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Key points:  

 It is found that the southwestern Tibetan Plateau cools recently against an overall 

warming over the rest of the Plateau  

 Enhancement of snow-albedo feedback is responsible for the cooling over the 

southwestern Tibetan Plateau 

 Climate change in the southwestern Tibetan Plateau and its surroundings supports 

the abnormal 2 m air cooling 

Abstract 

Given the threats that climate change poses to solid water reservoirs on the 

Tibetan Plateau (TP), there is significant interest in understanding spatial patterns of 

climate change and their causes. Weather station observations have been extensively 

examined, but are scarce, resulting in an incomplete understanding of climate change 

across the TP, particularly in the west. Using recent (2001–2015) satellite-based data 
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sets (2 m air temperature, land surface temperature, albedo and snow cover), this 

study reveals that mean annual 2 m air temperature in the southwestern TP has 

decreased by 0.15 °C decade−1 in contrast to overall warming (+0.18 °C decade−1) on 

the rest of the TP. Up to 45% (74%) of the variance in the annual (spring) 2 m air 

temperature can be explained by simultaneous change in snow-induced albedo in the 

southwestern TP. The free atmosphere column over this region and Northwest India is 

cooling, providing a favorable environment for the decrease in 2 m air temperature 

observed. Moreover, the anomalous water vapor transport into the southwestern TP is 

advantageous for increased snowfall and the associated decrease in 2 m air 

temperature. The implications of this anomalous cooling under global warming have 

yet to be fully considered, in particular for the futures of glaciers and snowpack over 

the Himalayan Mountains in the southwestern TP. 
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1. Introduction 

The Tibetan Plateau (TP) is a significant source of water resources in the form of 

snow and ice. It is the highest (> 4000 m on average) and the most extensive 

(approximately 2.5 × 106 km2) highland in the world. Cold conditions facilitate the 

formation of considerable solid water resources [~1.0 × 105 km2 of glaciers (Yao et al., 
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2012a), ~41.9 × 109 m3 year−1 water equivalent of snow (Li et al., 2008), and ~ 1.1 × 

106 km2 of permafrost (Zou et al., 2017)]. These feed the major rivers in East Asia, 

South Asia, and Southeast Asia (Indus, Ganges, Brahmaputra, Mekong, Yangtze, and 

Yellow Rivers) and provide water to more than 1.4 billion people (Immerzeel et al., 

2010; Yao et al., 2012a). The TP is thus praised as the ‘Asian water tower’ (Kang et 

al., 2010). 

The fate of these solid water resources is linked to climate change. Owing to the 

location in mid and low latitudes, much of the water resource is relatively warm and 

therefore sensitive to climate warming compared with that in high latitudes (Yao et al., 

2012b; Guo and Wang, 2016; Yan et al., 2018). An integrated assessment of glacier 

status on the TP and its adjacent regions showed that 55 of 82 glaciers have shrunk 

over the past 30 years (Yao et al., 2012b). The TP permafrost has degraded, 

characterized by a rise in soil temperature (Yao et al., 2012b), a reduction in 

permafrost area (Guo and Wang, 2013), and a thickening of the active layer (Guo and 

Wang, 2013). Since the early 1980s, snow depth and the number of snow cover days 

have decreased and the duration of snow cover has shortened (Xu et al., 2017).  

Accurate quantification of temperature change on the TP is essential for effective 

evaluation of current and future sustainability of the solid water resource. Much 

research has concentrated on climate warming with respect to the amplitude or rate of 
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warming (Liu and Chen, 2000; You et al., 2008; Yan et al., 2014), spatial patterns 

(Yang et al., 2014), seasonality (Guo and Wang, 2012) and elevation-dependent 

warming (Rangwala and Miller, 2012; Pepin et al., 2015; Cai et al., 2017). However, 

all such observation-based studies are plagued by the scarcity of observations. In 

particular, there are only several stations in the whole of the western TP, resulting in 

great uncertainty across much of the region and a lack of understanding of climate 

change across the TP as a whole.  

The aim of this study therefore is to use recent (2001–2015) comprehensive 

satellite-based datasets (2 m air temperature, land surface temperature, albedo and 

snow cover) (in particular 2 m air temperature) to reveal climate change and to 

attempt to understand its causes for the entire TP at 1 km resolution.  

2. Data and methods 

Monthly Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 

temperature (MODIS LST) is used in this study, with the monthly mean calculated 

based on averaging daytime/nighttime LST from MOD11A1, version 6 (Wan, 2013). 

The data cover a period 2001–2015 and have a resolution of 1 km. Because MODIS 

LST is influenced by surface radiative effects, particularly at high elevation (Pepin et 

al., 2016), it is not the same as screen-level (2 m) air temperature which is commonly 
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used for climate change assessments (i.e. IPCC, 2013). Therefore, we also used a 

satellite-based screen-level (2 m) air temperature (SBAT) dataset, which is developed 

using machine learning models based on MODIS data (LST and NDVI), solar 

radiation, shuttle radar topography mission (SRTM) digital elevation model (DEM) 

data, and topographic index data (Xu et al., 2018). The SBAT has a resolution of 1 km 

across the entire TP and covers the period 2001–2015. While annual MODIS LST has 

a temporal correlation coefficient of 0.74 with 2 m air temperature observations at 104 

weather stations and a much lower temperature trend (2001–2015) than the 2 m air 

temperature observations (+0.18 vs. +0.27 °C decade−1) (Figure 1), the SBAT is much 

closer to the 2 m air temperature observations both in correlation (0.94) and mean 

trend (+0.24 °C decade−1). Thus, we rely mostly on SBAT to examine climate change 

in this study. 

Other satellite-based data used to examine mechanisms of climate change include 

(i) monthly surface albedo (converted from the 16-day MODIS albedo product 

MCD43B3, version 5) and (ii) monthly MODIS normalized difference snow index 

(NDSI, calculated from the daily NDSI product MOD10A1, version 6). The albedo 

product has been validated in previous studies across the TP (Qin et al., 2011). The 

NDSI denotes the difference in reflectance monitored in visible and short-wave 

infrared hands, and it can effectively distinguish snow from other surface features 
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(Hall et al., 1995; Tang et al., 2013). We use the NDSI data to represent snow cover in 

this study. Both datasets also have a resolution of 1 km and cover the period 2001–

2015. 

Monthly 2 m air temperature observations at 104 weather stations are obtained 

from the China Meteorological Administration. Stations are mostly located in the 

central and eastern TP (Figure 2). Records from 2001 to 2015 were used to validate 

the satellite-based data. Data quality control, based on logical testing and comparison 

with adjacent stations has previously removed unreliable observations (Li et al., 2004; 

Wang and Zeng, 2018). 

Monthly gridded precipitation is obtained from the Global Precipitation 

Climatology Centre (GPCC) (https://www.esrl.noaa.gov), which is developed based 

on global weather station data (Schneider et al., 2011). The data cover a period from 

1901–2018 and have a resolution of 1°. Monthly snowfall is determined from monthly 

GPCC precipitation with snowfall occurring when mean monthly SBAT falls below 

freezing point. These data have also been used previously for research on climate on 

the TP (Duan et al., 2011). 

Monthly gridded free-atmospheric temperature at 12 vertical levels and vertically 

integrated water vapor from the European Centre for Medium-Range Weather 

Forecasts Reanalysis Interim (ERA-Interim) (Dee et al., 2011) are used to compare 
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the free atmospheric profile with surface based conditions, and quantify advection of 

moisture. Vertical levels include 1000, 950, 850, 700, 600, 500, 400, 300, 250, 200, 

150 and 100 hPa. Temperatures (water vapor) are archived at a resolution of 0.125° 

(0.75°). ERA-Interim has previously been shown to have the best performance 

amongst many reanalysis data on the TP (Wang and Zeng, 2012). 

Finally, global digital elevation data (GTOPO30) were used to quantify surface 

elevation. They are provided by the U.S. Geological Survey’s Center for Earth 

Resources Observation and Science (http://eros.usgs.gov/), with a resolution of ~1 km. 

All data sets (SBAT, MODIS-based LST, snow cover and albedo, GPCC and 

ERA-Interim) were interpolated or resampled to a common resolution of 1 km for 

comparison. Linear trends of all variables are calculated using the slope of an ordinary 

least squares regression line, and their statistical significances are evaluated using the 

Student’s t test. 

3. Results  

3.1 The southwestern TP cooling 

The SBAT record indicates that a majority of the TP has experienced warming 

from 2001 to 2015 except for some southwestern areas (outlined by the blue box) 

(Figure 2). The annual SBAT rate of increase (decrease) is 0.18 (−0.15) °C decade−1 
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averaged over the entire (southwestern) TP. Anomalous cooling is interesting under in 

the context of current global warming (Kosaka and Xie, 2013). In addition, the 

southwestern TP is a critical location due to the inclusion of the Himalayan mountain 

chains where considerable solid water resources are present (Dimri et al., 2018). 

Therefore, this study focuses on the southwestern TP. The temperature decrease in the 

southwestern TP is also demonstrated in MODIS LST data (Figure 3) and in weather 

station observations (Figure 4) although the latter are very sparse. On a seasonal scale, 

most of the decrease is concentrated in spring and winter, whereas autumn (summer) 

SBAT shows an increase (weak decrease) (Figure 2). The annual signal is dominated 

by winter and spring trends at a time of year when snow cover will be significant 

across much of the region. 

3.2 Forcing mechanisms 

Other datasets are examined to illustrate trends in possible forcing mechanisms. 

Annual surface albedo has increased over much of the southwestern TP, and is 

strongly negatively correlated to the 2 m air temperature decrease (Figure 5a). The 

areal mean series have a correlation coefficient of −0.67, so nearly half (45%) of the 

variance of annual SBAT can be accounted by albedo change (Figure 6). As was the 

case for SBAT, spring and winter albedo trends are stronger than the annual mean 

trend (Figure 5c and 5e). For areal mean series, correlation coefficients between 
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surface albedo and air temperature time series are −0.86 in spring and −0.59 in winter 

(Figure 6). Thus up to 74% (35%) of the variance in SBAT in spring (winter) can be 

explained by albedo change.  

Snow cover from MODIS has also increased over the southwestern TP, again 

positively correlated with albedo increase (Figure 5b). For areal mean series, 

correlation coefficients are 0.98 for the annual mean (Figure 6), and broadly similar 

values for spring and winter (Figure 5d and 5f, Figure 6). Thus change in albedo is 

predominantly associated with the change in snow cover. Snow is very efficient at 

reflecting incoming solar radiation, and thus an increase in snow cover is consistent 

with the increase in surface albedo. In turn this will encourages 2 m air temperature 

cooling by subsequently reducing net shortwave radiation (Rangwala and Miller, 

2012). Because incoming radiation in spring is much stronger than in winter, it is 

unsurprising that the correlations between surface albedo and SBAT are strongest then. 

Taken together these results imply the snow-albedo feedback mechanism is a strong 

candidate responsible for much of the recent cooling observed over the southwestern 

TP. 

Further analysis suggests that increased snow cover has also been associated with 

an increase in snowfall (Figure 7), in both in winter and spring. Snowfall is 

significantly positively correlated with snow cover with coefficients of 0.94 for the 
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annual mean, 0.78 for spring and 0.63 for winter. The increase in snowfall (as 

opposed to liquid precipitation) can at least partially be related to the cooling of the 

free atmosphere surrounding the southwestern TP. Mean annual ERA-Interim free 

atmosphere temperature over the southwestern TP and Northwest India shows 

decreasing trends at all heights except 100 hPa (Figure 8). Similar decreases are 

shown in winter and spring (not shown). ERA-Interim also includes a 2 m air 

temperature which also decreases over the southwestern TP from 2001 to 2015 

(Figure 9), consistent with the decrease of SBAT. This supports the suitable use of 

ERA-Interim free atmosphere temperature here to some extent. The rapid decrease in 

free atmospheric temperatures will cool the surrounding environment and be 

conducive to increased snowfall. However temperature alone is not the sole control. 

Anomalous water vapor has also been transported into the southwestern TP from 

southern regions on an annual basis over the trend period (Figure 10a). This is also the 

case in winter (Figure 10b) and in spring for more eastern and southern regions 

(Figure 10c). Increased moisture advection is advantageous for increased snowfall, 

which will enhance the snow-albedo feedback effect and result in decreased SBAT in 

most elevation bins (Figure 8). 

4. Discussions and conclusions 
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Climate change at high elevations on the TP has gained increasing attention due 

to its significant influence on both local and regional scale ecosystems, both in the 

present day and the past (Jin et al., 2005). However, surface observations are lacking 

and unevenly distributed due to physical challenges in making measurements over 

rugged and complex terrain (Ma et al., 2008). Using weather stations biased to eastern 

regions of the TP has been shown to overestimate the warming trend of the plateau as 

a whole and magnify inter-annual variability in 2 m air temperature (Figure 11). 

Reanalysis data and model output can expand analysis to the scale of the entire TP, 

but both have relatively coarse spatial resolution (Wang and Zeng, 2012; Su et al., 

2013; Hu et al., 2014; Maussion et al., 2014; Jiang et al., 2016; Gao et al., 2018; 

Giorgi and Gao, 2018; Guo et al., 2018). The accuracy of reanalysis data depends on 

the quantity of surface observations in the region (Dee et al., 2011), and there are 

therefore known inaccuracies in the reanalyses over the TP (Wang and Zeng, 2012). 

Satellite monitoring could overcome these inadequacies due to high resolution and 

regional coverage. Our study uses comprehensive satellite-based datasets (in 

particular SBAT) to investigate climate change across the whole TP at 1 km resolution. 

Our study can be considered to be a step forward from research approach perspective. 

The southwestern TP, containing the Himalayan mountain chains and adjacent 

areas, is considered to be topographically representative of many of the typical 
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features of the TP. These include mountain chains, separated by extensive high 

elevation plains, with substantial areas of glaciers and semi-permanent snow cover. 

Thus this area is of great importance for the provision of life-supporting water 

resources (Dimri et al., 2018). Despite growing research efforts, quantification of 

climate change is uncertain due to limited observations (Dimri and Dash, 2012; 

Bajracharya et al., 2015; Waqas and Athar, 2018). Based on 1 km resolution SBAT, 

MODIS LST and weather station observations, our study reveals a recent cooling 

trend over much of the southwestern TP. This new finding is supported by concurrent 

changes in relevant forcing mechanisms, as demonstrated by a wide variety of 

datasets, including both a moistening and cooling of the free atmosphere and 

increased snow cover and thus surface albedo. 

Our findings are not inconsistent with other recent observational and modelling 

studies examining past/future profiles of warming, although most studies have only 

extended their analysis up to around 6000 m. Some of these studies examine patterns 

of warming by elevation for the whole plateau. Nevertheless the extremely high 

elevations (>6000 m) are disproportionately located in the southwestern plateau and 

Himalayan regions. Qin et al. (2009) found maximum warming at around 4800 m in 

their analysis of warming rates for 2000–2006 based on raw MODIS LST. There was 

a more stable pattern at the highest elevations (mostly in the Himalayan region) 
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(~6600 m). Guo et al. (2016) predicted maximum warming rates around 4400–5200 

m based on high resolution dynamical downscaling simulations. Gao et al. (2018) 

used model simulations to examine future (21st century) patterns of 

elevation-dependent warming, and projected peak warming around 5000 m associated 

with snow-albedo feedback, and a decrease above this elevation. Guo et al. (2019) 

used satellite-based 2 m air temperature to reveal a reversal in elevation dependent 

warming above 4500 m on the TP in recent years. Pepin et al. (2019) corrected 

MODIS LST data to more closely represent air temperature, and analyzed patterns of 

warming in three mountain ranges across the plateau for 2002–2017. Although some 

enhanced warming at high elevations was found in the Nyenchen Tanglha and Qilian 

Mountains, in the central Himalayas the warming changed predominantly to cooling 

above 6000 m.  

Although the cooling in this study appears anomalous in the context of longer 

term warming, owing to the limitation in the length of the satellite record, it is 

extremely important not to equate this temporary cooling with longer term change. As 

satellite records lengthen however, we will be able to extend our approach to 

understand longer-term tendencies. The present study also addresses the influences of 

snow-albedo feedback and the surrounding free atmosphere on the pattern of 

southwestern cooling, but restricts analysis to the local scale. Inter-annual and decadal 
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variabilities in larger-scale circulation indices such as the North Atlantic Oscillation 

(NAO) (Liu et al., 2018) and ENSO (Shaman and Tziperman, 2005), have been 

shown to influence the cryosphere on the Tibetan plateau. They may also therefore 

show relationships with the southwestern cooling, but further work needs to 

understand such teleconnections, if they exist, through appreciation of the associated 

mechanisms.  

In summary, we have used comprehensive satellite-based datasets to investigate 

recent climate change and its causing mechanims on the TP. Although most of the 

plateau is warming, a recent cooling trend in 2 m air temperature based on SBAT is 

revealed over the southwestern TP from 2001 to 2015. The cooling is supported by 

the enhancement of snow-albedo feedback (i.e., more snow and higher surface 

albedo), linked in turn with a cooling of the surrounding free-atmospheric column and 

anomalous water vapor transport into the southwestern TP. About 45% of the variance 

in SBAT can be explained by variance in surface albedo, in turn strongly related to 

snow cover (coefficient of determination: 0.96), indicating a strong control of the 

snow-albedo feedback mechanism. The study will be useful for assessing the 

sustainability of solid water resources over the Himalayan Mountains located in the 

south-western TP. 
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Figure and table captions 

Figure 1. Comparison between mean 2 m air temperatures series from 104 weather 

stations, satellite-based 2 m air temperature (SBAT), and MODIS LST from 

station-corresponding satellite pixels. Panels represent annual mean (top), 

spring, summer, autumn and winter trends. Dashed lines represent 

regression lines of the corresponding 2 m air temperature series. Linear 

trends of each series and correlation coefficients (R) between both SBAT 

and MODIS LST series and air temperature at weather stations are given at 

the bottom of each panel.  

Figure 2. Spatial distribution of trends (°C decade−1) of satellite-based 2 m air 

temperature (SBAT) (continuous shading) and weather station 2 m air 

temperature (points) (left panels) and mean SBAT series over the 
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southwestern and entire TP (right panels) for annual (top panel), spring, 

summer, autumn and winter seasons from 2001 to 2015. For the left panels, 

solid and dashed lines are iso-lines of smoothed topography with labels 

giving elevation (m). Areas with trends having a significance level 

exceeding 95% are denoted with “+” sign. The blue box outlines the 

southwestern TP identified in the text. For the right panels, dashed lines 

represent regression lines of the corresponding 2 m air temperature series. 

Linear trends of the temperature series are given at the top of each panel. 

Figure 3. Spatial distribution of trends (°C decade−1) of annual and seasonal mean 

MODIS LST from 2001 to 2015. Solid and dashed lines are iso-lines of the 

smoothed topography with labels giving elevation (m). Areas with trends 

having a significance level exceeding 95% are denoted with “+”. The blue 

box outlines the southwestern TP. 

Figure 4. Annual 2 m air temperatures series from weather stations Pulan (30.28°N, 

81.25°S), Shiquanhe (32.05°N, 80.08°S), and Nielaer (28.18°N, 85.97°S) in 

the southwestern TP. Dashed lines represent regression lines of the 

corresponding 2 m air temperature series. Linear trends of the temperature 

series are given at the bottom of each panel.  

Figure 5. Spatial distribution of annual, spring and winter albedo trends (per decade) 
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(a, c, e) and snow cover trends (% decade−1) (b, d, f) from 2001 to 2015. 

Areas with trends having a significance level exceeding 95% are denoted 

with “+”. The box outlines the southwestern TP for panels (a)–(e). For panel 

(f), the box outlines the southwestern TP and Northwest India which is used 

in Figure 8. 

Figure 6. Temporal variation in mean annual, spring and winter satellite-based 2 m air 

temperature (SBAT), albedo and snow cover series as averaged over the 

southwestern TP from 2001 to 2015. R is the temporal correlation 

coefficient between pairs of series. All correlation coefficients exceed a 

statistical significance level of 95%. 

Figure 7. Spatial distribution of snowfall trends (mm hour−1 decade−1) across the 

entire TP for annual, spring and winter seasons from 2001 to 2015. Areas 

with trends having a significance level exceeding 95% are denoted with “+”. 

The black straight line outlines the southwestern TP.  

Figure 8. Elevation profiles of mean annual satellite-based 2 m air temperature 

(SBAT) trends (filled circles) and mean free atmospheric temperature trends 

(open circles), over the southwestern area outlined with the box in Figure 5f. 

Error bars are based on 95% confidence intervals around the mean. The 

horizontal dashed line represents the mean 500 hPa level (5500 m above sea 
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level). 

Figure 9. Spatial distribution of trends (continuous shading) (°C decade−1) of annual 

and seasonal ERA-Interim 2 m air temperature from 2001 to 2015. The 

solid and dashed lines are iso-lines of the smoothed topography with labels 

giving elevation (m). Areas with trends having a significance level 

exceeding 95% are denoted with “+”. The blue box outlines the 

southwestern TP. 

Figure 10. Spatial distribution of vertically integrated water vapor transport flux 

trends (kg m−1 s−1 decade−1) expressed as vectors for annual, spring and 

winter from 2001 to 2015. Areas with trends exceeding 90% and 95% 

confidence levels are shown by light and dark shadings, respectively.  

Figure 11. Comparison between mean observed 2 m air temperature anomalies (104 

weather stations) and area-averaged satellite-based 2 m air temperature 

(SBAT) anomalies over the entire TP (2001–2015). Dashed lines represent 

regression lines for the corresponding 2 m air temperature series. The linear 

trend of each series, correlation coefficient (R), and de-trended correlation 

coefficient (DR) of the two series are given at the bottom of the panel.  
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Figure 1. Comparison between mean 2 m air temperatures series from 104 weather 

stations, satellite-based 2 m air temperature (SBAT), and MODIS LST from station-

corresponding satellite pixels. Panels represent annual mean (top), spring, summer, 

autumn and winter trends. Dashed lines represent regression lines of the corresponding 

2 m air temperature series. Linear trends of each series and correlation coefficients (R) 

between both SBAT and MODIS LST series and air temperature at weather stations are 

given at the bottom of each panel.  
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Figure 2. Spatial distribution of trends (°C decade−1) of satellite-based 2 m air 

temperature (SBAT) (continuous shading) and weather station 2 m air temperature 

(points) (left panels) and mean SBAT series over the southwestern and entire TP (right 

panels) for annual (top panel), spring, summer, autumn and winter seasons from 2001 to 

2015. For the left panels, solid and dashed lines are iso-lines of smoothed topography 

with labels giving elevation (m). Areas with trends having a significance level exceeding 

95% are denoted with “+” sign. The blue box outlines the southwestern TP identified in 

the text. For the right panels, dashed lines represent regression lines of the corresponding 

2 m air temperature series. Linear trends of the temperature series are given at the top of 

each panel.   
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Figure 3. Spatial distribution of trends (°C decade−1) of annual and seasonal mean 

MODIS LST from 2001 to 2015. Solid and dashed lines are iso-lines of the smoothed 

topography with labels giving elevation (m). Areas with trends having a significance 

level exceeding 95% are denoted with “+”. The blue box outlines the southwestern TP. 
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Figure 4. Annual 2 m air temperatures series from weather stations Pulan (30.28°N, 

81.25°S), Shiquanhe (32.05°N, 80.08°S), and Nielaer (28.18°N, 85.97°S) in the 

southwestern TP. Dashed lines represent regression lines of the corresponding 2 m air 

temperature series. Linear trends of the temperature series are given at the bottom of each 

panel.  
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Figure 5. Spatial distribution of annual, spring and winter albedo trends (per decade) (a, 

c, e) and snow cover trends (% decade−1) (b, d, f) from 2001 to 2015. Areas with trends 

having a significance level exceeding 95% are denoted with “+”. The box outlines the 

southwestern TP for panels (a)–(e). For panel (f), the box outlines the southwestern TP 

and Northwest India which is used in Figure 8. 
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Figure 6. Temporal variation in mean annual, spring and winter satellite-based 2 m air 

temperature (SBAT), albedo and snow cover series as averaged over the southwestern 

TP from 2001 to 2015. R is the temporal correlation coefficient between pairs of series. 

All correlation coefficients exceed a statistical significance level of 95%. 
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Figure 7. Spatial distribution of snowfall trends (mm hour−1 decade−1) across the entire 

TP for annual, spring and winter seasons from 2001 to 2015. Areas with trends having a 

significance level exceeding 95% are denoted with “+”. The black straight line outlines 

the southwestern TP.  
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Figure 8. Elevation profiles of mean annual satellite-based 2 m air temperature (SBAT) 

trends (filled circles) and mean free atmospheric temperature trends (open circles), over 

the southwestern area outlined with the box in Figure 5f. Error bars are based on 95% 

confidence intervals around the mean. The horizontal dashed line represents the mean 

500 hPa level (5500 m above sea level).  A
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Figure 9. Spatial distribution of trends (continuous shading) (°C decade−1) of annual and 

seasonal ERA-Interim 2 m air temperature from 2001 to 2015. The solid and dashed lines 

are iso-lines of the smoothed topography with labels giving elevation (m). Areas with 

trends having a significance level exceeding 95% are denoted with “+”. The blue box 

outlines the southwestern TP.   
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Figure 10. Spatial distribution of vertically integrated water vapor transport flux trends 

(kg m−1 s−1 decade−1) expressed as vectors for annual, spring and winter from 2001 to 

2015. Areas with trends exceeding 90% and 95% confidence levels are shown by light 

and dark shadings, respectively.  
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Figure 11. Comparison between mean observed 2 m air temperature anomalies (104 

weather stations) and area-averaged satellite-based 2 m air temperature (SBAT) 

anomalies over the entire TP (2001–2015). Dashed lines represent regression lines for 

the corresponding 2 m air temperature series. The linear trend of each series, correlation 

coefficient (R), and de-trended correlation coefficient (DR) of the two series are given at 

the bottom of the panel.  
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