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A B S T R A C T

Ground-level ozone concentrations have evidently increased, and surface O3 pollution has become one of the
major air pollutions in the summer in North China. Climate factors could modulate the O3 concentrations in
summer. The surface O3-related meteorological conditions in the summer in North China were predicted in this
study. Based on the annual increment approach, five observed preceding predictors were used to establish the
perdiction models whose performance significantly exceeded the Climate Forecast System. After adding the
signals from the climate prediction model, the percentage of the same sign increased to 93.9%, and the bias of
the independent tests in 2017 and 2018 were negligible for the climate anomalies. The linear correlation
coefficient between the observed and simulated values was 0.84 (P < .01). It is notable that the hybrid pre-
diction models visibly performed better in the recent decade than in previous decades, which played important
roles and provided potentials to execute real-time seasonal predictions. This prediction model could allow the
government to forecast summer O3 pollution conditions in advance and consequently determine whether extra
emission reductions are required to counteract the climate effects.

1. Introduction

Closely related to anthropogenic activities, the concentrations of
volatile organic compounds and nitrogen oxides have seriously ex-
ceeded their natural levels in China (Wang et al., 2017). Volatile or-
ganic compounds mainly come from gasoline-burning cars and che-
mical solvents, and nitrogen oxides are produced by fossil fuels. In
addition to their direct influences on air quality, the volatile organic
compounds and nitrogen oxides interacted to form ground-level ozone
(O3, abbreviations were summarized in Table S1) in the presence of
sunlight (Jin and Holloway, 2015). Surface O3 pollution is harmful to
humans, animals and crops (Tai et al., 2014). In terms of human health,
surface O3 can irritate the respiratory system and even result in per-
manent lung damage. In the past decade, the O3 concentrations in the
urban areas of China have increased (Wang et al., 2017). This increased
trend in North China and the Yangtze River Delta has been more sig-
nificant than that in the Pearl River Delta and the Sichuan Basin (Li
et al., 2018). In the most severely O3-polluted regions in China (i.e.,
North China), the summer-mean O3 concentration was above 150 μg/
m3, and the daily O3 concentration frequently exceeded 200 μg/m3

during 2015–2018 (Yin et al., 2019a). In the future, the surface ozone
concentration and the possibility of severe ozone pollution may both
increase over eastern China (Wang et al., 2013). Thus, it is imperative
to prevent and manage surface O3 pollution in North China. Inspired by
haze abatement, the fine forecasting and seasonal prediction of pollu-
tion-related meteorological conditions play important roles. Currently,
O3 forecasts for 24 h to 10 days have begun to appear in some big cities
in China, but the seasonal prediction of O3-related meteorological
conditions is still lacking. However, this kind of prediction offers great
value for the government in terms of long-term pollution control
measures and economical productions (Wang, 2018).

The O3-related meteorological conditions can be summarized as
drought (less precipitation), intense sunlight (direct ultraviolet radia-
tion) and high temperature (Yin et al., 2019c). Associated large-scale
and local atmospheric circulations, which have mainly manifested as
anti-cyclonic anomalies over North China, modulate the meteorological
conditions to influence the formation, transportation and dispersion of
surface O3 (Yin et al., 2019d; Hu et al., 2019). The East Asian summer
monsoon significantly impacted the interannual variations of sum-
mertime ground-level O3 concentrations (Yang et al., 2014). The
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positive sea surface temperature anomalies in the tropical Atlantic en-
hanced the anti-cyclonic anomalies over the western north Pacific and
then led to more precipitation (correspondingly more cloud and weaker
ultraviolet radiations) in North China (Zhao et al., 2019). In addition to
the summer monsoon from the south, the Eurasia pattern transported
the impacts of Arctic sea ice on surface O3 pollution in North China (Yin
et al., 2019c, 2019d). The preceding May sea ice to the north of Eurasia
might explain approximately 60% of the interannual variability in O3-
related weather conditions. Furthermore, Wang and He (2015) pointed
out the severe summer drought in 2014 in North China and partially
attributed it to the air-sea ice interactions in the polar region via the
Eurasia pattern (Wei et al., 2004), and Lin and Li (2018) found the
spring sea-ice anomalies in the Barents Sea favored for the northward
migration of the East Asian summer subtropical rainy belt. The
April–May Antarctic Oscillation positively correlated with the summer
rainfall in North China (Qin et al., 2005). Meanwhile, Fan and Wang
(2010) used the negative relationship between the Antarctic Oscillation
and summer temperature to build seasonal prediction models. The wet-
cool climate conditions might, in turn, caused weak surface O3 pollu-
tion. Furthermore, the spring Eurasian snow cover had significant im-
pacts on the summer rainfall (Zhang et al., 2017). Although not all of
these aforementioned studies directly focused on the surface O3 pollu-
tion, they analyzed the climate conditions closely related to O3 con-
centrations, and established a scientific basis for seasonal prediction of
the summer O3-related meteorological conditions in North China.

The year-to-year increment prediction was proposed by Fan et al.,
(2008) based on Wang et al., (2000). The year-to-year increment is
defined as the difference of a variable between the current and previous
year (DY), which differed from the frequently used climate anomalies
and highlighted the feature of tropospheric biennial oscillation in East
Asia (Wang et al., 2000). Fan et al. (2012) examined the prediction
performances of an anomalies scheme and a DY scheme and found that
the later approach improved the prediction of the East Asian summer
monsoon. Additionally, the DY approach was used to predict the Ju-
ly–August precipitation and performed well (Fan et al., 2008a, 2008b;
Wang and Fan, 2005). Recently, the DY approach has begun to be ap-
plied in seasonal predictions of variables that were cross-influenced by
socioeconomic and climate factors (Yin et al., 2016), such as the dis-
coloration day for Cotinus coggygria leaves in Beijing (Yin et al., 2014)
and dust frequency (Ji and Fan, 2019; Fan and Wang, 2004). Con-
sidering the need for haze prevention and management, statistical
prediction models of haze pollution were carried out in North China
(Yin and Wang, 2017) and the Yangtze River Delta (Yin et al., 2019b),
respectively. Using the DY of sea ice and sea surface temperature, the
long-term trend and turning points of winter haze days in North China
were simulated well, and the percentage of the same mathematical sign
was 91.7%. In this study, we tried to establish seasonal prediction
models of O3-related meteorological conditions in North China with the
DY approach, which has the potential to serve air pollution manage-
ment.

2. Datasets and methods

The observed hourly O3 concentrations during 2015 to 2018 were
available on the website of http://beijingair.sinaapp.com/#messy. The
maximum daily average 8 h concentration of ozone (MDA8) was cal-
culated to represent the general O3 pollution level. Monthly sea ice
concentrations and sea surface temperature (1° × 1°) were downloaded
from the Met Office Hadley Center (Rayner et al., 2003). The Antarctic
Oscillation index was computed by the NOAA climate prediction center
(Barnston and Livezey, 1987). The monthly soil moisture values
(0.5o × 0.5°) were downloaded from NOAA's Climate Prediction Centre
(Huug et al., 2003). The snow depth was downloaded from the ERA-
Interim dataset (Dee et al., 2011).

The 1° × 1° geopotential heights at 500 hPa and 200 hPa, zonal and
meridional winds at 850 hPa and 10 m, precipitation, boundary layer

height, air temperatures at 200 hPa and near the surface and low and
medium cloud covers were also from the ERA-Interim dataset (Dee
et al., 2011). The Climate Forecast System Version 2 (CFSv2) is a fully
coupled model including atmosphere, ocean, land and sea ice modules
(Saha et al., 2014) that is updated in real-time operations. Generally,
the CFSv2 could provide the summer predictions in May and involved
24 forecast members. Here, the ensemble mean summer geopotential
heights at 500 hPa, 10 m meridional winds, precipitation, boundary
layer height, air temperatures at 200 hPa and near the surface were
included.

The procedures to build the seasonal prediction models are orga-
nized as follows. First, the DY values (i.e., Yt–Yt-1) of variables, in-
cluding the predictand and potential predictors, were calculated.
Second, the predictors were selected based on the physical mechanisms.
Finally, the multiple linear regression was trained and verified. Two
schemes were designed to train the prediction models. The first pre-
diction model was trained based on the 5 preceding factors and denoted
as PM5F. The other prediction model trained by the 5 external factors
and the CFS predicted atmospheric circulations was named PMCFS. The
prediction models were verified both by the leave-one-out validation
and the independent forecasts. When modeling, the data from 2017 and
2018 were unused as independent test samples, and the forecast biases
for 2017 and 2018 were analyzed. Furthermore, due to a lack of in-
dependent tests, the recycling independent tests were designed. The
prediction model was built using the data from 1986 to a certain year,
and the OWI anomalies from the next year to 2018 were independently
predicted. The expiration year of training data moved forward from
2007 to 2017, so that there were 11 prediction models with the same
predictors and 66 independently predicted results. For example, the
model trained by the data from 1986 to 2012 could produce in-
dependent predictions from 2013 to 2018.

3. OWI and CFSv2 predictions

The anomalous southerlies, local boundary layer height, local pre-
cipitation, and temperature difference between the surface and the
200 hPa layer significantly influenced the surface O3 pollution in North
China (Yin et al., 2019c, 2019d). The associated southerlies prevented
the cold-dry air from the north to disperse the surface ozone and its
precursors. Meanwhile, increased solar radiation and high surface air
temperatures enhanced the photochemical reactions to produce more
surface ozone. According to Yin et al. (2019c), the V10mI was the area-
averaged meridional wind at 10 m (35–50°N, 110–122.5°N). The PI was
the area-averaged precipitation (37.5–42.5°N, 112–127.5°N). The DTI
was the area-averaged difference between the temperature at the sur-
face and at 200 hPa (surface air temperature minus T200, 37.5–47.5°N,
110–122.5°N). The BI was the area-averaged boundary layer height
(37.5–47.5°N, 112.5–120°N). The ozone weather index (OWI), i.e., the
O3-related meteorological condition, was defined as OWI = normalized
V10m I + normalized BI – normalized PI + normalized DTI (Yin et al.,
2019d). In this study, the OWI were calculated basing on the ERA-In-
terim reanalysis data and the CFSv2 prediction results, respectively.

The observed OWI (calculated from ERA-Interim reanalysis) agreed
well with the results of synoptic analysis and could represent the O3-
related meteorological conditions (Yin et al., 2019c, 2019d). In
summer, the MDA8 showed an obvious monthly variation, i.e., de-
creasing from June to August (Fig. 1a). It is evident that the OWI well
reproduced this monthly variation in O3 concentrations in North China.
Furthermore, the summer mean MDA8 increased from 2015 to 2017
and maintained a high level in 2018, indicating that the surface O3

pollution in North China was aggravated in the past four years. The
summer mean OWI exhibited consistent features and showed a good
performance (Fig. 1a). Basing on the ozone observations during
2015–2018, the observed summer MDA8 DY from 2016 to 2018 can be
calculated. As to the MDA8 DY, the OWI DY during 2016–2018 might
simulate the variations. The OWI DY not only showed obvious features
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of tropospheric biennial oscillation but also had a 135% larger variance
than the original OWI, indicating a better predictability than the ori-
ginal OWI (Fig. 1b). The OWI DY dramatically fluctuated from 1996 to
2000 and then maintained a large amplitude, indicating a better pre-
dictability after mid-1990s (Fig. 1b).

The CFSv2 is a fully coupled model that routinely output the mer-
idional wind at 10 m, precipitation, temperature at the surface and at
200 hPa and boundary layer height (Saha et al., 2014). Thus, the OWI
can be directly calculated from the results of CFSv2 (Fig. 2). The cor-
relation coefficient between observed OWI and CFS-forecast OWI was
0.02 (insignificant). The CFS-forecast OWI presented declining trend
after 2008, which were not features of the observed OWI (Fig. 2a).
These poor prediction abilities of OWI possibly came from the weak
simulations of 4 sub-index (Fig. 2b). The largest correlation coefficient

of 4 sub-indexes between observations and CFSv2 was only 0.2 (V10mI),
which was even insignificant at the 90% confidence level. The DY ap-
proach could take advantage of the observations from the previous
year, and thus improve the prediction performance (Fan and Wang
2008). We corrected the CFS-forecast OWI by the DY approach, i.e.,
adding the CFS-forecast OWI DY to the observed OWI in the previous
year (Fig. 2a). It is obvious that the trend, particularly the wrong de-
creasing trend after 2008, was corrected. However, the correlation
coefficient between observed OWI and CFS-corrected OWI was still
insignificant (0.05). To build statistical models might be a practicable
route to obtain improved seasonal prediction of OWI.

4. Predictors and associated physical mechanisms

In the DY atmospheric circulations associated with the OWI DY, the
Eurasia pattern and another Rossby-wave-like pattern from the Chukchi
Sea to North China could be recognized both in the high- and mid-
troposphere (Fig. 3a). The joint activity center of these two tele-
connection patterns, i.e., the anomalous anti-cyclonic circulations, was
located above North China (Yin et al., 2019d). The year to year incre-
ments of the area-averaged geopotential heights at 500 hPa (38–56°N,
95–128°E) were defined as the IAC index. The correlation coefficient
between OWI DY and IAC was 0.44 (above the 99% confidence level)
during 1986–2018. Associated sinking motions decreased the low and
medium cloud cover and resulted in intense sunlight and high air
temperatures near the surface (Fig. 3b). Thus, the photochemical re-
actions of volatile organic compounds and nitrogen oxides were en-
hanced to produce more ground level O3 in North China. The climate
link between the May sea ice and OWI in North China revealed by Yin
et al. (2019c, 2019d) might provide the possibility of potential pre-
dictors, and thus, their DY relationships were analyzed and are shown
in Fig. 4. The May sea ice DY in the Gakkel Ridge (82–85°N, 20–120°E)
had a significant positive correlation with the OWI DY (Fig. 4a) and was
averaged as the ISI index, of which the correlation coefficient with OWI
DY was 0.57 (above the 99% confidence level). More May sea ice in the
current year would lead to more favorable meteorological conditions in
the summer for the occurrence of O3 pollution in this year than in the
previous year. Two Rossby wave-like patterns transported the impacts
of sea ice to the atmospheric circulations in East Asia and particularly
enhanced the anticyclonic circulations over North China (Fig. 4b).
Under such influences, the cloud cover was less, and the air near the
surface was hotter than those in the previous year (Fig. 4c).

The spring Eurasian snow cover might induce atmospheric re-
sponses and then remotely influence the summer climate in China (Wu
et al., 2009). We examined the relationship between the spring snow
DY and the OWI DY and found that the May snow cover in West Siberia
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Fig. 1. (a) Monthly variations (June, July and August) in MDA8 (black line)
and OWI (blue line) from 2015 to 2018. The summer mean MDA8 (black bars)
and OWI (blue rectangles) are also shown. (b) Variations in summer OWI DY
(blue line) from 1986 to 2018 and MDA8 DY (black bar) from 2016 to 2018.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. (a) The summer mean OWI from ERA-Interim reanalysis (black), CFS prediction dataset (blue) and CFS data but corrected by the DY approach (red) from 1986
to 2018. (b) Scatter plots of the V10mI (blue), BI (black), PI (red) and DTI (green) from the ERA-Interim reanalysis and CFS prediction dataset. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(53–63°N, 53–90°E) negatively correlated with the variation in the OWI
DY (Fig. 5a). The ISW index was calculated as the DY of the area-average
snow depth and had a significant negative correlation (R = –0.63) with
the OWI DY. A lower snow depth could stimulate atmospheric re-
sponses such as anticyclonic anomalies at 850 hPa over North China
(Fig. 5b). The associated divergence of water vapor decreased the re-
lative humidity and limited the precipitation, resulting in a dry en-
vironment near the surface. Furthermore, the anomalous anticyclonic
circulations mostly indicated less cloud cover (Fig. 5c) and permitted
more sunlight and ultraviolet radiation to reach the ground, which
consequently led to high temperatures near the surface (Fig. 5c).
Jointly, the dry-hot weather always increased the pace of photo-
chemical reactions. At the mid and high latitudes, tracing back to early-
spring (Jan-Feb-Mar), the soil moisture DY over the central Siberian
Plateau (ISoM) had a significant negative relationship with the OWI DY
(Fig. 6a), and the correlation coefficient between ISoM and the OWI DY
was −0.49 (above the 99% confidence level). This drier soil moisture
could enhance the Western Pacific subtropical high and induce

significant anticyclonic activity over the east of China (Fig. 6b). As
revealed by Yin et al. (2019a), the stronger and northward subtropical
high was favorable for the production of ground O3 levels. The North
China was located in the center of the positive anomalies of surface air
temperature and suffered high temperatures and intense sunlight
(Fig. 6c). Thus, the OWI DY physically linked with the late-winter ISoM.

In addition to the climate factors at the northern mid and high la-
titudes, the potential predictors in the tropics and in the Southern
Hemisphere were also considered. The preceding tropical Atlantic sea
surface temperature had positive relationship with the summer pre-
cipitation in North China (Yu, 2019). The warming sea surface in tro-
pical Atlantic will enhanced the west subtropical Pacific High (Chen
et al., 2015) that were beneficial to the rainfall in summer in North
China (Qu et al., 2012). More precipitations indicated the ultraviolet
radiations were prevented by more cloud cover and then the

Fig. 3. DY correlation coefficients between OWI and
(a) summer mean Z500 (shading), wind at 850 hPa
(arrows), (b) SAT (shading), sum of medium and
low cloud cover (contour) from 1986 to 2018. The
black boxes indicated the location of North China.
The Z500 in the yellow box of panel (a) is averaged
as the IAC. The green crosses indicate that the DYCCs
with shading are above the 95% confidence level.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Fig. 4. DY correlation coefficients between (a) OWI and May sea ice con-
centrations (shading). The sea ice area in the black box is averaged as the ISI. DY
correlation coefficients between ISI index and (b) summer Z500 (shading), (c)
SAT (shading), sum of medium and low cloud cover (contour) from 1986 to
2018. The black boxes in panel b–c indicated the location of North China. The
green crosses indicate that the CCs with shading are above the 95% confidence
level. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. DY correlation coefficients between (a) OWI and May snow concentra-
tions (shading). The snow cover in the black box is averaged as the ISW. DY
correlation coefficients between ISW and (b) summer mean wind at 850 hPa
(arrows), (c) SAT (shading), sum of medium and low cloud cover (contour)
from 1986 to 2018. The black boxes in panel b–c indicated the location of North
China. The green crosses indicate that the CCs with shading in panels a-c and
the wind in panel b are above the 95% confidence level. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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photochemical reactions would be weakened (Fig. 7, Yin et al., 2019b).
There were significantly correlated dipoles of the sea surface tem-
perature in the Atlantic (Fig. 7a), which were located in the Brazil Basin
(negatively correlated center) and the Tristan da Cunha islands (posi-
tively correlated center). The sea surface temperature difference DY
between these two areas was defined as the ISST index, and the corre-
lation coefficient between the ISST and the OWI DY was −0.6. At
850 hPa, a significant anticyclone was excited over North China and the
transportation of water vapor was weakened (Fig. 7b). Both the higher
surface air temperature and the lower cloud cover accelerated the
photochemical reactions and converted more volatile organic com-
pounds and nitrogen oxides into surface O3 (Fig. 7c). The late-spring
Antarctic Oscillation had a close relationship with the precipitation and
temperature in North China (Qin et al., 2005; Fan and Wang, 2010),
and thus, the DY correlation coefficient between the April Antarctic
Oscillation and the OWI was calculated to be −0.43, which was above
the 95% confidence level. In the upper troposphere, several alternate
atmospheric centers combined as a Rossby-wave-like train to link the
southern annular mode over the Antarctic region with anomalous at-
mospheric circulations over North China (Fig. 8a). The anticyclonic
circulations over North China could also be recognized in the lower
troposphere (Fig. 8b). Similar with the former analyses, the meteor-
ological conditions associated with the lower IAAO index became fa-
vorable for O3 pollution occurrence (Fig. 8c).

5. Prediction models and validations

Based on the physical mechanisms, five preceding external forcing
drivers, including ISI, ISW, ISoM, ISST and IAAO, were selected as the po-
tential predictors to forecast the O3-related meteorological conditions
in the summer in North China (Fig. 9). These predictors were located in
varied latitudes to involve efficient and abundant signals as much as
possible. It is evident there were several points located far away from
the regression line in each panel in Fig. 9. Thus, multiple-factor mod-
eling was used to introduce the synergistic effects and decrease the
influence of the lack of nonlinear relationships (Yin and Wang, 2016).
The cross correlation coefficients among the predictors were calculated,

Fig. 6. DY correlation coefficients between (a) OWI and spring (Jan-Feb-Mar)
soil moisture (shading). The spring soil moisture values in the black boxes were
averaged as the ISoM. DY correlation coefficients between ISoM and (b) summer
Z500 (shading), (c) SAT (shading), sum of medium and low cloud cover (con-
tour) from 1986 to 2018. The black boxes in panel b–c indicated the location of
North China. The green crosses indicate that the CCs with shading are above the
95% confidence level. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. DY correlation coefficients between (a) OWI and April–May sea surface
temperature (shading). The differences of SST between the two black boxes are
calculated as the ISST. DY correlation coefficients between ISST and (b) summer
mean wind at 850 hPa (arrows), (c) SAT (shading), sum of medium and low
cloud cover (contour) from 1986 to 2018. The black boxes in panel b–c in-
dicated the location of North China. The green crosses indicate that the CCs
with SST (a), wind (b) and cloud cover (c) are above the 95% confidence level.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. DY correlation coefficients between April Antarctic Oscillation and (a)
Z200 (shading), (b) wind at 850 hPa, (c) SAT (shading), sum of medium and
low cloud cover (contour) from 1980 to 2018. The black boxes in panel a–c
indicated the location of North China. The green crosses indicate that the CCs
with shading are above the 95% confidence level. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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most of them were insignificant (Table S2). The multicollinearity pro-
blem could be ignored when modeling with the multiple linear re-
gression. The PM5F was trained only with the preceding external forcing
factors and was as follows: OWI DY = 0.29 × ISI –0.32 × ISW
–0.34 × ISoM –0.38 × ISST –0.14 × IAAO. The small variance inflation
factors (Table S3) also indicate that the collinearity problem was in-
significant.

It was foreseeable that the direct fitting performance would be fine,
and thus, we only present the verifications of the leave-one-out cross
validation and independent tests (Table 1). The linear correlation
coefficient between the observed and fitted OWI DY values was 0.84
and was significant at the 99.99% confidence level, indicating that the
PM5F could reproduce the variation in the OWI DY. Furthermore, the
large amplitudes during 1995–2000 were well simulated (Fig. 10a). The
root-mean-square-error of the PM5F was 0.43, and the predicted biases
for 2017 and 2018 were − 0.14 and 0.26, respectively. In general, the
goal of seasonal prediction was to obtain the climatic anomalies. Thus,
the observed OWI in the previous year was added to the predicted OWI
DY to achieve the final results (Fig. 10b). The percentage of the same
sign (i.e., the mathematic sign of the fitted and observed anomalies was
the same) was 87.9% during 1986–2018, which showed a better per-
formance in the period after the mid-1990s compared to the prior
periods. Furthermore, the long-term trend, which was removed by the
DY approach, was accurately reintroduced. In the recycling

independent tests of PM5F, the percentage of the same sign was 83.3%,
indicating that even the data were not updated in a timely way, and the
ability of the prediction model could maintain a high level (Fig. 11). It
is notable that the predicted anomalies in 2017 were close to the
measurement and showed the correct mathematic sign; however, the
bias in 2018 was larger and only approximately 50% of the predicted
mathematic signs were correct.

Fig. 9. Scatter plot of the OWI DY and the predictors, including (a) IAC, (b) ISI, (c) ISW, (d) ISoM, (e) ISST and (f) IAAO. The straight lines are the fit lines, and the CCs
indicate the correlation coefficients between the OWI DY and the predictor.

Table 1
The leave-one-cross validated root-mean square error (RMSE), mean absolute
error (MAE), linear CC (LCC), linear CC after detrending (DCC), explained
variance (EV), percentage of same sign (PSS) and predicted bias for 2017
(Bias17) and 2018 (Bias18). The subscript “ano” indicates that the index was
evaluated using the anomalies. All of the parameters were calculated for the
PM5F, PMCFS and PMAC.

PM5F PMCFS PMAC

RMSE 0.43 0.43 0.39
MAE 0.35 0.33 0.30
LCC 0.84 0.84 0.87
EV 70.6% 70.6% 73.1%
Bias17 –0.14 −0.03 0.08
Bias18 0.26 0.10 0.05
PSSano 87.9% 93.9% 97%
LCCano 0.65 0.65 0.72
DCCano 0.63 0.62 0.70
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In addition to the observed preceding external forcings, the real-
time climate numerical model could also provide some useful in-
formation for the seasonal predictions. Therefore, the summer atmo-
spheric circulations predicted by the CFS were treated as the sixth
predictor to improve the seasonal prediction performance. The corre-
lation coefficients between the observed and CFS-predicted summer
geopotential heights at 500 hPa were calculated. It is evident that the
CFS model performed better in the subtropical and tropical latitudes
than in the mid and high latitudes in East Asia (Fig. 12). We chose the
well-simulated summer geopotential heights at 500 hPa value at
38–53°N, 114–152°E (ICFS), which was near the IAC, to represent the
impacts of the anticyclonic circulations over North China. The predic-
tion model trained here was denoted as PMCFS and was as follows: OWI

DY = 0.32 × ISI –0.29 × ISW –0.32 × ISoM –0.4 × ISST
–0.15 × IAAO + 0.14 × ICFS. The PMCFS showed seemingly similar
performances with the PM5F. The correlation coefficient and root-mean-
square-error were the same to those of the PM5F (Table 1). Nonetheless,
the bias of the independent tests in 2017 and 2018 decreased to −0.03
and 0.10 (Fig. 13a), which were obviously smaller than those from the
PM5F. As to the climate anomalies, the percentage of the same sign
(93.9%) was improved (Fig. 13b). The percentage of the same sign in
the recycling independent tests of the PMCFS was 86.4%, which was also
larger than that of the former prediction model. The predicted
anomalies in 2017 became close to the observations, and those in 2018
were significantly improved compared to the PM5F (Fig. 14). In parti-
cular, the prediction models, which were built with the data after 2009,
visibly performed better. The final target of the prediction model was to
execute real-time seasonal predictions, and thus, the improvement of
performances in the latest years played important roles and provided
confidences for further routine operations.

To explore the reasons for limited improvements by adding CFS
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results for 2017 and 2018 represent the observed (black circle) and in-
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ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 11. The OWI anomalies from PM5F recycling in-
dependent tests (bar) and observations (dashed line). The
expiration year of the training data meant that the PM5F was
trained by the datasets from 1986 to this year, and the OWI
anomalies from the next year to 2018 were independently
predicted. For example, the results plotted with yellow bars
(existing from 2015) were independently predicted by the
PM5F that had been trained by the data from 1986 to 2014,
and the OWI in 2015–2018 were predicted by this model.
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)

Fig. 12. The DY correlation coefficients of summer-mean Z500 between the
ERA-interim reanalysis and CFS data. The black dots indicate that the CCs with
shading are above the 95% confidence level. The blue box indicates the region
for calculating the ICFS index. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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information, another experiment was designed by replacing the CFS
forecast with the observed IAC. This prediction model was denoted as
PMAC and was trained with five preceding climate factors and the si-
multaneous IAC. The correlation coefficient between the observed and
fitted OWI DY values was 0.87 and was higher than the values for both
the PM5F and PMCFS. The root-mean-square-error, MAE and biases for
the independent tests in 2017 and 2018 were all decreased (Table 1).
The PMAC could explain 73.1% of the variance of the OWI DY and
successfully reproduced the variation in the OWI DY and its extreme
(Fig. 15a). After adding the observations in the previous year to the
predicted OWI DY, the percentage of the same sign was 97% and was
better than that of both the PM5F and PMCFS. As to the climate
anomalies, the correlation coefficient between the observed and fitted

OWI values were 0.72 and 0.7 before and after detrending, respectively.
Thus, the long-term trend and the interannual variation of the OWI
were well simulated (Fig. 15b). Furthermore, in the recycling in-
dependent tests, the percentage of the same sign was 100%, and the
extreme values in 2010 (maximum) and 2013 (minimum) were closely
obtained. More importantly, the predicted results in the near two years
(i.e., 2017 and 2018) were significantly improved and were close to the
measurements (Fig. 16). Comparing the results of the PMCFS and PMAC,
we speculated that the predicted errors might partially come from the
biased CFS signals. Thus, improving the CFS model or correcting the
CFS results were potential and effects ways to gain a better prediction
performance of the surface O3-related meteorological conditions in the
summer in North China.
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6. Conclusions and discussion

The ozone-related meteorological conditions (i.e., OWI) closely
contributed to the O3 concentrations in the summer in North China and
were the final predictand in this study. Using the annual increment
approach, the year-to-year difference of the OWI values was first pre-
dicted and then added to the observations in the previous year. In the
first scheme, five leading climate drivers were used to build the pre-
diction model, and the independent predicted values for 2017 and 2018
were close to the measurements. The percentage of the same sign was
87.9% in the cross validations during 1986–2018, and it was 83.3% in
the recycling independent tests. Furthermore, the long-term trend and
the interannual variations can both be reproduced. In the second
scheme, the useful signals of the CFS outputs were superposed with the
aforementioned predictors. As expected, the bias of the independent
tests decreased, while the percentage of the same sign increased to
93.9%, indicating evident improvements.

To find the error sources, the observed atmospheric circulations
replaced the CFS information. The rebuilt prediction model could ex-
plain 73.1% of the variance of the OWI DY values and successfully
reproduced the variations in OWI and its extremes. The percentage of
the same sign was 97% in the leave-one-out cross validation, and it was
100% in the recycling independent tests. Thus, the predicted errors of
the CFS might partially contribute to the predicted biases. In addition,
even considering the observed anticyclonic circulation in North China,
the OWI in some years, e.g., 2007, 2011 and 2012, still was not suc-
cessfully predicted. The possible reasons might be that the nonlinear
relationships were not considered and some useful signals were not
included.

In this study, we focused on the seasonal predictions and did not
aim to fully explain the physical mechanisms of the predictors, which
still required further dynamic and thermodynamic researches. These
predictors were located in varied latitudes and their synergistic effects
were introduced by the multiple-factor modeling. We also test the
prediction performances when one predictor was excluded and found
that the PM5F and PMCFS were the optimal choices (Table S4, Fig. S1).
The predicted results in this study were the O3-related meteorological
conditions, which could influence the photochemical reactions to
modulate the O3 concentrations in summer in North China. Thus, when

high OWI values are seasonally predicted, the government could make
long-term pollution control decisions far in advance, and extra emission
reductions might be required to counteract climate effects.
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