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Abstract Besides local emissions, biomass burning (BB) emissions in peninsula Southeast Asia
(PSEA) and domestic anthropogenic emissions in North China (NC) are also significant black carbon (BC)
sources over South China (SC) in spring. Meanwhile, the East Asian summer monsoon (EASM) is
established with the wind field reversal, influencing the region‐based contributions to BC over SC. Herein,
BC sources for SC were tracked by region and by sector using the Community Earth System Model with
a BC‐tagging technique. During the spring of 2000–2014, 27% of BC surface concentration (BCS) and 64% of
BC column burden (BCC) over SC stems from nonlocal sources. BC from NC is mainly transported
below 850 hPa. It is the dominant nonlocal contribution to BCS (17%) and largely composed of residential
and industrial sectors. Nonlocal emissions inside and outside China contribute 28% and 36% to BCC,
respectively. Generally transported above 850 hPa, BC from PSEA is the largest nonlocal contributor (20%)
to BCC and contributes 80% of BCC in BB sector. Additionally, the interannual variation in EASM onset
times bring a maximum of −5% to +7%/−2% to +7% variation in BCC/BCS. The BC outflow/inflow
contributed from NC dominates the BC decrease/increase over SC with southerly/northerly wind anomaly
induced by early/late EASM onset, yet regional transport from PSEA contributes minor BC changes. The
simulated BC is significantly positively correlated with the varying EASM onset times, but not with
emissions, indicating the decisive role of meteorology in the interannual variation of BC over SC
during springtime.

1. Introduction

Black carbon (BC) is mainly emitted from the incomplete combustion of fossil fuels, biofuels, and biomass
burning (Bond et al., 2004). BC can induce significant environmental and climate effects as one of the main
components of atmospheric fine particulate matter (PM2.5) and absorbing aerosols (Menon et al., 2002). In
addition to absorbing solar radiation, BC can serve as cloud condensation nuclei by mixing with hygroscopic
aerosols, causing direct and indirect climate forcing on the Earth‐atmosphere system (Jacobson, 2002;
Ramaswamy et al., 2001; Twomey, 2007). Bond et al. (2013) revealed that the warming efficiency of BC is
much higher than that of CO2 and other greenhouse gases (GHGs) with the same mass. Moreover, recent
studies have found that the heating effect of BC can inhibit the upward development of the boundary layer,
increase the frequency of heavy haze events, and affect the surface ozone concentration in China, indicating
that the radiative effects of BC may further aggravate environmental problems (Ding et al., 2016; Gao
et al., 2018). Hence, the identification of BC sources is needed to help the government manage and reduce
BC emissions in a targeted and strategic way.

Asia, especially China, serves as the major contributor to the BC concentration and radiative forcing
(RF) worldwide because of its dense population and rapid acceleration in economic development
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(Li, Gasser, et al., 2016; Qin & Xie, 2012). Although China has witnessed a decrease in BC emissions since the
mid‐1990s due to technological advances and energy reforms, BC emissions and concentrations are still rela-
tively high (Wang et al., 2012). In addition, BC emissions from the developing countries close to China are
continuously growing (Bond et al., 2013; Sahu et al., 2008). As a result, the BC sources in China and its sur-
rounding regions have a complex composition. Located in the southern part of China, South China (SC) is
the fastest‐growing economic area and one of the most developed regions in China (Zhong et al., 2013).
Urbanization and economic development in this region cause air pollution and frequent haze events
(Kwok et al., 2010; Wang, Lyu, et al., 2016). Lan et al. (2013) found that BC accounted for approximately
11% of the mass concentration of PM2.5 in SC via observations in megacities. Wu et al. (2013) obtained an
average BC concentration of 12.3 μg m−3 at urban sites across SC from December 2008 to January 2009.

SC is located downwind of peninsula Southeast Asia (PSEA) in spring atmospheric circulation (Zhu
et al., 2011). Previous studies have indicated that the high biomass burning (BB) emissions in PSEA during
springtime have notable impacts on SC, Hong Kong, and even the Pacific region (Bey et al., 2001) and the
Yangtze River Delta (Fu et al., 2012). Previous observational studies found that the aerosols transported into
these regions contain a large amount of BC (Deng et al., 2008; Lin et al., 2013). Using the Community
Multiscale Air Quality Modeling System (CMAQ) model, Huang et al. (2013) found that the high BB emis-
sions from PSEA in March‐April‐May (MAM) contributed 26–62% of the aerosol optical depth (AOD) in its
downwind regions (including SC, South China Sea, and Taiwan Strait). Zhang et al. (2014) reported that the
high BC concentrations observed in Hainan, South China, corresponded to the times when high BB emis-
sion in PSEA occurred through in situ measurements and backward trajectory analysis. Besides, severe aero-
sol pollutions over North China (NC) have been widely reported (Fu et al., 2014). The domestic contribution
from anthropogenic emission sectors in NC can also be a threat to the air quality over SC. Yang et al. (2017)
found that 35% of the surface BC over SC in winter comes from NC through model simulation. However,
spring haze pollution in NC are also frequently observed, and increased aerosol concentration has been
detected during spring in recent years (Chen et al., 2018; Chen &Wang, 2015). Some observational andmod-
eling studies have analyzed the BC sources over SC in spring but focused on individual sites or episodes
(Deng et al., 2008; Tao et al., 2017; Wang, Huang, et al., 2016; Zhang et al., 2014; Zhang, Li, et al., 2010).
These studies had no focus on the long‐term region and sector source contributions to BC over SC in MAM.

Moreover, as one of the most influential monsoon systems in the world, the East Asian summer monsoon
(EASM, including the East Asian subtropical summer monsoon and the South China Sea tropical summer
monsoon) is established and the wind direction starts to reverse over SC in MAM due to the reversal of
the land‐sea thermal contrast between the Asian continent and the western Pacific (He et al., 2008; Zhu
et al., 1986, 2011). The monsoon has decisive effects on the distribution, transport, and deposition of aerosols
(Guo et al., 2014; Niu et al., 2010; Wu et al., 2016). However, most studies have focused on how the changes
in EASM and the East Asian winter monsoon (EAWM) strengths (represented as the EASM/EAWM index)
impact aerosols in summer and winter (Li, Zhang, & Wang, 2016; Mao et al., 2017; Yang et al., 2014; Zhang,
Liao, & Li, 2010; Zhu et al., 2012). Some studies have investigated the relationship between the monsoon
onset and aerosols and found that anthropogenic aerosols may lead to the advance in the monsoon onset
time in MAM (Bollasina et al., 2013; Wang, Zhu, et al., 2016), whereas the variations in aerosol distributions
and sources caused by the interannual variation in monsoon onset times remain unclear. SC is under the
control of East Asian subtropical summer monsoon during the summer half‐year (Li & Zeng, 2003; Wang
& Lin, 2002). Unlike the tropical monsoon transition when the lower zonal wind changes from winter east-
erlies to summer westerlies, the EASM over SC establishes the seasonal transitionmanifesting as the reversal
of meridional wind direction in MAM (Luo & Lin, 2017; Wang & Lin, 2002). Lying at the front of the con-
tinental part of the EASM control region, the conversion from prevailing northerly wind to southerly wind
caused by the seasonal shift of the continent‐sea thermal condition is established first in March to April over
SC and gradually moves northward (He et al., 2008; Qi et al., 2007; Zhu et al., 2011). Thus, the source region
contributions to BC over SC in MAM will be influenced due to the wind field reversal.

The emission sensitivity approach and BC‐tagging technique applied in themodel are two widely usedmeth-
ods to analyze BC sources in large areas for long periods (Li, Liao, et al., 2016;Wang, Rasch, Easter, et al., 2014;
Zhang, Wang, Hegg, et al., 2015; Zhang, Wang, Qian, et al., 2015; Zhuang et al., 2019). Compared with the
former method, which requires multiple emission perturbation simulations, the BC‐tagging technique
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generates more computational and accurate results when identifying BC sources (Wang, Rasch, Easter,
et al., 2014). The source‐receptor relationships for BC in various countries and regions (e.g., the United
States, China, Arctic, Himalayas and Tibetan Plateau, TP) have been investigated with this method (Wang,
Rasch, Easter, et al., 2014; Yang et al., 2017, 2018; Zhang, Wang, Hegg, et al., 2015; Zhang, Wang, Qian,
et al., 2015). This method has also been used to track the BC sources in the production and consumption per-
spective (Meng et al., 2018). For the sector contributions, Li, Liao, et al. (2016) quantified the contributions
from residential (Res), industry (Ind), transportation (Tra), energy (Ene), and BB to BC in China, but their
simulations were based on the emission sensitivity approach.

Here, a BC‐tagging technique was applied to the Community Earth System Model (CESM) to enable simul-
taneous tracking of the region and sector sources of BC over SC. The primary scope of this study is to distin-
guish the relative contributions of local emissions and regional transport from various regions inside and
outside China to the BC concentration over SC in MAM. The long‐term contribution of BB emissions from
PSEA also needs to be identified. Moreover, with the control experiment and an experiment isolating the dis-
turbance of meteorological factors by fixing BC emissions, the impacts of the variation in EASM onset times
on the interannual variations in BC concentrations and sources over SCwere studied. Descriptions about the
model, BC inventories and BC‐tagging method are provided in section 2. Model evaluations and analysis of
the region and sector source contributions to BC over SC during springtime are presented in sections 3.1–3.4.
Section 3.5 clarifies the impacts of the interannual variation in EASM onset times on BC in MAM.
Uncertainties in the simulated results are discussed in section 3.6. Conclusions are given in section 4.

2. Data and Methods
2.1. Model Description, Configuration, and BC Emissions

BC sources were simulated and tracked based on CESM Version 1.0.4 (Hurrell et al., 2013) with its atmo-
spheric component CAM5 (Community Atmosphere Model Version 5; Neale et al., 2012). Simulations were
conducted with a horizontal resolution of 1.9° × 2.5° and 56 vertical levels from the surface to 4 hPa, using
prescribed climatological sea surface temperatures and sea ice distribution. The model specifies the lower
boundary condition and advects the GHGs (CH4, H2, N2O, etc.) in the atmosphere. CO2 is assumed to be well
mixed with a time invariant surface value. The model uses the deep convection scheme from Zhang and
McFarlane (1995) with modifications (e.g., Richter & Rasch, 2008) and shallow convection scheme from
Park and Bretherton (2009). Vertical diffusion in the boundary layer was illustrated by Holtslag and
Boville (1993). The resistance approach in Wesely (1989) is adopted for the dry deposition scheme with sev-
eral updates (e.g., Wesely & Hicks, 2000). The wet removal scheme is parameterized from Horowitz
et al. (2003). Aerosols including BC, sulfate, primary and secondary organic compounds, ammonium nitrate,
and sea salt are calculated based on the MOZART‐4 chemical mechanism (Emmons et al., 2010). A lognor-
mal distribution is assumed for aerosols except for sea salt with the bulk aerosol model (Lamarque
et al., 2012). BC is emitted in hydrophobic and hydrophilic forms (80% and 20%, respectively) with a fixed
aging timescale of 1.6 days (Cooke & Wilson, 1996). The two forms are considered to be mixed externally
with respect to each other, but BC in hydrophilic form is internally mixed, which can activate cloud droplets
(Emmons et al., 2010; Sadiq et al., 2015; Stevens & Dastoor, 2019). The dynamic parameterization scheme
adopted is the finite volume dynamical core, with emphasis on the conservation, accuracy, and efficiency
of the tracer transport process (Rasch et al., 2006). In this study, the meteorology fields (e.g., horizontal
winds, air and surface temperature, surface pressure, heat fluxes, and wind stresses) were nudged to
Modern Era Retrospective analysis for Research and Applications (MERRA) data sets (Rienecker et al., 2011)
with a time resolution of 6 hours. All fields are linearly interpolated to avoid jumps for time steps between
the reading times (Lamarque et al., 2012). CAM5 uses a substepping procedure (Lauritzen et al., 2011) and
an atmospheric mass fixer algorithm (Rotman et al., 2004) to ensure consistency between the inserted and
model‐computed velocity and mass fields. Previous studies have compared aerosol properties (concentra-
tion, AOD, etc.) and meteorological fields (wind, temperature, precipitation, humidity, etc.) with various
data sets and validated the performance of CESMwith such configurations (Pan et al., 2017; Tosca et al., 2013;
Zhang, Wang, Hegg, et al., 2015).

The Peking University BC inventory (PKU‐BC;Wang, Tao, Shen, et al., 2014) was used for anthropogenic BC
emissions. PKU‐BC is a global monthly emission inventory covering the period of 1960 to 2014. This
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inventory considers emissions from Ene, Ind, Res, Tra, and agriculture (Agr) sectors. Considering the
randomness of BB emissions over time, the Global Fire Emissions Database Version 4.1 s (GFED v4.1s)
was chosen to quantify the daily BB emissions of BC from 2003 to 2014 (Randerson et al., 2017). We use
the global scalar field of the daily fraction from GFED v4.1s to redistribute monthly emissions into daily
time steps. GFED v4.1s considers small fires and gives a better match with field studies compared with
previous versions (Van Der Werf et al., 2017).

2.2. BC‐Tagging Method and Numerical Experiments

Given the generally short lifetime of BC (Samset et al., 2014), SC and its surrounding areas were separated
into 10 regional sources (Figure 1). The blue area (18°N to 31.26°N, 108.75°E to 121.25°E) in Figure 1a
denotes the SC area defined in the model. NC, Southwest China (SWC), Northeast China (NEC),
Northwest China (NWC), and TP are the source regions inside China. PSEA, the Indian peninsula (INP),
Northeast Asia (NEA), and the rest of the world (ROW) are the non‐China source regions that may influence
SC. Figure S1 in the supporting information shows the proportions of seasonal emissions to annual emis-
sions of different regions. The BC emission amounts in almost all regions are roughly the same in MAM,
June‐July‐August (JJA), and September‐October‐November (SON), and the largest proportion occurs in
December‐January‐February (DJF), except for PSEA and NEA. The BC emissions in these two regions are
the highest in MAM compared to in other seasons. Res and Ind are the main BC emission sectors in Asia
(Zhuang et al., 2019). The BC emissions from the other anthropogenic sectors, including Tra, Agr, and
Ene, aremuch lower and attain their highest values in eastern China and northern India (Li, Liao, et al., 2016;
Wang et al., 2012). For efficiency and comparability when quantifying sector sources, BC from the Tra, Agr,
and Ene sectors were tracked as a whole (TrAgEn) in our simulation. The contributions of four emission sec-
tors (Res, Ind, TrAgEn, and BB) were tracked in this study, among which TrAgEn stands for the merged Tra,
Agr, and Ene sectors. Considering that BC in MOZART‐4 contains the hydrophilic and hydrophobic

Figure 1. (a) Tagged source regions of black carbon (BC; South China, SC; North China, NC; Southwest China, SWC;
Northeast China, NEC; Northwest China, NWC; Tibetan Plateau, TP; peninsula Southeast Asia, PSEA; Indian
peninsula, INP; Northeast Asia, NEA; and the rest of the world, ROW) and simulated MAM mean wind field (units:
m s−1, vectors) at 850 hPa during 2000–2014. (b) March‐April‐May (MAM) mean BC emissions (units: C Tg year−1) from
different sectors in tagged source regions during 2000–2014 based on PKU‐BC and GFED v4.1s inventories. The BC
emissions in ROW are not shown.
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components, 80 passively tagged BC species (10 regions × 4 sectors × 2 BC components) were added in the
model. The simulation with tagged BC generates more accurate results than emission sensitivity simula-
tions, which must assume a linear BC response (Wang, Rasch, Easter, et al., 2014).

Based on the BC parameterization schemes in the model, the time evolution of the mass mixing ratios
(MMRs) of BC emitted from a specific tagged source is expressed as

∂qtg i; j; kð Þ
∂t

¼ ∂qtg i; j; kð Þ
∂t

� �
diff

þ ∂qtg i; j; kð Þ
∂t

� �
adv

þ ∂qtg i; j; kð Þ
∂t

� �
dp conv

þ ∂qtg i; j; kð Þ
∂t

� �
shlw conv

þ ∂qtg i; j; kð Þ
∂t

� �
chem

þ ∂qtg i; j; kð Þ
∂t

� �
dry depo

þ ∂qtg i; j; 2ð Þ
∂t

� �
wet depo

(1)

where qtg(i, j,k) represents the tracked BC MMRs assigned to region i (i = 1, 2,…, 10), sector j ( j = 1, 2,…, 4),
and component k (k= 1 and 2 for hydrophobic and hydrophilic BC, respectively). The terms on the
right‐hand side of Equation 1 denote the tendencies of tagged BC in various processes, including vertical
diffusion (diff), advection (adv), deep convection (dp conv), shallow convection (shlw conv), chemistry
(chem), dry deposition (dry depo), and wet deposition (wet depo). For the temporal evolution of qtg(i, j,k)
in dry deposition, it is calculated in the same way as that of original BC, but the relevant variable of tagged
BC is substituted for the corresponding variable of original BC, expressed as

∂qtg i; j; kð Þ
∂t

� �
dry depo

¼ Psurf

RairTsurf
DVkqtg i; j; kð Þ (2)

where Psurf is the midpoint pressure in surface layer, Rair is the dry air gas constant, Tsurf is the tempera-
ture in surface layer, and DVk is the deposition velocity of BC species. The ratio between the MMR of
tagged hydrophilic BC (k = 2) and the corresponding sum is used to calculate the wet deposition tendency
of tagged BC:

∂qtg i; j; 2ð Þ
∂t

� �
wet depo

¼ qtg i; j; 2ð Þ
∑

1 ≤ i ≤ 10
1 ≤ j ≤ 4

qtg i; j; 2ð Þ

∂q
∂t

� �
wet depo

(3)

where ∂q
∂t

� �
wet depo

is the wet deposition tendency of original BC. For the other processes, the temporal evo-

lution of qtg(i, j,k) is treated with the same parameterization subroutines as the original BC. All tagged BC
species are independent and passive, which means they have no impact on dynamical and thermal fields.
The difference between the MMR of original BC and the summed MMRs of tagged BC is negligible com-
pared with the BC concentration (Figure S2). This difference is caused by the nonlinearities in the calcula-
tions of the tendencies of BC in the physical schemes.

Two experiments were designed in this study. Experiment CTRL included the varying BC emissions and
meteorological factors from 2000 to 2014. To elucidate the BC variation induced by meteorological factors,
BC emissions were fixed at the averaged value between 2000 and 2014 in experiment n_vEMIS to examine
how interannual variation in EASM onset times impacts BC. Meteorological factors were isolated and varied
with time in n_vEMIS. As GFED v4.1s does not include daily emissions prior to 2003, the BB emissions for
this period were based on the data of 2003. Region and sector sources of BC were tracked in both experi-
ments. Experimental outputs were set to a pentad (5 days) average instead of the usual monthly resolution
to confirm the EASM onset times.

3. Results
3.1. Model Evaluations

Figures 2a–2d show the spatial distributions of the BC surface concentration (BCS) and BC column burden
(BCC) from the simulations and MERRA Version2 (MERRA2; Gelaro et al., 2017). The MERRA2 BC data
in China have been verified and applied in previous studies (Sun et al., 2019, etc.) and this study
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(Figure S3). The observed BCS values are scattered in Figures 2a and 2c. The BCS data in China and at 10
other sites in PSEA, INP and NEA come from the ChinaMeteorological Administration and previous studies
(Babu & Moorthy, 2002; Begam et al., 2016; Cheng et al., 2006; Cohen et al., 2010; Joshi et al., 2016; Kalluri
et al., 2017; Matsui et al., 2013; Sahu et al., 2011; Talukdar et al., 2015). The site locations and sampling per-
iods are summarized in supporting information Table S1. The spatial distributions of BCS and BCC are rea-
sonably reproduced. Notably, the model results can reproduce relatively high BCS values over certain small
areas near Urumchi (China), Kolkata (India), and Pantnagar (India), but MERRA2 exhibits a small bias
locally. The simulated BCC values are generally lower than those from MERRA2, especially in remote and
sea areas with low BC emissions. The vertical distribution of simulated BC is verified against the observed

Figure 2. Spatial distributions of the MAM mean BC surface concentration (BCS; units: μg m−3; a, c) and BC
column burden (BCC; units: mg m−2; b, d) from the model results and MERRA2 data during 2000–2014 (the dots in a
and c represent the observed BC concentrations at the different sites). (e) A comparison of the vertical distributions
of the MAM mean BC concentration (units: μg m−3) from the model results (dark red lines; the light red shading
denotes the standard deviation) and observations (black lines; the thin horizontal error bars denote the standard
deviation). (f) The scatterplot of the pentad mean BC concentration (units: μg m−3) between the model results and
observations in MAM (normalized mean bias (NMB; NMB = 100% × Σ (Mi − Oi)/ΣOi, where i represents each site,
M represents the simulation value, and O represents the observation value) and correlation coefficient (R) are shown in
the top left corner. The dashed lines mark the 1:3 and 3:1 ratios. The solid line marks the 1:1 ratio).
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BC from Zhao et al. (2015) (Figure 2e). Overall, the model results agree
well with the observations and reflect the vertical variation characteristics
of BC over NC.

The MAM mean BC surface concentrations in China are underestimated
by−26% in the model (Figure 2f). The model biases in BC in the other sea-
sons range from −34% to +3% (figure not shown). Figure S4 shows the
other simulated BC results with the MIX Version 1.1 (Li et al., 2017)
and REAS (Regional Emission inventory in Asia) Version 1.11 (Ohara
et al., 2007) emission inventories. The biases in the simulated BC concen-
trations in China based on the PKU‐BC inventory in all seasons are lower
than those in the simulation results based on other inventories, especially
in DJF. Wang, Tao, Balkanski, et al. (2014) explained the reason for the
lower bias (−35%) in the simulated BC in Asia based on PKU‐BC, which
allows the per capita fuel consumption to vary across different regions
with subnational fuel consumption data. Model also captures the
interannual peaks and troughs of the observed MAM mean BCS over
SC, with a high‐correlation coefficient of 0.89 (Figure 3). The time series
of the pentad mean BCS in China in MAM can be seen in Figure S5,
and the correlation coefficients between the simulations and observations
pass the significance test (p < 0.01).

3.2. Regional Sources

The spatial distributions of the absolute and relative contributions of
regional sources to BCS and BCC over SC in MAM are shown in

Figure 4. The average BCS concentration in SC is approximately 1.39 μgm−3 inMAM, 26.7% of which is con-
tributed by nonlocal emissions. Domestic emissions in NC are the primary contributor of all nonlocal
sources, supplying approximately 0.24 μg m−3 (17.3%) of the BC concentration at the surface along with
the northwesterly wind (Figure 1). The other regions contribute little to BCS in SC. SWC and PSEA contri-
bute approximately 0.03 μg m−3 each. NEC, INP, and ROW contribute approximately 0.02 μg m−3 each (fig-
ure not shown). Because NEA is far away from SC in Asia and NWC and TP are clean areas, the BC
transported from these regions is negligible. The BC proportion from local emissions in SC decreases signif-
icantly from the surface to the upper air. A BCC proportion of 63.9% in the air over SC is imported from non-
local sources, which indicates that the BCC over SC in MAM is mainly controlled by regional transport.
Nonlocal emissions inside and outside China contribute 27.7% and 36.1% to BCC in SC, respectively.
Although the contribution of NC to BCC has a similar proportion (18.3%) as that to BCS, the contributions
of regional sources outside China surpass that of NC and are the main nonlocal source of BCC over SC.
Transported by the strong southwesterly wind in MAM (Figure 1), BC emitted from PSEA accounts for
19.8% of the total BCC over SC, second to the impact of local emissions (36.1%). INP is the third largest non-
local BCC source, accounting for 12.4% of the overall BCC. BC transport from the other nonlocal sources also
increases from the surface to the upper air, with a joint contribution of 13.4% to the BCC. These results sug-
gest the equal importance of the impacts of emissions from inside and outside China on BC over SC. In con-
trast to the surface BCS, where the main nonlocal sources are within China, the nonlocal BCC over SC is
mainly provided by regions outside China.

Note that the BCC value over SC in MAM is close to that in DJF due to the large contributions of nonlocal
sources; however, the local BC emission amounts in MAM are much smaller than that in DJF (Figure 5).
Figure S6 shows that nonlocal source contributions to BC over SC are also significant in DJF and the domes-
tic emission from NC is the main nonlocal source, which is consistent with the results from Yang
et al. (2017).

3.3. Sectoral Sources

The contributions from the Res, Ind, TrAgEn and BB sectors to BC concentrations over SC range from large
to small (Figure 6). Res is the primary emission sector of BCS and BCC over SC. Nearly half of BCS and BCC
over SC can be attributed to Res from 2000 to 2014, with absolute (relative) contributions of 0.64 μg m−3

Figure 3. Interannual variations of MAM mean BC surface
concentrations (units: μg m−3) from observations (black dashed line) and
model results (red dashed line) at six sites in SC. Light color shadings
denote the standard deviations of simulated and observed BC. The
correlation coefficient (R) between them calculated over the time period of
2006–2014 is shown at the top right corner.
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(46.0%) and 0.94 mg m−2 (46.5%) to BCS and BCC, respectively. According to section 3.2, local area, NC, and
PSEA are the major source regions of BC over SC. With the help of the BC regional and sectoral source
tracking method, Figure 7 shows the spatial distributions of the relative contributions from SC, NC and
PSEA to BC over SC by the different sectors. Approximately 54.4% of BCS in the Res sector comes from
local emissions, followed by BCS transported from NC (25.9%). The contributions of SC and NC emissions
to BC in the Res sector decrease in the upper air with a joint contribution of 50% to BCC. Res is the main
BC emission sector in Asia (accounting for 50% or more of BCS and BCC) in MAM except for some areas
in PSEA and NEA.

The Ind sector is the second largest contributor to BC over SC, accounting for 25.9% (0.36 μgm−3) of BCS and
22.3% (0.45 mg m−2) of BCC. BC emitted from TrAgEn supplies 25.2% (0.35 μg m−3) of BCS and 18.32%
(0.37 mg m−2) of BCC averaged over SC, which is slightly lower than the contribution from Ind
(Figure 6). Similar to the characteristics of the regional sources of BC in the Res sector, 80–90% of the BCS
from the Ind and TrAgEn sectors over SC is attributed to local and NC emissions, and emissions from

Figure 4. (a) Spatial distributions of the contributions (units: μg m−3; shading) to MAM mean BCS from main
regional sources and remaining regional (RR) sources. (b) Same as (a), but for the regional contributions (units: mg m−2;
shading) to MAM mean BCC. The panels are ordered by the contributions to BC from main regional sources.
The region enclosed by black lines represents SC. The averaged absolute and relative contributions of each regional
source to BC over SC are given at the top right of the panel. The dotted areas indicate that the relative contribution
(units: %) of the regional source exceeds 20%.
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these two regions have relatively small impacts on BCC in Ind and
TrAgEn sectors (Figure 7). In addition, Figure 7b1 shows that little BCS
and BCC in the TrAgEn sector (6.67%) and BB sector (1.74%) are contrib-
uted by NC, indicating that the BC transported from NC may be mainly
attributed to the Res and Ind sectors. This will be examined in detail in
section 3.4.

In contrast to the anthropogenic sectors, the highest values of BC originat-
ing from the BB sector occur over PSEAwith BC concentrations exceeding
1.5 μgm−3 and 1.5 mgm−2. Over SC, little BCS originates from the BB sec-
tor (0.04 μg m−3, 2.9%) due to the low local BB emissions (Figure 7a1).
However, the contribution of the BB sector reaches 12.9% of BCC in the
air (Figure 6b2), comparable with the joint contribution (18.3%) of the
Tra, Agr, and Ene sectors. By analyzing the regional contributions to BC
in the BB sector, Figure 7c2 reveals that the majority of BC in the BB sec-
tor over SC is generated from PSEA. The high BB emissions from PSEA
account for nearly 80% of BCC in the BB sector over SC, which is 10.3%
of the total BCC over SC. Our result is consistent with the result of
Chan (2017) They estimated that the BB emissions from PSEA could con-
tribute 11% of the total BC in the air over Hong Kong using the global che-
mical transport model GEOS‐Chem. Emissions from PSEA also provide
38.4% of BCS in the BB sector (accounting for 1.1% of the total BCS) at
the surface of SC, almost equal to the contribution from local emissions
(41.1%, Figures 7a1 and 7c1), though the analysis above suggests that
the surface BC mainly comes from local emissions and regional transport
from NC.

3.4. Vertical Distribution Characteristics of BC From
Different Sources

Considering the different contribution characteristics of regional and sec-
toral sources to BCS and BCC, determining the source contributions to BC
at different altitudes is valuable. Figure 8a shows that the BC concentra-
tion decreases rapidly with altitude over SC, with a gradually decreasing
contribution of local emissions, while the influence of regional transport
increases. The contribution of nonlocal sources to the BC concentration
over SC exceeds the local emission contribution from 850 hPa. At least
60% of the BC above 850 hPa comes from regional transport, while the
proportion increases to 80% above 750 hPa, indicating that most of the
BC at higher altitudes over SC is imported from nonlocal sources
(Figure 8b).

Note that the main transport height of BC varies with the different nonlocal sources. Figure 8c shows that
regional transport from most domestic region sources mainly occurs in the lower troposphere, led by the
contribution of NC (below 850 hPa). BC from NC accounts for 50–75% of the nonlocal BC in this layer.
However, the BC amount from NC decreases with altitude, and emissions from non‐China regions begin
to dominate the BC concentration over SC, especially the emissions from PSEA and INP. BC transport from
PSEA and INP to SC mainly occurs in the free troposphere (above 850 hPa), accounting for 55–74% of the
total BC from nonlocal sources in this layer. Figure S7 reveals that the height of the high‐value center of
BC in the BB sector from PSEA increases as BC passes through the Yunnan‐Guizhou Plateau in China.
The height of the highest value occurs at 2 km (approximately 800 hPa) when BC emitted from PSEA arrives
at SC. This is why little surface BC is emitted from the BB sector over SC, while the proportion of BC in the
BB sector increases to 10.3% of the total BCC in the air over SC. The BC contributed by SWC and ROW also
increases with altitude. Bond et al. (2013) suggested that BC transported to higher altitudes is less likely to be
removed and therefore has a longer lifetime, which is a favorable factor to enhance the BC RF. Hence, our
results indicate that a considerable proportion of the BC RF over SC may be owing to the contributions of

Figure 5. Seasonal variations in BC concentrations contributed by all
(blue bars), local (black bars), and nonlocal (yellow bars) source regions
over SC and the regional mean BC emissions (units: C Tg year−1; lines)
from PKU‐BC and GFED v4.1s inventories during 2000–2014. (a) is for BCC
(units: mg m−2) and (b) is for BCS (units: μg m−3).
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Figure 6. Spatial distributions of absolute contributions (units: μg m−3; a1) and relative contributions (units: %; b1) to
MAM mean BCS from different sectoral sources. (a2 and b2) The same as (a1) and (b1), respectively, but for
absolute contributions (units: mg m−2; a2) and relative contributions (units: %; b2) to MAM mean BCC. The region
enclosed by black lines represents SC. The averaged absolute and relative contributions of each sectoral source to BC over
SC are given in the lower right corner of the panel.

Figure 7. Spatial distributions of relative contributions (units: %) of Res, Ind, TrAgEn, and BB emission sectors from three tagged major source regions
(SC, NC, and PSEA) to MAM mean BC. (a1–c1) The relative contributions to BCS. (a2–c2) The relative contributions to BCC. The region enclosed by black lines
represents SC. The proportions of BC originating from different emission sectors in the tagged source regions (SC, NC, and PSEA) to total BC averaged over SC are
given in the lower right corner of the panels marked in red. The proportions of BC originating from different emission sectors in the tagged source regions
(SC, NC, and PSEA) to BC in the corresponding sectors averaged over SC are given in the lower right corner of the panels marked in black.
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nonlocal sources, especially the contributions from non‐China emissions (e.g., PSEA and INP). Further
studies are needed to examine the above issue.

BC transported from NCmay be mainly attributed to Res and Ind sources, as mentioned in the previous sec-
tion. Figure 9 shows that BC from NC shares a similar compositional proportion at all altitudes, where
50–60% of BC is attributed to the Res sector, followed by the Ind sector (30–40%). Little BC emitted by the
TrAgEn and BB sectors (below 5–8% and 0.5%, respectively) is transported from NC. Note that despite BC
from PSEA and INP regions share the same primary transport layer, their sectoral compositions are not
the same. The BC emitted in PSEA is mainly attributed to the BB sector (accounting for 50–60% below
600 hPa), followed by the Res and TrAgEn sectors (20–30% and 10%, respectively). Little BC transported
from PSEA to SC is emitted in the Ind sector. INP mainly impacts BC over SC via the Res sector, followed
by the Ind and TrAgEn sectors, whereas the proportion of the BB sector is small (accounting for 60%,
25%, 11%, and 3–5%, respectively). The BC transported in the troposphere from the other domestic regions
is also mainly attributed to the Res sector (50–60%). The sectoral composition of BC from local SC emissions
is slightly different from that of BC delivered from the other domestic regions. Locally emitted BC in the Res
sector is dominant over SC, while its contribution to the total BC is approximately 10% lower than that from
the other regions in China (40–50%) due to the increasing contribution of the TrAgEn sector (10% larger
compared with other regions in China). Previous studies have highlighted the importance of transportation
emissions to PM2.5 in SC (Yin et al., 2017; Yu et al., 2018). The relative contribution of the TrAgEn sector to
BC in SC is increased mainly due to the increased BC emissions from the local transportation sector. The BC
transported from ROW to SC is mainly attributed to the TrAgEn sector (accounting for 40–60% below
600 hPa), which may be related to ship transportation in the coastal areas around SC.

3.5. Impacts of the Interannual Variation in EASM Onset Times on BC
3.5.1. Selection of the Years With Early/Late EASM Onset
The monsoon transition can be characterized as the reversal of wind direction or the alternation of dry and
wet seasons (Zhao et al., 2007), and the time (or pentad) when the wind starts to reverse has been widely
used to define the EASM onset time (He et al., 2008; Li & Pan, 2006; Wang, Zhu, et al., 2016). Wang, Zhu,
et al. (2016) suggested that the meridional wind at 850 hPa can be used to assess the impacts induced by
the varying EASM onset times on aerosols as aerosols are mainly distributed in the lower troposphere. In this
study, the definition fromHe et al. (2008) andWang, Zhu, et al. (2016) is followed to determine the establish-
ment pentad of EASM over SC by the transition of meridional wind from northerly wind into southerly wind
at 850 hPa in the subtropics (20–31.26°N, 108.75–121.25°E). The specific definition is as follows: (1) the onset

Figure 8. Vertical distributions of (a) MAM mean BC concentration (units: ng m−3), (b) relative contributions
(units: %) of local emission and regional transport to MAM mean BC concentration, and (c) relative contributions
(units: %) of nonlocal sources to MAM mean BC concentration provided by regional transport over SC.
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pentad of EASM is the pentad when the meridional wind at 850 hPa over
SC starts to be greater than 0 m s−1 (V850 > 0 m s−1); (2) V850 remains
greater than 0 m s−1 in the subsequent four pentads (including the
onset pentad), or at least three pentads, and the average meridional
wind speed of the accumulative four pentads is greater than 1.0 m s−1

(V850 ≥ 1.0 m s−1); and (3) the retreat pentad of EASM is defined as the
pentad when meridional wind turns negative (V850 < 0 m s−1).

Figure 10 gives the interannual variations in EASM onset and retreat
times over SC during the simulation period calculated with the model
result (MERRA) and National Centers for Environmental Prediction
(NCEP)/National Center for Atmospheric Research (NCAR) reanalysis,
respectively. The onset and retreat times using MERRA meteorological
fields agree well with those based on NCEP/NCAR reanalysis (R = 0.95
and 0.97, respectively). The establishment of EASM can also be character-
ized by the transition from dry continental climate to wet monsoon cli-
mate or the reversal of land‐sea pressure contrast. EASM onset times

Figure 9. The sectoral compositions (Res, a; Ind, b; TrAgEn, c; and BB, d; units: %) of BC emitted from different
source regions averaged over SC at different altitudes. Fractions in the corresponding boxes of the four panels
add up to 100%.

Figure 10. The EASM onset times (units: pentad, solid lines) and
retreat times (units: pentad, dashed lines) over SC from the model results
(red lines) and NCEP/NCAR reanalysis (blue lines) during 2000–2014. The
selected years with early (square) or late (circle) EASM onset times and
correlation coefficients (R) between the model results and NCEP/NCAR
dataset are shown in the figure.
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based on other definitions (Guo, 1983; Wang & Lin, 2002) were calculated with different feature factors
(precipitation and sea level pressure). The temporal correlation coefficients (0.52–0.71) between the
EASM onset time used in this study and EASM onset times calculated from other definitions based on the
model results are statistically significant at the 0.05 level (Table 1). The EASM onset times obtained by
different definitions in the NCEP/NCAR reanalysis and CPC Merged Analysis of Precipitation product
(CMAP; https://psl.noaa.gov/data/gridded/data.cmap.html) also show strong correlations (0.52–0.62).
These suggest the reliability of the definition of EASM onset time used in this study. To compare the
impacts of the early or late EASM onset on the concentration and sources of BC over SC, we selected
4 years with the earliest EASM onset times (2009, 2010, 2012, and 2013) and 4 years with the latest onset
times (2000, 2001, 2004, and 2011) during the simulation period, as shown in Figure 10. Table 2 shows
that the average early/late EASM onset time is around the 8th/23rd pentad in this study. Similarly, Li and
Zhang (2009) found that the seasonal reversal of the 850 hPa meridional winds happened from the 7th to
22nd pentad over SC. The difference in BC between the earliest/latest‐year‐average and 15‐year average
shows the influences of the early or late EASM onset on BC.
3.5.2. Changes in BC Concentration and Sources With Early/Late EASM Onset Time
From Figures 11a and 11c, it can be seen that the BC concentrations over SC and its surrounding areas
change in an opposite way under the control of early or late EASM onset. The changes in BC concentrations
are most significant over SC and NC. Figure 11a shows that the BC concentration over SC and its adjacent
sea areas decreases when EASM onset is early while the BC concentration over NC increases at the same

Table 1
Correlation Coefficients Among the EASM Onset Times Obtained Based on Different Definitions and Correlation
Coefficients Between EASM Onset Times and Simulated BC Column Burden (Units: mg m−2; From Experiment
n_vEMIS) Over SC During 2000–2014 Calculated From the Model Results, CMAP Precipitation Product, and NCEP/
NCAR Reanalysis

Correlation
coefficient

Model CMAP and NCEP/NCAR

Onset timea BC Onset timea BC

Onset timeb 0.71** 0.42* 0.62** 0.29
Onset timec 0.52** 0.52** 0.52** 0.46*

aThe EASM onset time defined by He et al. (2008) andWang, Zhu, et al. (2016) is used in this study. bThe EASM onset
time defined by Wang and Lin (2002) is determined by the difference between the pentad mean (Ri) and the January
mean (RJAN) precipitation rates (RRi = Ri − RJAN, i = 1, 2, …, 73). cThe EASM onset time defined by Guo (1983) is
determined by the difference between the sea level pressures over 110°E (SLP110°E) and 160°E (SLP160°E) over East
Asia (10–50°N) (SLPdiff, i = SLP110°E,i − SLP160°E,i, i = 1, 2, …, 73). **The correlation coefficient is statistically signif-
icant at the 0.05 level. *The correlation coefficient is statistically significant at the 0.1 level.

Table 2
MAM Mean BC Column Burdens (Units: mg m−2) in Early/Late EASM Onset Years and the Entire Simulation Period
(2000–2014) Over SC and NC

Monsoon onset
Average onset time
over SC (pentad)

BC conc. Avg.
(mg m−2)

BC conc. Diff.
(mg m−2)

BC conc.
Diff. (%)

SC Early 8th 1.91 −0.11 −5%
Late 23rd 2.16 0.14 7%

Average 15th 2.02
SDa 0.86

NC Early 8th 2.40 0.06 3%
Late 23rd 2.20 −0.14 −6%

Average 15th 2.34
SD 1.35

Note. The average EASM onset times (units: pentad) in early/late EASM onset years and the entire simulation period
(2000–2014) over SC are obtained following the definition of He et al. (2008) andWang, Zhu, et al. (2016). The absolute
difference (units: mg m−2) and relative difference (units: %) between the MAMmean BC column burdens in early/late
EASM onset years and the entire simulation period (2000–2014) over SC and NC are also shown.
aSD represents the standard deviation of averaged BC column burden over the entire simulation period (2000–2014).
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time. However, late EASM onset time leads to an opposite change in BC concentrations in each region, man-
ifesting as an increase in BC concentration over SC and adjacent areas but a decrease over NC. The maxi-
mum BC change over SC is near its northern edge, while the most significant change in BC over NC is
generally consistent with the area with the strongest BC emission (figure not shown) and highest BC concen-
tration (Figure 2) in China inMAM. Table 2 quantifies the difference in BCC between early/late EASM onset
years and the entire simulation period (2000–2014) averaged over SC and NC. Compared with the BC con-
centration averaged from 2000 to 2014, BCC over SC is reduced by 5% (0.11 mg m−2) when the EASM onset
pentad is early. Meanwhile, the concentration of BCC over NC increases by 3% (0.06 mg m−2). Late EASM
onset causes even greater changes in BC concentrations. BCC over SC and NC areas increases/decreases by
0.14 mg m−2, accounting for approximately 7% and 6% of their total BCC, respectively. Hence, the interann-
ual variation in EASM onset can induce a maximum of −5% to +7% variation in BCC over SC during
2000–2014. The BCS variation induced by the interannual variation in EASM onset is basically the same
as those of BCC but slightly smaller (Table S2). The resulting variation ranges of BCS over SC and NC are
−2% to +7% and −2% to +2%, respectively, when the EASM onset is relatively earlier or later. Mao
et al. (2017) summarized the impacts of strongest and weakest EASM classified by the monsoon strength
on the surface BC in East Asia. The variation in BCS over SC induced by varying EASM strength ranged from
−5% to 5%, and the variation in BCS over NC ranged from −1% to −2%. In addition, with the variation in
EAWM strength, the BCS in SC decreased or increased by 2%, while the BC in NC varied in the range of
−2% to +3%. Hence, the variations in EASM onset time and strength have comparable impacts on BC in
magnitude.

The sources contributing to the variation in BC due to the early/late EASM onset are quantitatively revealed
with the BC‐tagging method. As shown in Figure 12, whether the EASM onset is early or late, the BC
outflow/inflow transported from NC is the largest contributor to the variations in BC column burden over
SC, surpassing the contribution of local inflow/outflow within SC. When the EASM is established relatively
earlier, the BC provided by NC decreases by 0.07 mgm−2, whereas the BC fromNC increases by 0.10 mgm−2

inversely when the EASM establishment is later. The variation in BC contributed by other regions is not sig-
nificant. It is mainly the difference in regional transport from NC that leads to the BCC variation over SC
with the varying EASM onset times. The BC vertical changes given in Figures 11b and 11d further confirm
this. The BC impacted by the interannual variation in EASM onset times is mainly distributed in the lower
troposphere. Little impact on BC at higher altitudes (above 800 hPa) is exerted by the varying EASM onset
times. The analysis in section 3.4 shows that the main transport layer of BC from NC is generally below

Figure 11. (a) Spatial distribution of the difference (units: mg m−2) between the MAM mean BC column burden in
early EASM onset years and that averaged from 2000 to 2014. (b) Same as (a), but for the vertical distribution of the
BC difference (units: μg m−3). (c and d) Same as (a) and (b), but for the difference between BC in late EASM onset
years and that averaged from 2000 to 2014. The region wrapped with black lines represents SC. BC values are simulated
from n_vEMIS.
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850 hPa while most of the BC originating from PSEA and INP is transported in the middle and upper
troposphere (Figure 8). Notably, the BC over SC transported from PSEA decreases by 0.03 mg m−2 due to
the late EASM onset, accounting for 7.5% of the total contribution from PSEA. As for the variation in
surface BC over SC, BC increase provided by local emissions slightly exceeds the contribution of the BC
inflow transported from NC when EASM is established relatively later. But overall, most of the variation
in BCS induced by early/late EASM onset can be attributed to the difference in regional transport from
NC. Figure 13 gives the advective tendency anomalies of BC emitted from NC and wind field anomalies at
850 hPa when the EASM onset time is relatively earlier or later. The positive value indicates a net inflow
of BC transported from NC, and the negative value represents a net outflow. When the EASM onset
pentad is early (late), the southerly (northerly) wind anomaly prevails in eastern China, which blocks (pro-
motes) the southward transport of BC provided by NC. Therefore, the BC inflow from NC to SC is negative
(positive), while the inflow over NC itself is positive (negative). The variation in BC concentrations over SC
impacted by EASM onset time is dominated by the regional transport from NC, thus leading to a decreasing
(increasing) trend in BC over the SC region.

Figure 14 gives the interannual variations in BC concentrations, EASM onset times and BC emissions aver-
aged over SC. The time series of BC emissions in the BB sector from PSEA is also provided. The interannual
variation in BC concentrations agrees well with that of the EASM onset times without the impacts of emis-
sion factor (experiment n_vEMIS), showing a significant positive correlation (R = 0.66, p < 0.05) in
Figure 14a. This indicates that the earlier the EASM is established, the lower the BC concentration is over
SC. Table 1 also shows the positive correlation coefficients (0.42–0.52) between the EASMonset times defined
in other studies and BC concentrations. Notably, the correlation between BC concentrations and emissions
over SC is not significant when emission and meteorological factors are both taken into consideration
(Figure 14b), whereas the BC concentrations are still positively correlated with the EASM onset times
(R = +0.62, p < 0.05; Figure 14a). Moreover, a significant correlation coefficient of 0.51 is found between
the BC concentrations over SC and the BC emissions in the BB sector from PSEA (Figure 14b). The standard
deviation (0.02) of the BC interannual variation induced by the variation in BB emissions from PSEA over SC

Figure 12. (a) Contribution (units: mg m−2) from each tagged source region to the difference in BC column
burden (BCC) over SC between early EASM onset years and the entire simulation period (2000–2014). Different colors in
the bars represent the contributions of different emission sectors (Res, Ind, TrAgEn, and BB). (b) Same as (a), but for
the contributions to the difference in BCC over SC between late EASM onset years and the entire simulation period
(2000–2014). (c, d) Same as (a) and (b), respectively, but for contribution (units: μg m−3) from each tagged source region
to the difference in BC surface concentration (BCS) over SC.
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is much smaller than that (0.86 in Table 2) induced by the variation in
EASM onset times. The above results indicate that the interannual varia-
tion in BC concentrations over SC during springtime is mainly controlled
by meteorological factors in recent years. The relationship between BC
concentrations and EASM retreat times in SON is also examined
in Figure S8, which shows a significant negative correlation coefficient
(R=−0.64, p< 0.05). The BC concentration over SC is relatively high in
SON when EASM retreat is early, which is similar to the relationship
between the EASM onset times and BC concentrations over SC in MAM.
Unlike the condition in MAM, BC concentration in SON is significantly
correlated with the BC emissions over SC (R=+0.49, p< 0.05), suggesting
that the interannual variation in BC concentrations over SC in SON is
influenced jointly by the emission and meteorological factors.

3.6. Uncertainties

The results of the BC‐tagging technique highly depend on the model per-
formance in reproducing the BC distribution and evolution. Through
multiple comparisons, we examined that the model well captures the spa-
tial coverage and interannual temporal evolution of BC over SC. However,
the general underestimation of simulated BC is found in this study, lead-
ing to the bias in the absolute contributions of source regions and sectors
to BC over SC. The underestimation of simulated BC also exists in pre-
vious studies and can be attributed to several factors (Bond et al., 2013;
Jiang et al., 2013; Yang et al., 2017, 2018; Zhang, Wang, Hegg, et al., 2015;
Zhang, Wang, Qian, et al., 2015). The coarse resolution used in global
models are unable to consider the subgrid aerosol variability (Qian
et al., 2010). For example, emissions in model are uniformly distributed
over a grid cell volume, while the spatial distribution of BC emissions
may come from point, area, and mobile sources and are inhomogeneous
within a model grid cell. Model grid‐averaged output also results in the
negative bias of model results compared to observations sampled at indi-
vidual point sites.

Additionally, BC emissions are subject to uncertainty in existing inven-
tories. Using the anthropogenic emissions from PKU‐BC inventory with a subnational fuel consumption
data and updated emission factor measurements and daily BB emissions from GFED v4.1s, the bias
(−26%) of MAMmean BC in China simulated in this study is reduced compared with the simulation results
(−53% to −51%) based on other inventories. However, compared to the BC emissions constrained by the
observations of BC light absorption from Bond et al. (2013), there still exists biases in the BC emissions in
East Asia (−26%), South Asia (−67%), Southeast Asia (−68%), and other regions (−83 to 11%) from
PKU‐BC (Wang, Tao, Shen, et al., 2014). Note that Wang, Rasch, Easter, et al. (2014) showed that the distri-
butions of tagged BCmixing ratio and deposition changes from individual sources are nearly linear when BC
emissions are perturbed. Therefore, underestimation may exist in the results of absolute contributions of
source regions and sectors to BC over SC due to the uncertainty in BC emissions; besides, the relative con-
tributions of non‐China emissions, especially from INP and PSEA, may be underestimated considering the
larger biases of BC emissions in South and Southeast Asia than in East Asia from PKU‐BC.

Note that the BC aging timescale is fixed (1.6 days) inMOZART‐4 although it may vary in different regions in
reality. Previous studies indicated that the aging timescale of anthropogenic BC from East Asia could be sev-
eral hours (faster than assumed in most global models), while the aging process of BC originating from BB
emissions in Southeast Asia may be slower, with a timescale of a few days (Shen et al., 2014; Zhang, Liu, Tao,
& Ban‐Weiss, 2015). Zhang, Liu, Tao, & Ban‐Weiss (2015) found that the lifetime of BC increases nearly lin-
early with aging timescale for all source regions, indicating the slower removal of BC with longer aging time-
scale during transport. Hence, the bias in BC aging timescale may also produce an underestimation of
contribution from PSEA to BC over SC in this study. However, results from Wang, Rasch, Easter,

Figure 13. (a) Composite MAM mean advective tendency anomaly of
BC originating from NC (unit: 10−6 mg m−2 s−1, contours) and MAM
mean 850 hPa wind direction anomaly (unit: m s−1, vectors) in early
EASM onset years. (b) Same as (a), but for the anomalies in late EASM
onset years. The dot signs denote where the anomaly is statistically
significant at the 0.05 level.
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et al. (2014) showed that the BC aging treatment brings small change in
the source‐receptor relationships. Moreover, our results for the relative
contributions to BC are qualitatively consistent with those of previous stu-
dies using observational and/or modeling approaches (Chan, 2017; Li,
Liao, et al., 2016; Yang et al., 2017; Zhang et al., 2014).

4. Conclusions

The BC‐tagging technique applied in CESM in this study is a useful tool
for tracking BC sources by region and by sector without perturbing emis-
sions. We quantified the region‐based and sector‐based contributions to
BC and examined the long‐term impacts of biomass burning (BB) emis-
sions originating from peninsula Southeast Asia (PSEA) on South China
(SC) during springtime. Furthermore, the East Asian summer monsoon
(EASM) is established in spring when the wind direction begins to reverse.
SC is under the control of the East Asian subtropical monsoon system, and
the time when EASM is established impacts the BC distribution and trans-
port. Hence, the interannual variations in BC concentrations and sources
influenced by the variation in EASM onset times were investigated with
the BC‐tagging technique.

In ourwork, a large amount of BC is transported fromPSEAand the Indian
peninsula (INP) and increases the BC concentration at high altitudes over
SC. Most of the BC column burden emitted from BB sector (~80%) over SC
can be attributed to regional transport from PSEA during 2000–2014. The
high BB emissions in PSEA increase the total BC column burden over SC
by 10.3%. This increase could be even larger if vertical‐variant BB
emissions associated with plume injection are considered. Given the
higher RF efficiency (RF exerted per gram of BC; Samset et al., 2013,

2014) and longer lifetime (Bond et al., 2013) of BC at higher altitudes, further studies are needed to examine
the potential large contributions of BB emissions to the direct BC RF over SC.

In contrast to the large contributions of non‐China emissions to BC at high altitudes, the anthropogenic
emissions from North China (NC) are the dominant nonlocal contributor to BC in the lower troposphere
over SC (contributing 17.3% of the BC surface concentration). Moreover, through tracking the specific
sources of the variation in BC induced by the interannual variation in EASM onset times with the
emission‐fixed experiment, the BC variation due to the different EASM onset times over SC is found to be
controlled by the BC outflow/inflow contributed from NC. A southerly wind anomaly occurs over East
Asia and blocks the southward transport of BC from NC to SC due to the early EASM onset. Therefore,
BC is difficult to be exported from NC, and the BC concentration over SC provided by NC is thus reduced.
In the year with late EASM onset, this pattern is reversed. The results show that the BC changes over SC
and NC represent opposite characteristics. The BC concentration over SC decreases by 0.11 mg m−2

(increases by 0.14 mg m−2), while the BC concentration over NC increases by 0.06 mg m−2 (decreases by
0.14 mg m−2) when the EASM onset is early (late). The role of meteorological and emission factors on the
interannual variations of BC in spring are further examined. The simulated MAM BC concentrations aver-
aged over SC exhibit strong positive correlation with the EASM onset times both in the emission‐fixed
experiment (R = +0.66) and the control experiment (R = +0.62). However, no significant correlation is
found between the BC concentrations and emissions during 2000–2014, indicating that the interannual var-
iation in BC concentrations over SC during springtime in recent years is mainly controlled bymeteorological
factors.

Note that the impacts of the variation in EASM onset times on BC in spring we evaluate are as important as
the impacts of the variation in EASM and EAWM strengths on BC given in previous studies, but the former
is less discussed. Further studies need to be conducted on how the establishment and retreat of EASM in
spring and autumn impact BC and other aerosols. Moreover, this study mainly investigates the impacts of
the interannual variation in EASM onset times on BC by altering the wind field. Other meteorological

Figure 14. Time series of BC column burden (BCC, units: mg m−2,
black solid and dashed lines in panel a), EASM onset time (units: pentad,
blue line in panel a) and BC emission intensity (units: ng m−2 s−1, brown
line in panel b) over SC and the BC emission intensity from BB sector
over PSEA (units: ng m−2 s−1, green line in panel b) during 2000–2014. The
BC concentrations represented by black solid and dashed lines in (a) are
simulated from n_vEMIS and CTRL, respectively.
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factors (precipitation, etc.) affected by the varying EASM onset times can also adjust the BC horizontal and
vertical distributions and should be considered in the future.

In summary, regional transport from the nonlocal source regions inside and outside China leads to an
increase in the BC concentrations at different altitudes over SC in MAM. The BC transported from NC con-
trols the BC variation over SC induced by the interannual variation in EASM onset. The BC sources over NC
are also investigated here. NC is recognized as another highly polluted area in China, but regional transport
has little impact on BC from the surface to the upper air (Table S3), which differs from the situation over SC.
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University BC inventory is available online (http://inventory.pku.edu.cn/home.html). The GFEDv4 data-
base is available online (https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4_R1.html). The
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ccsm 4.merra.html and https://disc.gsfc.nasa.gov/datasets?page=1&keywords=MERRA‐2 websites, respec-
tively. The NCEP/NCAR reanalysis is available online (https://psl.noaa.gov/data/gridded/data.ncep.reanal
ysis.html). The CMAP product is available online (https://psl.noaa.gov/data/gridded/data.cmap.html).
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