scheme, without prognosing 
the number concentration of cloud and aerosol particles, despite the fact that most state-of-the-art climate 
models use double-moment cloud and aerosol microphysics. The size-resolved aerosol microphysics can 
explicitly reproduce the new particle formation and coagulation and growth processes (e.g., condensation 
and aqueous sulfate production), therefore, the particle size distribution can be acquired more realistically 
(Mann et al., 2014). Unphysical characterization of aerosol and cloud with the single-moment can lead to a 
large uncertainty of interaction between aerosol and cloud in this study. Further work is urgently required 
to develop size-resolved aerosol microphysics scheme based on current SPRINTARS model and incorporate 
the double-moment cloud scheme into FAMIL2.

Second, some aerosol species (such as nitrate aerosol and SOA) and online chemically reactive gases are 
missing in the SPRINTARS, leading to some simulation errors of aerosol physical and optical properties. It 
is known that the SOA makes up a large portion of fine-mode aerosols in the model. However, the model 
only treats the SOA from terpene using a single conversion factor, neglecting SOA from other sources (such 
as isoprene and biomass burning). In addition, it is noticed that the nitrate may account for a greater propor-
tion in the future. Currently, according to the recent AeroCom phase III results, the mean AOD in nitrate is 
only 0.003, which accounts for roughly 2.3% of the total aerosol AOD, although it cannot be ignored in some 
local areas. Therefore, a coupled online gas phase chemistry module is required to resolve these missing 
aerosol species (such as nitrate and SOA) and chemically reactive gases (methane, tropospheric ozone) in 
the future.

5.  Conclusion
We implement an existing aerosol module named SPRINTARS online in the CAS-FGOALS-f3-L and simu-
late the global aerosol lifecycles and optical properties over the 2002–2014 period using the newer aerosol 
emission inventories of CMIP6. The simulated surface mass concentrations are compared with ground-
based observations. The simulated spatial-temporal distributions of AOD are first evaluated with multi-
source satellite retrievals, and the simulated AOD, AE, and SSA are further evaluated with ground-based 
AERONET measurements. The main findings are listed as follows:

�(1)	� The spatial distributions of the modeled AOD are consistent with all satellite AODs (MODIS, MISR, 
AATSR-SU, and SeaWiFS). The biases of the AOD, which exist in dust source regions, may be attrib-
uted to the biases of the dust aerosol emissions. Through analysis of the dust emission scheme in the 
three dust source regions (Gobi Desert, Middle East, and central North Africa), it is found that the 
tuning coefficient C is the main cause of AOD biases when the modeled wind speed exists with large 
biases

�(2)	� The interannual and seasonal variation of modeled AOD is overall consistent with AERONET obser-
vations. However, the model underestimates the modeled AOD in EASA and EUR, possibly due to the 
lower production of sulfate aerosols and the omission of SOA and nitrate aerosols in the model

�(3)	� Comparing with the AERONET AE, it is found that biases of the simulated dust aerosol are partly re-
sponsible for the underestimation of AE over the industrial domain regions (NAM, EUR, and EASA)

�(4)	� The “antiphase” seasonal variation of modeled AE exists in the biomass burning dominant regions 
(SAM and SAF). An overestimate of AE may be attributed in part to a large proportion of sulfate AOD 
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in DJF and MAM. In addition, the assumption of a carbonaceous particle size (0.1 μm) is too large in the 
model relative to other studies (e.g., Chin et al., 2009, 0.0212 μm; Heald et al., 2014, 0.064 μm), which 
may partly lead to an underestimation of AE in JJA and SON during the biomass burning season

�(5)	� For the dust dominant regions (NAF), the model reproduces the interannual variation of AE fairly well, 
which implies that the simulated dust particle size distribution is reasonable. However, the values of the 
modeled SSA are typically 0.04 lower than the observations, indicating that the model slightly overesti-
mates the absorption capacity of dust aerosols at 550 nm and the imaginary part of negative refraction 
index of dust particles may be larger

�(6)	� Quantifying the contribution of meteorological fields to the biases of modeled aerosol properties. The 
seasonal variations of AOD in the dust dominant region (NAF) can be better reproduced (R = 0.918) 
with more realistic wind fields at 10 m height relative to that from the AMIP-like simulation. The AODs 
in the industrial and biomass burning dominant regions are sensitive to the RH fields. The overesti-
mated RH fields induce the significant increase of hydrophilic aerosol AOD with global mean abso-
lute difference (AD) at +0.035 (relative difference (RD) = +40.2%), but exert a weak influence in AE 
(AD = −0.048; RD = −6.0%) and SSA (AD = +0.014; RD = +1.5%)

These comparisons necessitate model improvements in aerosol size distribution, refractive indices, emis-
sions, and other aspects to better quantify the spatial and temporal distribution of aerosols and study the 
global climatic effect of aerosols.

Data Availability Statement
The AERONET data are available at https://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_inv. The 
MODIS aerosol products are downloaded from Atmosphere Archive and Distribution System (LAADS) 
webpage (https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/). The MISR aerosol products are down-
loaded from https://eosweb.larc.nasa.gov/, The AATSR-SU aerosol products are downloaded from http://
www.icare.univ-lille1.fr/, The SeaWiFS aerosol products are downloaded from https://search.earthdata.
nasa.gov/. The ACCMIP emission inventories data are available at https://aerocom.met.no/DATA/down-
load/emissions/AEROCOM-II-ACCMIP/ACCMIP/. The CMIP6 emission inventories data are downloaded 
from https://esgf-node.llnl.gov/search/cmip6/. The HTAP_V2 emission inventories data are downloaded at 
webpage (https://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=123). The NCEP/NCAR Reanalysis 
1 data are obtained from https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. The dust 
and sea salt surface mass concentration data are provided by Huneeus et al. (https://www.atmos-chem-
phys.net/11/7781/2011/). The IMPROVE database are available at http://views.cira.colostate.edu/fed/Que-
ryWizard/Default.aspx. The EMEP data set are available at https://projects.nilu.no//ccc/emepdata.html. 
The aerosol surface mass concentration data for China sites are provided by X. Y. Zhang et al. (https://www.
atmos-chem-phys.net/12/779/2012/acp-12-779-2012.html). The CAS FGOALS simulation outputs associat-
ed with the work are available at 10.5281/zenodo.3950924.
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