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Abstract
The future vegetation–climate system over East Asia, as well as its dependence on Representative Concentration Pathways 
(RCPs), is investigated using a regional climate–vegetation model driven with boundary conditions from Flexible Global 
Ocean–Atmosphere–Land System Model: Grid-point Version 2. Over most of the region, due to the rising  CO2 concentration 
and climate changes, the model projects greater vegetation density (leaf area index) and gradual shifts of vegetation type 
from bare ground to grass or from grass to trees; the projected spatial extent of the vegetation shift increases from RCP2.6 
to RCP8.5. Abrupt shifts are projected under RCP8.5 over northeast China (with grass replacing boreal needleleaf evergreen 
trees due to heat stress) and India (with tropical deciduous trees replacing grass due to increased water availability). The 
impact of vegetation feedback on future precipitation is relatively weak, while its impact on temperature is more evident, 
especially during DJF over northeast China and India with differing mechanisms. In northeast China, the projected forest 
loss induces a cooling through increased albedo, and daytime high temperature  (Tmax) is influenced more than nighttime low 
temperature  (Tmin); in India, increased vegetation cover induces an evaporative cooling that outweighs the warming effect of 
an albedo decrease in DJF, leading to a weaker impact on  Tmax than on  Tmin. Based on a single model, the qualitative aspects 
of these results may hold while quantitative assessment will benefit from a follow-up regional model ensemble study driven 
by multiple general circulation models.
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1 Introduction

Both the Earth’s climate and the global ecosystems are 
undergoing unprecedented changes (IPCC 2013; Bonan and 
Doney 2018). The interactions between climate and terres-
trial ecosystems have been recognized as one of the major 
uncertainties in climate change predictions (Melillo et al. 
1993; Cramer et al. 2001; Franklin et al. 2016; Duveiller 
et al. 2018). On one hand, vegetation changes can modulate 
the exchanges of water, energy, and momentum between 
land and atmosphere through biogeophysical and biogeo-
chemical processes (Bonan 2008; Li et al. 2015; Alkama 
and Cescatti 2016), thus modifying regional and global 
climate (Wang et al. 2004, 2016, 2017; Zhou et al. 2007; 
Peng et al. 2013; Shen et al. 2015). The local impacts of 
vegetation–atmosphere interactions are dependent on veg-
etation type, geographical location and background cli-
mate (Bonan 2008; Jeong et al. 2009a, b; Duveiller et al. 
2018). Degradation of vegetation coverage may result in a 
decrease in evaporative cooling in the Tropics, which can 
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further enhance warming (Henderson-Sellers et al. 1993; 
Gibbard et al. 2005), whereas the degradation-induced sur-
face albedo increase may cause a cooling especially at high 
latitudes (Betts 2000; Notaro and Liu 2008). On the other 
hand, climate (e.g., temperature, rainfall, and solar radiation) 
can influence the growth, competition, and thus geographical 
distribution of vegetation (Nemani et al. 2003; Zhao et al. 
2019). Under increasing greenhouse gas (GHG) concentra-
tions and temperature, a positive trend (i.e., greening) of leaf 
area index (LAI) was observed globally (Zhu et al. 2016). 
However, in projecting future vegetation changes, the  CO2 
fertilization and climate change impacts may not always be 
consistent and complications can stem from climate change 
altering resource competition among different vegetation 
types (Yu et al. 2014).

After Charney’s (1975) pioneering hypothesis on Sahel 
desertification, many modeling and observational studies 
explored the positive feedbacks between vegetation and 
rainfall (Xue and Shukla 1993; Zeng et al. 1999; Wang and 
Eltahir 2000a, b; Wang et al. 2004; Yu et al. 2017). As the 
effects of vegetation on climate are difficult to establish 
directly through observations (Bonan 2008), global gen-
eral circulation models (GCMs) have been used as primary 
tools to investigate global vegetation–climate feedback (Cox 
et al. 2000; Davin and de Noblet-Ducoudré 2010; Ma et al. 
2013; Mao et al. 2016). On this aspect, modeling studies 
by Xue et al. (2010) and Notaro et al. (2011) both showed 
that vegetation biophysical processes can exert feedbacks 
on the monsoon regions and East Asia is one of the most 
influenced. To address the limitation of the GCMs’ coarse 
resolution (which is especially problematic for East Asia due 
to the complex terrain, Gao et al. 2006), regional climate 
models have been used to study the role of land use-land 
cover changes as a driver for regional climate changes. Past 
studies on afforestation and deforestation supported a con-
sensus that expanded vegetation cover tends to cause greater 
evapotranspiration (ET) and rainfall (Liu et al. 2008; Yu 
et al. 2013; Ma et al. 2013; Wei et al. 2017) with spatially 
heterogeneous responses across China. Notaro et al. (2017), 
using a regional climate model with observed LAI, found 
that greater LAI leads to greater latent heat flux (and a mod-
est decrease in sensible heat flux), while Notaro et al. (2011) 
found that both sensible and latent heat fluxes increase as 
a result of higher forest cover and LAI simulated by the 
Community Climate System Model (CCSM) over China. 
Through comparing vegetation fraction variation over east-
ern China, Yan et al. (2019) illustrated that an increase in 
LAI dampens warming, and the effect is stronger in the 
growing season. These past studies suggested that the effects 
of vegetation–climate feedback should be accounted for in 
climate variability and climate change studies.

Climate change is expected to cause serious socio-
economic consequences globally. East Asia is especially 

vulnerable to climate changes due to the large population 
(Hua et al. 2017), and many studies have been conducted 
to investigate climate change and extremes in this region 
(Zou and Zhou, 2013; Shi et al. 2017; Li et al. 2018). Future 
climate change is expected to significantly influence the 
terrestrial ecosystems, including for example a shift from 
evergreen to drought deciduous trees in the tropics and a 
poleward shift of forests in mid- and high-latitudes (e.g., 
Williams et al. 2007; Alo and Wang 2008; Yu et al. 2014), 
an increase of LAI over most of the globe (Mahowald et al. 
2016; Tharammal et al. 2018), and an expansion of forest 
and bare ground at the expense of grassland (Gang et al. 
2017). The climate-induced vegetation changes necessarily 
will influence future regional and global climate. However, 
despite the documented influence of vegetation cover on 
East Asian climate, most regional climate studies prescribed 
vegetation cover and density (e.g., Hua et al. 2015; Li et al. 
2017; Niu et al. 2018; Yang et al. 2019); limited by the lack 
of model capacity to simulate vegetation dynamics or phe-
nology, only a few regional-scale studies over East Asia have 
accounted for the complex interactions between vegetation 
and surface climate (Shi et al. 2018; Dan et al. 2015). In this 
study, using a regional coupled climate–vegetation model, 
we project future climate and vegetation changes in East 
Asia, assess their dependence on  CO2 concentration path-
ways, and evaluate the impact of vegetation feedback on 
regional climate projections. Section 2 of the paper describes 
the model, data and experimental design. Model results are 
presented in Sect. 3. A summary and discussion are given 
in Sect. 4.

2  Model, data and experimental design

2.1  Model

The Regional Climate Model Version 4.3.4 (RegCM4.3.4) 
from the International Centre for Theoretical Physics (Giorgi 
et al. 2012) coupled with the Community Land Model ver-
sion 4.5 (CLM4.5, Oleson et al. 2010, 2013), including 
the carbon–nitrogen (CN) and dynamic vegetation model 
(DV) submodels (Gotangco Castillo et al. 2012; Yu et al. 
2016a), is the primary modeling tool used in this study 
(RegCM–CLM–CNDV) (Wang et al. 2016). The coupled 
model has been applied to several regions including West 
Africa, South America, and Asia (Yu et al. 2016b; Erfanian 
et al. 2016; Erfanian and Wang 2018; Shi et al. 2018). Spe-
cifically for Asia, Shi et al. (2018) evaluated the performance 
of RegCM–CLM–CNDV in East Asia when forced with 
boundary conditions from reanalysis data, and documented 
a reasonable performance in simulating both the climate 
and vegetation distribution in this region. In comparison 
to simulations with prescribed vegetation, although the 
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RegCM–CLM–CNDV produces larger biases in the mean 
temperature during the winter season, it performs better in 
simulating the interannual variability of temperature and 
spatial distribution of mean precipitation. Moreover, for the 
long-term climate change projection studies, models with 
dynamic vegetation are a necessity, as changes of vegeta-
tion distribution and structure in response to warming and 
 CO2 concentration changes are expected and may induce 
substantial impact on the climate.

In this study, we use the same model configuration as Shi 
et al. (2018) but with a smaller domain. Shi et al. (2018) used 
the domain from international Coordinated Regional Cli-
mate Downscaling Experiment (CORDEX), which is very 
large and includes a major portion of the western Pacific 
Ocean. The domain used in the present study is smaller for 
computational efficiency but is still large enough to include 
the oceanic forcing. Based on our sensitivity tests, shrinking 
the domain did not cause noticeable changes in the model 
performance. The domain covers approximately 10°–60° N, 
65°–140° E (Fig. 1) with a horizontal resolution of 50 km, 
and the model atmosphere includes 18 sigma levels with 
the top set to 50 hPa. The model physics packages include 
the radiative transfer scheme from the Community Climate 
Model version 3 (Kiehl et al. 1996), the planetary boundary 
layer scheme from Holtslag et al. (1990), and the cumulus 
convection scheme from Emanuel (1991). More details of 
the coupled model can be found in Wang et al. (2016) and 
Shi et al. (2018).

2.2  Data

Three Representative Concentration Pathways (RCP) are 
included in this study which correspond to different  CO2 
concentrations that produce a global radiative forcing of 2.6, 

4.5 and 8.5 W m−2 by the end of the 21st century (IPCC, 
2013; Moss et al. 2010), representing low (RCP2.6), medium 
(RCP4.5), and high (RCP8.5) emission scenarios, respec-
tively (Taylor et al. 2012). The atmospheric initial conditions 
and boundary conditions (ICBC) for the regional model 
were derived from CMIP5 historical and future simulations 
from the Flexible Global Ocean–Atmosphere–Land System 
Model: Grid-point Version 2 (FGOALS-g2) (Li et al. 2013). 
As a CMIP5 participant from East Asia, FGOALS-g2 model 
shows a strong capability in simulating East Asia climate 
(Zhou et al. 2013) and has been used as the boundary condi-
tions by many regional climate projection studies focused on 
East Asia (e.g., Wang and Chen 2014; He and Zhou 2015; 
Li et al. 2016, 2018). In addition, Yu et al. (2014) evalu-
ated the vegetation simulation by CLM–CN–DV driven 
with climates from 19 GCMs, and compared the simulated 
present-day vegetation distribution with Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) satellite data. 
Based on their results, the simulated vegetation driven with 
the FGOALS-g2 climate is generally in the middle of the 
ensemble and close to the ensemble mean.

2.3  Experimental design and analysis

Four main pairs of experiments were conducted, cor-
responding to the historical and three RCP scenarios; 
each pair consists of two simulations, one using the 
full RCM–CLM–CNDV model and the other using 
RCM–CLM with static vegetation. The RCM–CLM simu-
lations are included here to help interpret results from the 
RCM–CLM–CNDV and to assess vegetation–climate feed-
back. The two types of simulations share the same model 
configuration and ICBCs, but differ in how vegetation is 
treated. In the RCM–CLM–CNDV simulations, the model 

Fig. 1  The topography (shaded, 
units: m) and sub-regions of the 
model domain. The boxes illus-
trate six sub-regions: northwest 
China (36°–50° N, 75°–105° 
E), Tibetan Plateau (28°–36° 
N, 75°–105° E), northeast 
China (43°–54° N, 116°–132° 
E), north China (32°–43° N, 
105°–122° E), southeast China 
(18°–32° N, 105°–122° E), and 
India (15°–28° N, 72°–90° E)
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projects not only regional climate but also vegetation distri-
bution and density. In the RCM–CLM simulations, the CN 
and DV sub-models are turned off; instead, the fractional 
coverage of different plant functional types (PFTs) and LAI 
data derived from MODIS are used to prescribe the spa-
tial distribution of vegetation and the seasonal cycle of LAI 
(Lawrence and Chase 2007; Lawrence et al. 2011). Both 
types of simulations are conducted for the historical period 
of 1979–1999 and for each RCP scenario of 2079–2099, and 
a  CO2 concentration of 353.8, 425.9, 534.3 and 850.0 ppm 
was set for the hisorical, RCP2.6, RCP4.5 and RCP8.5 simu-
lations, respectively. To initialize the carbon, nitrogen, and 
vegetation conditions in RCM–CLM–CNDV, we follow 
the approach of Wang et al. (2016) in using the equilibrium 
state derived from spinning up the offline CLM–CN–DV 
model driven with atmospheric forcing from the RCM–CLM 
simulations. The RCM–CLM–CNDV cycled through the 
1979–1999 (or 2079–2099 for future) ICBC forcing twice; 
the first 21-year simulations are then discarded as model 
spin-up and output from the last 20  years are used for 
analysis. For the RCM–CLM simulations, the 1st year was 
devoted to model spin-up and the last 20 years were analyzed 
in this study.

This experimental design allows us to assess future cli-
mate and vegetation changes and to also quantify the impact 
of vegetation feedback on regional climate under different 
RCPs. Specifically, for each RCP, two scenarios of cli-
mate change can be derived, based on two pairs of runs: 
one pair from the RCM–CLM with prescribed observed 
vegetation (Past1 and Future1) and one pair from the 
RCM–CLM–CNDV with dynamic vegetation (Past2 and 
Future2). The corresponding climate changes can be defined 
as Delta1 = Future1 − Past1 and Delta2 = Future2 − Past2. 
We attribute the differences between Delta1 and Delta2 to 
the impact of vegetation feedback on climate change.

An alternative approach to quantifying the impact of 
vegetation feedback on climate change is to add another 
type of future climate simulations with prescribed vegeta-
tion (Future3). Specifically, vegetation simulated in Past2 
(the past climate run from RCM–CLM–CNDV) is used to 
prescribe vegetation in a RCM–CLM future run (Future3). 
We attribute the climate differences between Future2 and 
Future3 to the impact of vegetation feedback on climate 
change. To test this alternative approach, we conduct three 
Future3 experiments (corresponding to the three RCPs) for 
comparison with the first approach.

Our results analyses focus on climate change signals 
defined by the differences between two climates. To test 
the statistical significance of these signals, Student’s t test 
was used, and results that are significant at 95% confidence 
level are marked and discussed. In addition to spatially dis-
tributed signals, for detailed analysis based on spatial aver-
ages, we follow Li et al. (2018) to divide East Asia into six 

sub-regions (Fig. 1), including northwest China (36°–50° 
N, 75°–105° E), Tibetan Plateau (28°–36° N, 75°–105° E), 
northeast China (43°–54° N, 116°–132° E), north China 
(32°–43° N, 105°–122° E), southeast China (18°–32° N, 
105°–122° E) and India (15°–28° N, 72°–90° E).

3  Results

3.1  Surface climate change

Shi et  al. (2018) evaluated the performance of the 
RCM–CLM and RCM–CLM–CNDV model in simulating 
the present-day climate and vegetation in Asia when driven 
with reanalysis boundary conditions, and found good agree-
ment between the model present-day climate and observa-
tions. Therefore this study focuses on future climate projec-
tions without detailed validation of the historical simulation.

Compared to the historical simulation, the RCM–CLM 
model with static vegetation projects an increase of precipi-
tation and temperature over most of the domain (Fig. 2). 
For precipitation, this increase is dominated by the warm 
season changes (JJA) (Fig. 2a–c), with negligible contribu-
tion from winter (DJF) (Fig. 2d–f); over most of the regions, 
differences among the three RCPs are rather small. Under all 
three RCPs, a strong increase of precipitation is projected 
for the growing season over India, part of Tibetan Plateau, 
and most of east China including northeast China. The pro-
jected increase of temperature is strong for all seasons, and 
the magnitude of the warming increases from low emission 
to higher emission scenarios gradually (Fig. 2g–l). An espe-
cially strong increase of temperature is projected during the 
growing season over the mid-latitudes including northeast 
China, which can induce strong heat stress and may trigger 
tree mortality. As a result of this exacerbation of growing-
season heat stress, when vegetation dynamics is simulated 
as in the RCM–CLM–CNDV model, a shift from trees to 
grass is projected for this region, as described in Sect. 3.2.

ET in JJA (warm/wet season) is projected to increase 
by RCM–CLM with static vegetation, resulting from 
warming-induced increase of evaporative demand as 
well as increased water availability due to precipita-
tion increase. The spatial pattern of the projected ET 
changes (Fig. 3a–f) resembles that of the projected pre-
cipitation changes over densely vegetated land during 
JJA (Fig. 2a–f), and most summertime ET changes are 
comparable to precipitation changes in magnitude. How-
ever, in DJF (winter/dry season), ET changes (Fig. 3a–c) 
differ remarkably from precipitation changes (Fig. 2a–c), 
with more ET changes in south China and more precipi-
tation changes in north China. During JJA (summer/
wet season), the runoff coefficient (the ratio of runoff 
to rainfall) is projected to increase over most of the wet 
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regions (Fig. 3g–i), as a result of the increase of pre-
cipitation intensity and precipitation extremes. Therefore, 
although precipitation increases, a greater fraction of it 
runs off as rain rate quickly exceeds the infiltration capac-
ity during heavy precipitation events. As a result of all 

changes in precipitation (Fig. 2a–f), ET (Fig. 3a–f) and 
runoff (Fig. 3g–i), soil is projected to become wetter in 
north China and India, and drier over the mid-latitudes 
(including northeast China) and inland China (Fig. 3j–l). 
In India, the wetter soil conditions persist all year round, 

Fig. 2  Future changes of 
precipitation (top panel, units: 
mm day−1) and near surface 
air temperature (bottom panel, 
units: °C) in DJF (a–c, g–i) 
and JJA (d–f, j–l) from static 
vegetation simulations under 
RCP2.6 (1st column), RCP4.5 
(2nd column) and RCP8.5 (3rd 
column). Areas with values 
exceeding the two-tailed 95% 
confidence level with a t distri-
bution are dotted
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which further influences the surface heat flux changes (in 
Sect. 3.3). In northeast China, despite the strong increase 
of precipitation, soil moisture is projected to decrease due 
to the projected increase of ET and runoff coefficient; 
the drier soil during the growing season (JJA) can also 

contribute to the projected shift of vegetation from trees 
to grass over northeast China, which will be discussed in 
the next section.

Fig. 3  Projected future changes 
of evapotranspiration in DJF 
and JJA (top panel, units: 
mm day−1), runoff coefficient 
(the ratio of runoff to pre-
cipitation) in JJA (middle panel, 
units: 1) and moisture in the top 
10 cm soil in JJA (bottom panel, 
units: mm) under RCP2.6 (1st 
column), RCP4.5 (2nd column) 
and RCP8.5 (3rd column). 
Areas with values exceeding the 
two-tailed 95% confidence level 
with a t distribution are dotted
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3.2  Vegetation and changes

The spatial distribution of natural vegetation from the 
RCM–CLM–CNDV historical simulation is shown in 
Fig. 4. Since the model simulates natural ecosystems only, 
the distribution of cropland (Fig. 4c) has to be kept in mind 
when comparing the model-simulated vegetation distribu-
tion against observations. Indeed, a major discrepancy in 
PFTs coverage between the model and MODIS data is found 
over cropland areas, as the model simulates the potential 
natural vegetation in equilibrium with the local climate 
over the cropland. This underlies the apparent overesti-
mation of woody plants in agriculture-dominated regions 
such as northeast China and southeast China (Fig. 4b, g) 
and overestimation of grassland in India (Fig. 4d, i). The 
lack of crops in the model is also partly responsible for the 
vast overestimation of bare ground in north China (Fig. 4a, 
f). Another cause for the lack of model vegetation in north 
China is the use of boundary conditions from a GCM, which 
results in a drier regional climate in comparison to the rea-
nalysis-driven simulations; when driven with boundary 
conditions from reanalysis data, the same regional model 
simulates a combination of trees, grass, and bare ground 
for north China region (Shi et al. 2018). Note that in reality, 
the North China Plain is mostly cropland with widespread 
irrigation. The lack of consideration for irrigated crops also 
contributes to the uncertainty in the climate simulation for 
this region (Kang and Eltahir, 2018). Over the Tibetan Pla-
teau (Fig. 4a–d, f–i), both bare ground and grass coverage 
are underestimated while tree coverage is overestimated, 

which reflects the model’s limitation in simulating the cli-
mate-ecosystem there (Shi et al. 2018) partially due to the 
scarcity of observational data to inform model parameters 
and parameterizations.

LAI is significantly overestimated over regions where the 
model overestimates tree coverage (Fig. 4e, j), especially in 
southeast China and northeast China. These are also regions 
of high LAI in observations. The model-data disparity 
reflects not only an overestimation by the regional model 
but also underestimation by the MODIS data due to satellite 
signal saturation at high LAIs (e.g., Murray-Tortarolo et al. 
2013). In other regions where LAI is lower, the agreement 
between the model LAI and MODIS LAI is quite good.

Overall, the RCM–CLM–CNDV can capture the large-
scale spatial patterns of typical vegetation distribution and 
structure. It should be pointed out that the simulation biases 
documented here result from both deficiency of the coupled 
regional model and biases of the FGOALS-g2 (which is the 
source of the RCM boundary conditions) in simulating the 
large scale atmospheric circulation in this region. When 
driven by boundary conditions from reanalysis data, the 
same model performs much better in simulating the present-
day vegetation distribution (Shi et al. 2018).

Figure 5 exhibits the projected future changes in vegeta-
tion distribution and density. LAI is projected to increase 
across most of the domain (Fig. 5d–l), indicating denser and 
greener vegetation in the future. This is qualitatively consist-
ent with numerous studies on future projections (e.g., Alo 
and Wang 2008; Yu et al. 2016a, b) and with recent observed 
trend (e.g., Zhu et al. 2016; Zeng et al. 2018; Yao et al. 2019; 

Fig. 4  Coverage (in %) for bare ground, woody plants, crops, and 
grasses (1st to 4th columns respectively) and the grid-average of 
annual mean leaf area index (LAI; 5th column, units:  m2  m−2): from 

satellite data used to prescribe vegetation in RCM–CLM (a–e) and 
from the RCM–CLM–CNDV historical simulation (f–j)
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Chen et al. 2019). The projected widespread increase of LAI 
is partly due to the  CO2 fertilization effects and partly due to 
the resulting warmer and wetter climate. In addition, shifts 
of vegetation types and coverage are also projected for sev-
eral regions, especially India, Tibetan Plateau, north China, 
and northeast China. Over India, woody plants (Fig. 5b–j) 
would expand over both bare ground (Fig. 5a–i) and grass-
land (Fig. 5c–k). Over the Tibetan Plateau and north China, 
both tree and grass coverages would expand and bare ground 
would shrink. Conversely, over northeast China, grassland 
would expand at the expense of forest, which causes LAI 
to decrease in this region, a clear exception to an otherwise 
across-the-board increase of LAI.

To examine the projected vegetation changes in detail, 
the spatially averaged PFT fraction of each region is com-
pared in Fig. 6. For northwest China (which is mostly bare 
ground), a slight expansion of vegetation coverage (therefore 

a slight decrease of bare ground) is projected. For southeast 
China (a region with extensive vegetation cover), broadleaf 
evergreen trees expand at the expense of broadleaf deciduous 
trees. Three regions (including Tibetan Plateau, north China, 
and India) would experience a substantial decrease of bare 
ground and expansion of tree PFTs, with the specific PFTs 
depending on location and altitude; the projected increase of 
tree coverage is dominated by temperate broadleaf decidu-
ous trees in Tibetan Plateau, by both temperate broadleaf 
deciduous trees and shrubs in north China, and by tropical 
broadleaf deciduous trees in India. Over India, the expansion 
of tropical broadleaf deciduous trees is accompanied by a 
decrease of both bare ground and C4 grass cover. In general 
a shift of vegetation cover from bare ground to grass or from 
grass to trees is projected over most regions including the 
Tibetan Plateau, north China, southeast China, and India 
under all RCPs. Conversely, an opposite shift is projected 

Fig. 5  Projected future changes of bare ground (a, e, i), woody plants 
(b, f, j), grass (c, g, k) PFT coverage changes (units: %) and annual 
mean LAI changes (d, h, l, units:  m2  m−2) compared to historical 

simulations, under RCP2.6 (1st row), RCP4.5 (2nd row) and RCP8.5 
(3rd row). Only areas with values exceeding the two-tailed 95% confi-
dence level with a t distribution are shaded



Projecting the future vegetation–climate system over East Asia and its RCP-dependence  

1 3

under RCP8.5 for northeast China where trees would give 
way to Arctic C3 grass, and the projected decrease of woody 
plants coverage is dominated by a decrease of boreal needle-
leaf evergreen trees with minor contribution from a decrease 
of boreal broadleaf deciduous trees and shrubs.

The model can depict the seasonal variation of vegetation 
activities (Fig. 7), but with a delayed onset, peaking, and 
senescence of leaves in some regions. In most regions, the 
overestimation of LAI in the historical simulation (discussed 
earlier in Fig. 4) occurs in all seasons. As climate changes 
in the future, LAI would increase (with the largest increase 
in southeast China and India), and its seasonal cycle would 
remain similar in the future for most RCP scenarios and 
most regions (Fig. 7a, b, d–f). Notable exceptions are found 
in the RCP8.5 projection with substantially amplified sea-
sonal contrast of LAI over Tibetan Plateau, north China, and 
India due to a projected increase of deciduous trees (Fig. 7b, 
d, f) and over northeast China due to the projected loss of 
evergreen trees (Fig. 7c).

Over most regions, the transition of vegetation from 
historical to low-, medium-, and high-emission scenarios 

respectively is qualitatively similar, with gradual increase 
in the magnitude of changes as  CO2 emission increases. 
Exceptions are found over India and northeast China where 
the projected changes for high emission scenarios are dra-
matically different from those for lower emission scenarios 
(Figs. 5 and 6), indicating the likelihood of severe climate 
change crossing certain thresholds of vegetation competi-
tion. In the northeast China region, the projected loss of 
forest to grassland is primarily a result of heat stress caused 
by a large magnitude of warming during the growing sea-
son (Fig. 2), with some contribution from water stress. The 
dominantly needleleaf evergreen trees (as in the historical 
simulation) respond to heat stress with reduced gross pri-
mary productivity and increased background mortality. In 
addition, despite the projected increase of precipitation over 
most of the domain (Fig. 2), the warming-induced accelera-
tion of ET (Figs 3a–f) and the increased summertime runoff 
(Fig. 3g–i) due to more intense precipitation together lead 
to a future decrease of soil moisture over a major portion of 
the domain including northeast China (Fig. 3j–l), exacerbat-
ing growing-season water stress. In the Indian region, the 

Fig. 6  Spatially averaged PFT coverage (in %) in the six sub-regions, 
from RCM–CLM–CNDV historical and future scenario simulations. 
For each sub-region, the four columns (from left to right) represent 
historical, RCP2.6, RCP4.5 and RCP8.5, respectively. The segments 
in each bar (from top to bottom) represent up to 17 different PFTs: 
1. Bare ground; 2. Needleleaf evergreen temperate tree; 3. Needleleaf 
evergreen boreal tree; 4. Needleleaf deciduous boreal tree; 5. Broad-

leaf evergreen tropical tree; 6. Broadleaf evergreen temperate tree; 7. 
Broadleaf deciduous tropical tree; 8. Broadleaf deciduous temper-
ate tree; 9. Broadleaf deciduous boreal tree; 10. Broadleaf evergreen 
shrub; 11. Broadleaf deciduous temperate shrub; 12. Broadleaf decid-
uous boreal shrub; 13. Arctic C3 grass; 14. C3 grass; 15. C4 grass; 
16. C3 crop; 17. C3 irrigated crop
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projected increase of precipitation amount is dominant over 
ET and runoff changes, leading to an increase of soil mois-
ture (Fig. 3j–l), which diminishes water stress and favors 
tropical deciduous trees over grass.

3.3  Impact of dynamic vegetation feedback 
on surface climate change

The experimental design as described in Sect. 2 supports 
two different approaches to quantifying the dynamic veg-
etation feedback to regional climate. However, over most 
of the domain, results based on the two approaches are 
essentially the same. We therefore focus our descrip-
tion on results from the first approach; results from the 
second approach are presented in the supplementary file 

(Supplementary Figs. 1–4). In addition, as most of the 
changes induced by vegetation feedback are not signifi-
cant under RCP2.6 and RCP4.5, our results analysis here 
focuses on the RCP8.5 scenario.

Vegetation influences regional climate through its impact 
on surface albedo, Bowen ratio, and roughness. Theoreti-
cally, when vegetation increases, albedo tends to decrease, 
Bowen ratio decrease, and surface roughness increase. 
Lower albedo leads to more shortwave absorption and more 
net radiation; lower Bowen ratio tends to increase latent heat 
flux and reduces sensible heat flux, while increased surface 
roughness tend to increase turbulent transport of both sen-
sible and latent heat. The increased surface roughness also 
tends to slow down the surface wind. These processes and 
mechanisms interact and compete to shape the response of 

Fig. 7  Seasonal cycle of LAI (units:  m2 m−2) spatially averaged over 
each sub-region from prescribed satellite (black line), RCM–CLM–
CNDV historical and future RCPs simulations (orange, green, blue 

and red lines), and the projected future changes compared to present-
day simulation (green, blue and red bars). Only spatially averaged 
changes exceeding the two-tailed 95% confidence are shown
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the regional climate to vegetation changes, and some effects 
may offset each other.

Figure 8 shows the changes of the surface albedo, Bowen 
ratio, and surface wind speed attributed to the dynamic veg-
etation feedback under RCP8.5. Consistent with where the 
strongest vegetation changes are projected (Fig. 5), large, 

statistically significant changes of albedo are projected pri-
marily in northeast China with an increase due to the loss 
of forest, and in Tibetan Plateau and part of India with a 
decrease due to the expansion of vegetation cover (Fig. 8a, 
b). The response of Bowen ratio to vegetation feedback is 
more complex. In most of warm regions/seasons, Bowen 

Fig. 8  Impacts of vegetation 
feedback on surface albedo 
(top panel, units: 1), Bowen 
ratio (middle panel, units: 
1) and surface wind (bottom 
panel, units: m s−1) changes in 
DJF (a–e) and JJA (b–f) under 
RCP8.5 scenario. Areas with 
values exceeding the two-tailed 
95% confidence level with a t 
distribution are dotted
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ratio is projected to decrease (Fig. 8d), largely as a result of 
the project increase of LAI, which is as expected; in cold 
regions/seasons, the Bowen ratio is subject to a high degree 
of uncertainty due to the small magnitude of latent heat flux 
(Fig. 8c), and the vegetation feedback signal is mixed. Over 
a major portion of western China, an increasing signal of 
Bowen ratio is likely a reflection of increased water stress 
limiting evapotranspiration. Across most of the domain, veg-
etation feedback causes a decrease of surface wind speed 
(Fig. 8e, f), consistent with an increase of roughness when 
vegetation becomes denser (with greater LAI).

Figure 9 shows the future vegetation-induced differences 
in surface net shortwave radiation, net radiation, and turbu-
lent heat fluxes under RCP8.5. Not surprisingly, the largest 
differences are found primarily in regions where significant 
future changes of vegetation are projected, including for 
example the northeast China and India regions. The differ-
ences in net radiation (Fig. 9b, f) strongly resemble those 
for net shortwave radiation (Fig. 9a, e), reflecting the domi-
nant role of albedo in surface net radiation changes, and 
the spatial pattern is remarkably similar between DJF and 
JJA. For example, in northeast China, the projected albedo 
increase (due to grass replacing trees) would cause both the 
surface net shortwave radiation (Fig. 9a, e) and surface net 

radiation (Fig. 9b, f) to decrease significantly; in India, pro-
jected albedo decrease (due to trees replacing grass) would 
cause a significant increase of surface net shortwave and 
net radiation. The response of sensible heat flux (Fig. 9d, 
h) to the projected vegetation changes is similar to that of 
net radiation, except that the increase of sensible heat flux 
over India is stronger than the increase of net radiation in 
JJA and weaker in DJF. The response of latent heat flux 
(Fig. 9c, g) follows a spatial pattern similar to net radiation 
in northeast China, where latent heat flux (and ET) would 
slow down during all seasons due to the loss of tree cov-
erage under RCP8.5. Over India during DJF, LAI is high 
(reaching 1.5 under historical and ~ 5.0 under RCP8.5) and 
soil is still quite wet, so the tree coverage and LAI increases 
together with the net radiation increases (due to the lower 
albedo) cause a substantial increase of latent heat flux (ET). 
In JJA over India, vegetation feedback causes an increase 
of sensible heat flux (Fig. 9h) and a decrease of latent heat 
flux (Fig. 9g), which results from an interaction between the 
monsoon circulation and projected vegetation changes. Spe-
cifically, during the peak monsoon season in JJA, due to the 
frequent and heavy cloudiness, the albedo-induced increase 
of net radiation (Fig. 9f) is smaller than in DJF (Fig. 9b); on 
the other hand, the presence of cool and moist air brought 

Fig. 9  Impacts of vegetation feedback on surface net shortwave flux 
(SW, 1st column, units: W m−2), net radiation flux (Rn, 2nd column, 
units: W m−2), latent heat flux (LE, 3rd column, units: W m−2) and 
sensible heat flux (SH, 4th column, units: W m−2) changes in DJF (a–

d) and JJA (e–h) under RCP8.5 scenario. Areas with values exceed-
ing the two-tailed 95% confidence level with a t distribution are dot-
ted
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inland by the monsoon wind enhances the effects of sur-
face roughness on sensible heat flux and weakens its effects 
on latent heat flux, which offsets the effects of vegetation-
induced Bowen ratio changes. These two work together to 
reduce latent heat flux (ET) and increase sensible heat flux 
in this region when dynamic vegetation feedback is included 
(Fig. 9), which also causes the actual Bowen ratio to increase 
(Fig. 8).

Compared with projections by RCM–CLM with 
static vegetation, future climate changes projected by 
RCM–CLM–CNDV with dynamic vegetation follow simi-
lar spatial patterns and similar seasonality over most of the 
domain (figures not shown). Quantitatively, relative to the 
changes projected with static vegetation, dynamic vegetation 
feedback influences the projected climate changes (Fig. 10), 

with the largest impact found primarily over regions where 
major vegetation changes are projected (e.g., Tibetan Pla-
teau, northeast China and India). The impact on annual pre-
cipitation changes is dominated by changes during warm/wet 
seasons (e.g., JJA) with little contribution from the cold/dry 
seasons (Fig. 10a, b). For example, in northeast China where 
a forest-to-grassland transition and a decrease of LAI are 
projected for RCP8.5 (Fig. 5i–l), dynamic vegetation feed-
back leads to a significant decrease of ET and precipitation 
in RCP8.5, with most of the contribution from the warm sea-
son. As the model with static vegetation projects an increase 
of ET in northeast China (Fig. 3), the dry signal in northeast 
China indicates that land cover degradation (induced primar-
ily by future heat stress in this study) tends to reduce both ET 
and precipitation in this region, a general notion supported 

Fig. 10  Impacts of vegeta-
tion feedback on changes in 
precipitation (top panel, units: 
mm day−1) and near surface 
air temperature (bottom panel, 
units: °C) in DJF (a–c) and JJA 
(b–d) under RCP8.5 scenario. 
Areas with values exceeding the 
two-tailed 95% confidence level 
with a t distribution are dotted
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by many previous studies on vegetation feedback to precipi-
tation in various regions of the globe (e.g., Wang and Eltahir 
2000a, b; Wang et al. 2016; Lawrence and Vandecar 2015). 
Contrary to the seasonality of vegetation feedback on precip-
itation changes, the impact of vegetation feedback on annual 
mean temperature  (Tmean) changes (Fig. 10c, d) is dominated 
by the cold season (DJF), with much smaller impact during 
summer (JJA). In DJF (Fig. 10c), vegetation feedback would 
induce a statistically significant cooling impact (p < 0.05) 
over both northeast China (as a result of albedo increase) and 
India (due to ET or latent heat flux increase dominant over 
albedo decrease). In JJA over most of the domain (Fig. 10d), 
the impact on temperature is weak and statistically not sig-
nificant. In most regions, the magnitude of vegetation feed-
back on mean temperature (whether it is warming or cool-
ing) is weak relative to the magnitude of projected GHG 
warming (Fig. 2g–l). Exceptions are found in the northeast 
China and India regions. For example, in northeast China 
under RCP8.5 (Fig. 10i), vegetation feedback significantly 
attenuates the projected warming during winter and spring, 
while the impact is negligible under RCP2.6 and RCP4.5. In 
India, the cooling effects due to vegetation feedback is strong 

during winter and spring for all three RCPs, significantly 
curbing the projected warming in that region.

In general, vegetation feedback exerts a stronger impact 
on daytime high temperature  (Tmax) and nighttime low 
temperature  (Tmin) than on mean temperature  (Tmean), and 
the impacts on  Tmax and  Tmin may offset each other leading 
to a generally weak signal on projected  Tmean. Although 
the wintertime cooling signal in  Tmean is similar between 
northeast China and India under RCP8.5 (Fig. 10c), the 
impacts on  Tmax and  Tmin are different. Over northeast 
China (Fig. 11a–c), the albedo effect due to the loss of 
forest cover is dominant, causing a strong day-time cool-
ing signal in  Tmax (Fig. 11b) that persists into the night to 
influence  Tmin (Fig. 11c), resulting in a decrease of  Tmean 
(Fig. 11a). Over India, the warming effect of lower albedo 
due to forest expansion competes against the cooling effect 
of increased ET, leading to a weak warming signal in  Tmax 
at the time of the strongest solar radiation (Fig. 11e); the 
ET cooling effect appear to be dominant for the rest of 
the day when solar radiation is lower, leading to a cooling 
signal in  Tmin and  Tmean (Fig. 11d, f).

Fig. 11  Spatial relationship between LAI changes and impacts of vegetation feedback on daily mean temperature (1st column), daily maximum 
temperature (2nd column) and daily minimum temperature (3rd column) in DJF over northeast China (a–c) and India (d–f) regions
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4  Summary and discussion

Driven with lateral  boundary conditions from 
FGOALS-g2, a regional climate model with static veg-
etation (RCM–CLM) and with dynamic vegetation 
(RCM–CLM–CNDV) is used in this study to assess future 
changes of the vegetation–climate system over East Asia, 
and to investigate the impacts of vegetation feedback on 
regional climate changes.

Over most of the region, the model projects a gener-
ally slight increase of vegetation cover accompanied by 
a significant increase of LAI, and the magnitude of these 
projected changes tends to increase gradually from low to 
high RCPs. Exceptions are found over two regions where 
major shift of vegetation is projected under RCP8.5, 
including India where trees would replace grassland and 
grass expand to historically bare ground due to increased 
water availability, and northeast China where grassland 
would replace needleleaf evergreen trees due to heat stress. 
The projected increases in vegetation cover and LAI are 
mainly due to the  CO2 fertilization effects and warming. 
Increase of heat stress, which triggers the crossing of a 
specific PFT threshold for mortality in the dynamic veg-
etation model, is the main cause for the projected vegeta-
tion changes in northeast China (which is the only major 
region of vegetation degradation accompanied by a strong 
decrease of LAI).

RCM–CLM projects a significant increase of tempera-
ture across the entire domain for all three RCPs. Over most 
of the domain, the projected warming is stronger during 
JJA than DJF, and the warming during JJA is stronger at 
mid- and high-latitudes than lower latitudes. Over most of 
the domain under all three RCPs, both ET and precipita-
tion are projected to increase especially during JJA, as a 
result of warming-induced acceleration of the hydrologi-
cal cycle; the signal is much weaker during DJF. Soil is 
projected to become wetter over north China and India 
where the increase of precipitation is dominant over ET, 
and become drier over the mid-latitudes where the pro-
jected warming is the strongest and the increase of ET 
is dominant over precipitation. The wetter soil in India 
directly leads to the expansion of trees there, and the drier 
soil in northeast China partly contributes to the loss of 
forest to grassland.

Climate projections from RCM–CLM–CNDV and 
RCM–CLM show a similar spatial pattern, but the two 
differ significantly over regions where large changes of 
vegetation are projected under RCP8.5. The differences in 
projected precipitation changes are mostly small, while dif-
ferences in ET and temperature projections are more sig-
nificant and widespread. In northeast China, dynamic veg-
etation feedback causes a lower ET in RCM-CM-CNDV 

than in RCM–CLM during both DJF and JJA, due to the 
loss of forest to grassland. In India where an expansion 
of vegetation cover is projected, ET during DJF is higher 
in RCM–CLM–CNDV than in RCM–CLM. However, in 
India during JJA, dynamic vegetation feedback causes ET 
to be lower, as the increased surface roughness favors sen-
sible heat flux over latent heat flux due to the presence of 
cool and moist air brought in by the monsoon wind. For 
temperature, dynamic vegetation feedback causes a strong 
and significant cooling during DJF over both northeast 
China (due to the albedo effect) and India (due to the sur-
face roughness and Bowen ratio effects). Dynamic vegeta-
tion feedback exerts a stronger impact on daytime high 
 (Tmax) and nighttime low  (Tmin) than on mean temperature 
 (Tmean) over areas where substantial vegetation changes 
are projected.

Findings from this study are subject to uncertainties 
from several sources, including for example the model’s 
inability to simulate managed ecosystem and lack of con-
sideration for irrigation (both of which influence regional 
climate) as well as underestimation of precipitation and 
temperature (that influences the growth of vegetation). 
For example the north China Plain is dominated by irri-
gated cropland in reality, but the modeled potential natural 
vegetation for this region is bare ground, which affects 
climate quite differently from irrigated crops (Kang and 
Eltahir 2018). Moreover, afforestation over north China 
and agriculture over India were suggested to have contrib-
uted to the global greening observed by satellites (Chen 
et al. 2019). These anthropogenic vegetation changes (and 
their impact on regional climate) are not accounted for by 
the coupled vegetation–climate model used here.

The results of this study is based on one of the CMIP5 
models that show good performance over East Asia, so the 
GCM-related uncertainties are not sampled. In the particu-
lar model chosen, changes under RCP8.5 are large enough 
to cross certain biophysical or physiological thresholds. 
Based on projections for the northeast China region in 
particular, boreal forests are likely very vulnerable in the 
future; some of the changes might be irreversible and 
could exacerbate the GHG-induced climate changes. Given 
the drastically different projections among the multiple 
emission scenarios (especially in northeast China and 
India), the level of RCP-related uncertainty is high. The 
results under high emission scenarios should be further 
tested using an ensemble of RCM experiments driven by 
multiple GCMs. Dynamic vegetation modeling is another 
source of uncertainty. DGVMs typically produce exag-
gerated changes due to the lack of consideration for plant 
migration and seed dispersal (Higgins and Harte, 2006); 
likely such changes will take a much longer time to occur 
than projected by the model (Lehsten et al. 2019).
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