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A B S T R A C T

Shear wave velocity (𝑉s) is essential for amplitude-variation-with-offset (AVO) analysis and reservoir char-
acterization. However, 𝑉s is unavailable in many well logs due to the cost or the absence of technology
for old wells. A common method is to estimate 𝑉s from other measurements through their relationships,
but has a large uncertainty. In this study, a statistical method is proposed to predict 𝑉s of wells. Firstly, a
statistical rock-physics model is built for the relationship between logging curves and 𝑉s, which is realized by
initializing key petrophysical parameters of the Xu–White model by the distributions instead of constants. The
distributions come from prior information, which is a knowledge or experience of research area. Secondly,
the key petrophysical parameters are calculated in Bayesian inversion framework by comparing the modeled
compression wave velocity (𝑉p) with real data. Then, 𝑉s is estimated based on these parameters and the rock-
physics model. The real data test shows that our statistical method gets accurate 𝑉s prediction, whose mean
square error is about 0.002. Besides, the correlation coefficient between estimation and real data is about
0.97. The result is better than common methods. Moreover, statistics of the prediction, such as a confidence
interval, can be provided by the statistical method. The real velocities are in the 95% confidence interval of
the estimation. The estimated values and statistics of well velocities will offer more valuable information for
the following processes of reservoir characterization.
. Introduction

Shear wave velocity (𝑉s) is important for pre-stack seismic property
nalysis. In addition, 𝑉s is also necessary for petrophysical parame-
ers inversion in reservoir characterization. However, 𝑉s is not always
vailable in old wells and even some new wells. Borehole condition,
ogging technology and cost are reasons of the absence of 𝑉s. Therefore,
stimation of 𝑉s for these wells is significant.

There are various approaches to estimate 𝑉s of wells from other
easurements, including well-logging data and core test. The

mpirical-formula-based methods build simple and direct relation-
hips between 𝑉s and well-logging data. Castagna et al. (1985) con-
tructed linear relationships between 𝑉s and compression wave velocity
𝑉p). Han et al. (1986) improved relationship of velocities, porosity
nd clay content. And also new equations are provided for rock in
ifferent pressures. Castagna and Backus (1993) built the relationship

∗ Corresponding author.

between 𝑉s and 𝑉p by the least-square polynomial fitting for experi-
mental data. Yan et al. (2002) combined Han’s equation and Xu–White
model to get a new fitting equation, and effect of aspect ratios on
velocities was considered. Dvorkin and Mavko (2014) proposed that
different empirical-formula-based 𝑉s predictors will not necessarily
affect seismic-based hydrocarbon indicators. The reason may be that
these methods have less accuracy for large scale prospecting. Vernik
et al. (2018) investigated a hybrid technique based on Greenberg–
Castagna method to take kerogen into account, and the 𝑉s prediction
is improved. Though the empirical relationships are simple, they are
common choices. Because conventional logging data, such as 𝑉p, poros-
ity and clay content, are enough for these methods. In recent years,
intelligent predictors based on machine learning and artificial neural
networks are emerging (Rajabi et al., 2010; Ranjbar-Karami et al.,
2014; Zhang et al., 2020). The intelligent predictors can get accurate
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𝑉s estimation, whose mean square error (MSE) is usually lower than
0.02 (Rajabi et al., 2010) and the correlation coefficient can reach
0.98 (Zhang et al., 2020). But these approaches need real data of target
parameters, such as 𝑉s, to train the system, and therefore lack extrapo-
ation beyond the range of training data (Asoodeh and Bagheripour,
012). In general, empirical equations and intelligent systems build
irect but simplified relationships between 𝑉s (or modulus) and other
onventional well logs. These methods are data-based. Because the rela-
ionships are built by data operation using fitting or intelligent systems,
nd the physical mechanisms of rock are not considered. However,
mpirical predictors are less accurate, and intelligent predictors are
omplex and absence of extrapolation.

Rock-physics models describe effects of microstructure on the in-
egral attributes of rock, and thus can build relationships between
elocities or modulus and microstructure properties. Model-based pre-
ictors using rock-physics models have been common choices in recent
ears. Xu and White (1995, 1996) proposed a model which built the
elationship between velocities and pores and clay content for shaly
andstone. Xu and Payne (2009) extended the Xu–White model to
arbonate rock and divided pores into four types to account the effect
f different pores. There are also some more complicated models, in
hich velocities or modulus are related to many components of rock.
he self-consistent model (SCM) (Berryman, 1980) assumed rock is
mixture of components which are ellipsoid with different aspect

atios. Guo and Li (2015) estimated 𝑉s using SCM for the Barnett
Shale with given property, aspect ratio, and volume fraction of each
component of rock. Ruiz and Dvorkin (2010) proposed an improved
𝑉s predictor based on the differential effective medium (DEM) theory
by using a constant aspect ratio, which is about 0.13. Bai et al. (2013)
used variable aspect ratios in Xu–White model, instead of common fixed
aspect ratios. The changeable aspect ratio makes 𝑉s prediction more ac-
curate. Tan et al. (2015) proposed an 𝑉s predictor for gas-bearing shale,
in which different models are compared to get modulus of dry matrix.
The reason is that gas-bearing shale has more complex components
than regular sandstone. Sohail and Hawkes (2020) evaluated empirical
and rock physics models for 𝑉s estimation, and thought modified Xu–
White model is the best option available at present. As a consequence,
predictors based on rock-physics models may provide better 𝑉s predic-
tion than the empirical predictors, but many petrophysical parameters
are necessary in the methods, which demands more well-logging data
and core data. To extend the application of model-based predictors, the
demands on real data should be reduced.

In this study, we propose a statistical method for 𝑉s prediction.
Firstly, a statistical rock-physics model is built by analyzing the key
petrophysical parameters which affect velocities in Xu–White model
and initializing them with distributions from prior information instead
of constants. The Xu–White model is a common choice for 𝑉s predic-
tion and can be used in traditional well logging. Secondly, the key
petrophysical parameters are calculated by matching modeled and real
𝑉p based on the statistical rock-physics model and Bayesian inver-
sion theory. Subsequently, these parameters are used to estimate 𝑉s
of wells. Real data test is performed in three field wells to validate
the statistical predictor. The statistical rock-physics model and prior
information are combined by Bayesian theory to improve accuracy of
velocities estimation, and meanwhile additional statistics of the result
are conducted.

2. Theory and methodology

2.1. Data-based methods for S-wave velocity calculation

Rock is made up by minerals, pores and fluids. The empirical and
intelligent methods are based on data to build relationships between
different properties of rock. The data usually comes from well logs
and experiments. A benefit of these methods is that target physical pa-
rameters are related to measurements directly. Empirical equations are
2

usually built by fitting. Han et al. (1986) proposed equations for shaly
sandstone in different pressure based on experiments. Velocities are
linear related with porosity (𝜙) and clay content (𝐶) in the equations.
n 40Mpa confining pressure,

p (km∕s) = 5.59 − 6.39𝜙 − 2.18𝐶 (1)

𝑉s (km∕s) = 3.52 − 4.91𝜙 − 1.89𝐶 (2)

Although the empirical methods are simple and widely used, their
accuracy is low.

Intelligent methods use complex and advanced algorithms instead of
simple fitting. Rajabi et al. (2010) gave an equation based on genetic
algorithm:

𝑉s = 𝛽1LLD𝛽2 + 𝛽3NPHI𝛽4 + 𝛽5RHOB
𝛽6 + 𝛽7 (3)

here LLD, NPHI and RHOB are well logs; 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 and
7 are parameters given by the algorithm. Recently, machine learning
nd neural network are widely used in geophysics (Zhang et al., 2018a;
ui et al., 2019; Jia et al., 2019). Some intelligent predictors based
n these algorithms built equations for velocities and other measure-
ents (Ranjbar-Karami et al., 2014; Zhang et al., 2020). The intelligent
ethods have better accuracy but need enough measurements to train

he system, moreover the intelligent systems are complex and therefore
ot easy to build. These features limit extrapolation and application of
ntelligent methods.

.2. Rock-physics models for S-wave velocity calculation

A rock-physics model describes microstructure and models its effect
n the integral properties of rock. For isotropic medium, wave veloc-
ties can be calculated by using its bulk modulus (𝐾), shear modulus
𝜇) and density (𝜌):

p =

√

√

√

√

𝐾 + 4
3𝜇

𝜌
(4)

𝑉s =
√

𝜇
𝜌

(5)

Many rock-physics models can provide modulus of rock. In inclusion
theory, components of rock are assumed as ellipsoid with different
aspect ratios (the ratio of minor axis and long axis), and mixed in
a special way. Components of rock, including minerals and pores,
are mixed together homogeneously in SCM (Berryman, 1980). The
equations of SCM are:
𝑁
∑

𝑖=1
𝑓𝑖(𝐾𝑖 −𝐾SC)𝑃𝑖 = 0 (6)

𝑁
∑

𝑖=1
𝑓𝑖(𝜇𝑖 − 𝜇SC)𝑄𝑖 = 0 (7)

where 𝑖 indicates a component; 𝑓𝑖, 𝐾𝑖 and 𝜇𝑖 are volume fraction, bulk
odulus and shear modulus of each component, respectively; 𝐾SC and
SC are effective modulus; 𝑃𝑖 and 𝑄𝑖 are geometric factors that are
elated to modulus and the aspect ratio of each component. Guo and Li
2015) used SCM to predict 𝑉s of the Barnett shale formation, in which
olume fractions, modulus and aspect ratios of components are neces-
ary. The aspect ratio of minerals are usually regarded as constants and
alued based on former researches (Jiang and Spikes, 2013). But pores
ave varying aspect ratios which greatly affect modulus. To estimate
odulus of rock, the inversion of pore aspect ratios is necessary. The
EM is another inclusion theory, in which inclusions are added to the
atrix in sequence (Norris, 1985). To get modulus of rock by DEM,

he information used in SCM is required. Ruiz and Dvorkin (2010)
sed DEM to predict 𝑉s. In the inclusion theory, volume fractions,
odulus and geometry of components are required to calculate 𝑉s.
hese properties of rock are not easy to get for conventional well

ogging, especially for the wells without core data.
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Fig. 1. Modeled P- and S-wave velocities of rock with different velocities of sand (𝑉p_sand and 𝑉s_sand) in Xu–White model.
Fig. 2. Modeled P- and S-wave velocities with different aspect ratios of sand-related pores in Xu–White model. The rock is made up by quartz, clay and pores. The volume fraction
of clay is 0.4.
𝜌

w
𝜌

The Xu–White model can be used to calculate 𝑉s. In Xu–White
odel, matrix is made up by sand and clay, and pores are divided into

and-related pores and clay-related pores:

= 𝜙s + 𝜙c (8)

s = 𝑓s
𝜙

1 − 𝜙
(9)

𝜙c = 𝑓c
𝜙

1 − 𝜙
(10)

here 𝜙 indicates porosity, 𝜙s indicates sand-related porosity and 𝜙c
ndicates clay-related porosity. Minerals are divided into sand and clay
hose volume fractions are indicated by 𝑓s and 𝑓c, and 𝑓s+𝑓c = 1. Pores
re added into the matrix by using DEM. Keys and Xu (2002) proposed
n approximation to avoid the differential computation of DEM. The
quations for bulk modulus (𝐾d) and shear modulus (𝜇d) of dry rock
re:

d = 𝐾0 (1 − 𝜙)𝑝 (11)

d = 𝜇0 (1 − 𝜙)𝑞 (12)

here 𝐾0 and 𝜇0 are modulus of the matrix. Details of 𝐾0, 𝜇0, 𝑝
3

and 𝑞 are presented in Appendix B. Then the Gassmann’s equations
(Gassmann, 1951) are used for fluid saturated rock:

𝐾 = 𝐾d +

(

1 − 𝐾d
𝐾0

)2

𝜙
𝐾f

+ (1−𝜙)
𝐾0

− 𝐾d
𝐾2
0

(13)

𝜇 = 𝜇d (14)

where 𝐾f is bulk modulus of fluid saturated rock. Density of rock is
given by:

𝜌 = (1 − 𝜙)𝜌0 + 𝜙𝜌f (15)

0 = 𝑓s𝜌sand + 𝑓c𝜌clay (16)

𝜌f = (1 − 𝑆w)𝜌gas + 𝑆w𝜌water (17)

here 𝜌0 and 𝜌f are densities of the matrix and saturated pores;
sand, 𝜌clay, 𝜌gas and 𝜌water are densities of sand, clay, gas and water,

respectively; 𝑆w is water saturation.
Given volume fractions, modulus and densities of sand, clay and

pores, together with aspect ratio of sand-related pores (𝛼s) and aspect
ratio of clay-related pores (𝛼c), modulus of rock can be calculated by

Xu–White model. Then velocities are transformed by Eqs. (4) and (5).
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Fig. 3. Modeled P- and S-wave velocities with different aspect ratios of clay-related pores in Xu–White model. The rock is made up by quartz, clay and pores. The volume fraction
of clay is 0.4.
2.3. Predict S-wave velocity for the well

Laboratory experiments provide abundant details of rock, but well-
logging data usually only contains some properties, including veloci-
ties, density, porosity, clay content and water saturation. Data-based
methods seek direct relationships between velocities and other well
logs.

More details of rock are required to predict 𝑉s for the well using
rock-physics model. Because types and geometry of components af-
fect the integral modulus of rock. Modulus and densities of minerals
and fluids are provided by former researches or experiments. In SCM
(Eqs. (6) and (7)), volume fractions and aspect ratios of all components
are necessary to get effective modulus of rock, since minerals and pores
are all mixed together in the model. In DEM, minerals and pores,
also called inclusions, are added into the matrix. Volume fractions and
aspect ratios of inclusions are required in the process. One option for
DEM is building a matrix mixed by all minerals. Some mixing laws
allow calculating modulus of the matrix without considering geometry
of minerals, such as Hill’s average (Hill, 1952):

𝑀H = 1
2

⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1
𝑓𝑖𝑀𝑖 +

1
∑𝑁

𝑖=1
𝑓𝑖
𝑀𝑖

⎞

⎟

⎟

⎠

(18)

where 𝑖 indicates a mineral; 𝑀 and 𝑓 are corresponding modulus and
volume fractions, respectively; 𝑀H is Hill’s effective modulus. In Xu–
White model, modulus of the matrix are given by Eqs. (B.1)–(B.4). The
mixing law, such as Hill’s average, also can be used for the matrix. But
in the method, minerals must be identified to get their properties and
volume fractions. It is not easy for most wells because conventional
logging cannot provide accurate information of minerals (Tan et al.,
2015).

In Xu–White model, minerals of sand cannot be identified clearly
by conventional well logs, especially for shale. Density of sand can
be estimated by Eqs. (15)–(17), but velocities of sand are necessary
to get its modulus. Previous researches reported that modulus of sand
and clay in the model are constants valued from both experiments
and experience (Xu and White, 1996; Bai et al., 2013). The simplifi-
cation assumes properties of sand and clay do not change with depth.
It makes the calculation of rock velocities possible without mineral
information. Modeled velocities of rock with different velocities of sand
are presented in Fig. 1. It indicates that velocities of rock are affected
by velocities of sand in Xu–White model. The simplification of sand
4

properties will lead to errors in 𝑉s prediction.
The aspect ratio of pores seriously affect modulus of rock. Aspect
ratios vary with depth and also cannot be measured except experi-
ment (Ruiz and Dvorkin, 2010). Porosity and aspect ratio are regarded
as major factors in Xu–White model. Pores are divided into two parts
because the property of sand-related pores and clay-related pores are
very different. Clay particles tend to form pores with small aspect
ratio (Xu and White, 1995). It has been reported that aspect ratio of
the two type pores are assumed as constants. The constants of 𝛼s vary
from 0.1 to 0.2 and 𝛼c vary from 0.03 to 0.04 (Xu and White, 1995,
1996; Sams and Andrea, 2001; Bai et al., 2013). Figs. 2 and 3 show
modeled velocities with different sand-related pores and clay-related
pores in Xu–White model. In Fig. 2, 𝛼s is assigned from 0.05 to 0.5, and
𝛼c is 0.04. In Fig. 3, 𝛼c is assigned from 0.005 to 0.3, and 𝛼s is 0.1. The
two figures tell 𝛼s and 𝛼c affect velocities of rock in Xu–White model,
and velocities are less sensitive to 𝛼s. Scholars proposed equations for
𝛼s and porosity (Sams and Andrea, 2001; Pillar et al., 2007). One of
them is:

𝛼s = 0.17114 − 0.24477𝜙 + 0.004314𝑓s (19)

The equation can be used to estimate 𝛼s. Clay-related pores have small
aspect ratios, which have more effect on modulus of rock. Bai et al.
(2013) inversed 𝛼c by matching modeled 𝑉p and real data, during
which 𝛼s is estimated by Eq. (19). The two parameters are then used
in Xu–White model to predict 𝑉s. Yan et al. (2002) built a semi-
empirical equation to predict velocities by combing Xu–White model
and Han’s equation. One characteristic of their work is that P- and S-
wave velocities of wells are required when building the equation, and
then the equation can be used to estimate 𝑉s for other wells. Besides,
the equation will work better when the wells are in the same area.

The researches of 𝑉s prediction based on Xu–White model provide
better result than empirical methods. Comparing with inclusion theory,
details of minerals are ignored and more attention is paid to properties
of pores in Xu–White model. This characteristic reduces the dependence
on real data. Therefore, Xu–White model is commonly used in 𝑉s
prediction.

2.4. A statistical rock-physics model for S-wave velocity prediction of wells

Both data-based methods and rock-physics models should be cali-
brated by real data before they are used to estimate velocities. Real
data is collected from well logs and cores or from prior information

in previous researches. Certain petrophysical parameters in empirical
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equations or rock-physics models are valued by transforming prior
information into constants. However, prior information is more likely
to form distributions instead of constants, because each parameter has
different values under different conditions.

The statistical rock-physics model has been used in reservoir char-
acterization (Bachrach, 2006; Grana and Della Rossa, 2010; Yuan et al.,
2016; Fjeldstad and Grana, 2018). In these researches, distributions of
key petrophysical parameters are built by prior information and used
in the inversion process. Significantly, besides better result, statistical
information of the result is provided.

We build a statistical rock-physics model to predict 𝑉s of wells. The
Xu–White model acts as a foundation in the statistical model, and prior
information is combined to form distributions of key petrophysical
parameters. These parameters cannot be measured in well logging
and affect velocities of rock in Xu–White model. From Section (2.3),
velocities of sand and 𝛼c are important parameters to velocities of
rock in Xu–White model. Eq. (19) is utilized to estimate 𝛼s, because
velocities are less sensitive to 𝛼s. Other parameters in the model are
available from well logs. By initializing the statistical rock-physics
model with distributions from prior information instead of constants,
more possibilities are provided to model real velocities of rock with
less information.

Prior information is necessary to build the prior distribution for the
three key parameters. Data-based methods use real data from well logs
and experiments, including part of the target well and several wells
in the target area, to get coefficients of equations. These equations are
then used to calculate velocities of other part of the target well or other
wells in the target area (Han et al., 1986; Yan et al., 2002; Dvorkin and
Mavko, 2014; Zhang et al., 2020). A similar approach is utilized in our
study. Some wells of target area provide data to form prior distribution
of key parameters, which are named reference wells. Then the prior
distribution is used to calculate velocities of other wells in the same
area, which are named target wells. The reference well has accurate
and abundant data, including mineral information. Velocities of sand
in reference wells can be calculated by using mixing theory Eq. (18).
𝛼s of reference wells is estimated by Eq. (19). The following equation
is the objective function for 𝛼c inversion of reference wells:

𝛼c = arg min

(

|

|

|

|

|

|

𝑉p − 𝑉p
𝑉p

|

|

|

|

|

|

+
|

|

|

|

|

𝑉s − 𝑉s
𝑉s

|

|

|

|

|

)

(20)

here 𝑉p and 𝑉s are modeled P- and S-wave velocities by Xu–White
odel.

The prior distribution and 𝑉p of the target well are used in the
nversion of P-wave velocity of sand (𝑉p_sand), S-wave velocity of sand
𝑉s_sand) and 𝛼c of the target well. 𝛼s of the target well is provided
y Eq. (19). The Bayesian inversion framework can combine prior
nformation with statistical model in the inversion process, and has
een used in geophysical inversion problems (Mollajan et al., 2019a,b).
e use Bayesian theory to process the inversion and the objective

unction is:

= arg max
(

𝑃
(

𝒎|𝑉p
))

(21)
(

𝒎|𝑉p
)

∝𝑃
(

𝑉p|𝒎
)

𝑃 (𝒎) = 𝑁
(

𝑉p;𝑉p,𝐕𝟏

)

𝑁
(

𝒎;𝐄,𝐕𝟐
)

(22)

here 𝒎 is a vector made up by the three parameters; 𝑃 (⋅) is the
robability function; 𝑁 (⋅) is the probability of a normal distribution;
𝟏 is the variance of noise in 𝑉p; 𝐄 is a vector made up by expectations
f the three parameters and 𝐕𝟐 is the covariance matrix.

To solve non-linear objective function in inversion problems, the
lobal optimization algorithm is a choice (Liu and Grana, 2018). The
A-PSO is a particle swarm optimization algorithm improved by sim-
lated annealing. The algorithm has been used to solve nonlinear
nversion problems of reservoir characterization (Zhang et al., 2017,
018b). The SA-PSO is employed here to solve the objective function
Eq. (21)). The algorithm searches for best values of the three key
arameters (𝒎) to make the posterior probability (𝑃

(

𝒎|𝑉
)

) maximum.
5

p

Fig. 4. Workflow of S-wave velocity prediction for wells based on statistical
rock-physics model and Bayesian theory.

Then the three key parameters are used to calculate 𝑉s of wells based
on the rock-physics model. During the process, the statistical method
will provide not only the best estimation of 𝑉s, but also statistics of
the result, such as confidence interval and probability. Fig. 4 is the
workflow of 𝑉s prediction for wells based on the statistical rock-physics
model and Bayesian theory.

3. Results and discussion

A reservoir from South China is chosen for real data test. The reser-
voir is a shale formation and there are several wells in the area. Two
reference wells have mineral information. Fig. 5 is logging curves of a
reference well, including gamma ray, 𝑉p, 𝑉s, density, porosity, water
saturation and volume fraction of components. Mineral information is
calculated from well logs and core data. Except reference wells, other
wells only have conventional logging curves and mineral information
is unavailable. We use three of them as target wells, which have real
𝑉s logging data for validation of the method. Fig. 6 is logging curves
of target well 1. Well logs of target wells come from the same shale
formation with reference wells and thus the properties of rock are
similar. Modulus and densities of minerals and fluids of the formation
are presented in Table 1.

Firstly, the inversion of 𝛼c is processed for the two reference wells.
Velocities of sand are calculated based on mineral information from
well logs. Inversion results of the three parameters are presented in
Fig. 7. It shows the statistics of reference wells, from which prior
distribution is built for the following process.

For the target well, the density of sand is given by Eqs. (15)–
(17), and 𝛼s is given by Eq. (19). There are three key parameters in
the statistical model to calculate 𝑉s of target wells. The inversion of
them is processed by solving the objective function (Eq. (21)) with

the prior distribution from reference wells. Then velocities and their
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Fig. 5. Well logs of a reference well with artificial depths.

Fig. 6. Well logs of target well 1 with artificial depths.

Fig. 7. Prior information from statistics of reference wells.
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Fig. 8. Predicted P- and S-wave velocities (red) and real velocities (black) of target well 1. (a) is result of Han’s model, (b) is result of the Xu–White model with all constant
parameters, (c) is result of the Xu–White model with variable 𝛼c and (d) is result of the statistical model, where green dots and blue dots are the lower boundary and upper
boundary of 95% confidence interval, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
w
v
d
d
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I

Table 1
Modulus and densities of minerals and fluids (Mavko et al., 2009; Jiang and Spikes,
2013; Tan et al., 2015).

Bulk modulus Shear modulus Density
(GPa) (GPa) (g∕cm3)

Quartz 37.9 44.3 2.65
Dolomite 94.9 45 2.87
Calcite 76.8 32 2.71
Feldspar 37.5 15 2.62
Pyrite 147.4 132.5 4.93
Clay 25 9 2.55
Kerogen 2.9 2.7 1.3
Gas 0.336 – 0.34
Water 2.2 – 1.4

statistics are calculated based on the inversion result. As a comparison,
Han’s model (Han et al., 1986), the Xu–White model with all constant
parameters (Xu and White, 1995, 1996) and the Xu–White model with
7

e

variable 𝛼c (Bai et al., 2013) are utilized in target wells. These methods
are also evaluated quantitatively by MSE and correlation coefficient (𝑟).
Their equations are:

MSE = 1
𝑁

𝑁
∑

𝑖=1

(

𝑉𝑖 − 𝑉𝑖
)2

(23)

𝑟 =
𝑐𝑜𝑣

(

𝑉 , 𝑉
)

𝜎𝑉 𝜎𝑉
(24)

here 𝑖 indicates depth points; 𝑉𝑖 and 𝑉𝑖 are corresponding estimated
elocities and real velocities, respectively; 𝑁 is the total number of
epth points; 𝑐𝑜𝑣 (⋅) indicates covariance and 𝜎 indicates standard
eviation of velocities.

Results of the four methods for target well 1 are shown in Fig. 8.
nd quantitative evaluation of these methods are presented in Table 2.

t is obvious that the three old methods get results with different
rrors. The Xu–White model based methods have higher correlation



Journal of Petroleum Science and Engineering 195 (2020) 107710B. Zhang et al.
Fig. 9. Predicted P- and S-wave velocities (red) and real velocities (black) of target well 2. (a) is result of Han’s model, (b) is result of the Xu–White model with all constant
parameters, (c) is result of the Xu–White model with variable 𝛼c and (d) is result of the statistical model, where green dots and blue dots are the lower boundary and upper
boundary of 95% confidence interval, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
The comparison of mean square error (MSE) and correlation coefficient (𝑟) of predicted
𝑉p and 𝑉s using different models.

Model MSE MSE 𝑟 𝑟
of 𝑉p of 𝑉s of 𝑉p of 𝑉s

Han’s model 0.1084 0.0115 −0.1322 0.7264
Target Xu–White model (constants) 0.4421 0.0411 0.3854 0.8444
well 1 Xu–White model (variable 𝛼c) 0.0602 0.0030 0.7954 0.9128

Statistical model 0.0019 0.0012 0.9966 0.9433

Han’s model 0.0648 0.0073 0.5315 0.8872
Target Xu–White model (constants) 0.4753 0.0554 0.7498 0.9341
well 2 Xu–White model (variable 𝛼c) 0.0419 0.0047 0.8592 0.9699

Statistical model 0.0015 0.0030 0.9958 0.9864

Han’s model 0.0540 0.0068 0.6470 0.9571
Target Xu–White model (constants) 0.7479 0.0872 0.7867 0.9788
well 3 Xu–White model (variable 𝛼c) 0.0514 0.0049 0.7693 0.9664

Statistical model 0.0017 0.0018 0.9952 0.9868
8

than Han’s model considering the last three methods are based on Xu–
White model. But the two old Xu–White model based methods have
bigger error than Han’s model, at least in some sections. The reason
is that Han’s model is built by data fitting and thus has smaller global
error. But in special sections the error becomes big. Even the trends
of estimated and real velocities are converse, such as the section from
1285 to 1300 in Fig. 8a. In Fig. 8b, constant parameters are used in
Xu–White model and there is big error in the result. Because some key
parameters, such as 𝑉p_sand and 𝛼c, are assigned based on knowledge of
reference wells and not accurate for the target well. Besides, properties
of rock vary with depth, therefore constant parameters lead errors.
Fig. 8c gives better result than Fig. 8b. And the MSE as well as 𝑟 is
improved. The reason is that 𝛼c is from inversion and 𝛼s is calculated
from porosity and volume fraction of sand (Eq. (19)) in the method.
The two parameters are important to velocities of rock (Figs. 2 and
3), therefore the accuracy of the two parameters improves the result.
But there are still big errors between estimation and real data in
some sections, such as 1200 to 1230 in Fig. 8c. The statistical method
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Fig. 10. Predicted P- and S-wave velocities (red) and real velocities (black) of target well 3. (a) is result of Han’s model, (b) is result of the Xu–White model with all constant
parameters, (c) is result of the Xu–White model with variable 𝛼c and (d) is result of the statistical model, where green dots and blue dots are the lower boundary and upper
boundary of 95% confidence interval, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
achieves the best result. In Fig. 8d, predicted 𝑉p and 𝑉s are fitting well
with real velocities. Errors of the result are small in no matter global
or special sections. The trends of estimation and real data are similar,
which are indicated by 𝑟. The result is achieved by the inversion of
three key parameters using Bayesian theory, which is more effective
than the single 𝛼c inversion in Fig. 8c. Moreover, the 95% confidence
interval is provided in Fig. 8d and real velocities are in the interval.
Also note that the confidence interval is narrow, which limits the range
of real velocities. The results in Fig. 8 indicate that the statistical
method can provide not only accurate velocity estimation for wells, but
also a valuable small range which the real velocity is almost in.

To test the applicability of the statistical method, target well 2 and
target well 3 are also used in the workflow. The results are shown in
Figs. 9 and 10, and their quantitative evaluation is presented in Table 2.
The two well tests demonstrate a similar result with target well 1 and
validate the statistical method.

As prior information is required in the workflow, reference wells
with abundant logging and core data are necessary for the method.
Prior information also affects accuracy of the velocity estimation. Sec-
tions of target wells should be similar with reference wells to guarantee
that the prior information is correct and the result will be best. The
method is still valid for a longer logging interval in target wells, because
velocities are also determined by the fitting of real 𝑉p besides prior
information. But accuracy of the result will decrease when the depth
9

is far away from the section which is similar with reference wells. The
reference wells and target wells are in a same reservoir in this study to
ensure similar rock properties, which also improves prior information.
Reference wells from the similar reservoir can also provide the prior
information but its validity and accuracy should be verified at first, and
accuracy of the result will decrease.

4. Conclusions

In this study, a statistical method is proposed to predict 𝑉s of
wells. This method is based on a statistical rock-physics model and
Bayesian inversion theory. The details of building a statistical rock-
physics model is presented, and the workflow of the statistical method
is summarized. This method is suitable to predict 𝑉s for wells in a
reservoir, where only few wells have abundant logging and core data,
and is also applicable to an area where there are only conventional well
logs. The application of this method will contribute to AVO analysis and
reservoir characterization.

Real data tests and results indicate that the method can provide
accurate 𝑉s prediction. The statistics of the estimation are also pre-
sented, from which the 95% confidence interval of estimated velocities
is calculated. The confidence interval is proved valid by comparing with
real velocities. Furthermore, 𝑉 of wells, as well as 𝑉 , has been utilized
s p
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as calibration for statistical inversion of petrophysical parameters of
reservoirs in recent years. The statistical information and accurate
velocities are valuable to these researches.
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Appendix A. Abbreviations and their explanation

Some abbreviations and their explanation in this paper are listed
below. The units of symbols are also provided.

𝑉s or S-wave
velocity

Shear wave velocity km/s

𝑉p or P-wave
velocity

Compression wave velocity km/s

AVO Amplitude variation with offset
SCM The self-consistent model
DEM The differential effective medium model
𝜙 Porosity
𝐶 Volume fraction of clay content in a rock
𝐾 Bulk modulus GPa
𝜇 Shear modulus GPa
𝜌 Density g∕cm3

𝜙s Sand-related porosity
𝜙c Clay-related porosity
𝑓s Volume fraction of sand in minerals

which constitute a rock
𝑓c Volume fraction of clay in minerals

which constitute a rock
𝐾d Bulk modulus of dry rock GPa
𝜇d Shear modulus of dry rock GPa
𝑆w Water saturation
𝛼 Aspect ratio
𝛼s Aspect ratio of sand-related pores
𝛼c Aspect ratio of clay-related pores
𝑉s_sand Shear wave velocity of sand km/s
𝑉p_sand Compression wave velocity of sand km/s
SA-PSO Particle swarm optimization algorithm

improved by simulated annealing
MSE Mean square error of an array
𝑟 Correlation coefficient of two arrays
10
Appendix B. Extend equations of Xu–White model

Xu and White (1995, 1996) gave equations for modulus of the
matrix, which is made up by sand and clay, by the time-average:

𝑇 P
0 =

(

1 − 𝑓 ′
c
)

𝑇 P
s + 𝑓 ′

c𝑇
P
c (B.1)

𝑇 S
0 =

(

1 − 𝑓 ′
c
)

𝑇 S
s + 𝑓 ′

c𝑇
S
c (B.2)

𝐾0 = 𝜌0
⎛

⎜

⎜

⎝

1
(

𝑇 P
0
)2

+ 4

3
(

𝑇 S
0
)2

⎞

⎟

⎟

⎠

(B.3)

𝜇0 = 𝜌0
⎛

⎜

⎜

⎝

1
(

𝑇 S
0
)2

⎞

⎟

⎟

⎠

(B.4)

where 𝑇 P
0 , 𝑇 P

s and 𝑇 P
c are P-wave transit times of the matrix, sand and

clay, respectively; 𝑇 S
0 , 𝑇 S

s and 𝑇 S
c are S-wave transit times of the matrix,

sand and clay, respectively; 𝐾0 and 𝜇0 are modulus of the matrix; The
transit times are reciprocals of velocities; 𝑓 ′

c is the normalized clay
volume fraction and 𝜌0 is density of the matrix, which are calculated
by:

𝑓 ′
c =

𝑓c
1 − 𝜙

(B.5)

𝜌0 =
(

1 − 𝑓 ′
c
)

𝜌s + 𝑓 ′
c𝜌c (B.6)

𝜌s and 𝜌c are density of sand and clay, respectively.
In Eqs. (11) and (12), 𝑝 and 𝑞 are geometry coefficients which are

functions of aspect ratio:

𝑝 = 1
3

∑

𝑙=S,C
𝑓𝑙𝑇𝑖𝑖𝑗𝑗

(

𝛼𝑙
)

(B.7)

𝑞 = 1
5

∑

𝑙=S,C
𝑓𝑙𝐹

(

𝛼𝑙
)

(B.8)

S and C indicate sand and clay; 𝛼 is the aspect ratio of corresponding
pores and 𝑓 indicates corresponding volume fraction. Equations for
𝑇𝑖𝑖𝑗𝑗 (𝛼) and 𝐹 (𝛼) are given by (Berryman, 1980):

𝑖𝑖𝑗𝑗 (𝛼) =
3𝐹1
𝐹2

(B.9)

𝐹 (𝛼) = 2
𝐹3

+ 1
𝐹4

+
𝐹4𝐹5 + 𝐹6𝐹7 − 𝐹8𝐹9

𝐹2𝐹4
(B.10)

where

𝐹1 = 1 + 𝐴
[ 3
2
(𝑔 + 𝑣) − 𝑅

( 3
2
𝑔 + 5

2
𝑣 − 4

3

)]

(B.11)

𝐹2 = 1 + 𝐴
[

1 + 3
2
(𝑔 + 𝑣) − 𝑅

2
(3𝑔 + 5𝑣)

]

+ 𝐵 (3 − 4𝑅)

+ 𝐴
2
[𝐴 + 3𝐵] (3 − 4𝑅)

[

𝑔 + 𝑣 − 𝑅
(

𝑔 − 𝑣 + 2𝑣2
)]

(B.12)

3 = 1 + 𝐴
2

[

𝑅 (2 − 𝑣) + 1 + 𝛼2

𝛼2
𝑔 (𝑅 − 1)

]

(B.13)

𝐹4 = 1 + 𝐴
4
[3𝑣 + 𝑔 − 𝑅 (𝑔 − 𝑣)] (B.14)

5 = 𝐴
[

𝑅
(

𝑔 + 𝑣 − 4
3

)

− 𝑔
]

+ 𝐵𝑣 (3 − 4𝑅) (B.15)

6 = 1 + 𝐴 [1 + 𝑔 − 𝑅 (𝑣 + 𝑔)] + 𝐵 (1 − 𝑣) (3 − 4𝑅) (B.16)

7 = 2 + 𝐴
4
[9𝑣 + 3𝑔 − 𝑅 (5𝑣 + 3𝑔)] + 𝐵𝑣 (3 − 4𝑅) (B.17)

8 = 𝐴
[

1 − 2𝑅 +
𝑔
2
(𝑅 − 1) + 𝑣

2
(5𝑅 − 3)

]

+ 𝐵 (1 − 𝑣) (3 − 4𝑅) (B.18)

9 = 𝐴 [𝑔 (𝑅 − 1) − 𝑅𝑣] + 𝐵𝑣 (3 − 4𝑅) (B.19)

nd 𝐴 = 𝜇′

𝜇 − 1, 𝐵 = 1
3

(

𝐾′

𝐾 − 𝜇′

𝜇

)

, 𝑅 = 3𝜇
3𝐾+4𝜇 , 𝑔 = 𝛼2

1−𝛼2 (3𝑣 − 2),

𝑣 = 𝛼

(1−𝛼2)
3
2

[

cos−1 (𝛼) − 𝛼
√

1 − 𝛼2
]

. 𝐾 and 𝜇 are bulk modulus and shear

modulus of the matrix, respectively. 𝐾 ′, 𝜇′ and 𝛼 are bulk modulus,
shear modulus and aspect ratio of the inclusion, respectively.
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Appendix C. The SA-PSO algorithm

The SA-PSO is a particle swarm optimization algorithm improved
by simulated annealing. The algorithm can search optimal solution of
inversion parameters in a non-linear function. The workflow of SA-PSO
is as follow:

1. Initialization. Samples are drawn from the solution space ran-
domly to get particles.

𝑥𝑖0∼𝑈 (𝑆) (C.1)
𝑖
0∼𝑈 (𝑠) (C.2)

=
[

0, 1
2
(

𝑆u − 𝑆d
)

]

(C.3)

where 𝑥𝑖0 and 𝑣𝑖0 are initial position and initial velocity of particle
𝑖, respectively. A particle has dimensionality and each dimensionality
represents an inversion parameter. So, the position of a particle repre-
sents the values of inversion parameters. In these functions, 𝑈 refers
sampling with equal probability, and 𝑆 is the solution space of the
inversion parameters with upper boundary 𝑆u and lower boundary 𝑆d.
The initial space of velocity is 𝑠 which is decided by the solution space.
The temperature for the annealing process is 𝑇0, which should be a big
enough constant.

2. Calculate the fitness of particles.

𝑓𝑖𝑡
(

𝑥𝑖𝑘
)

= 𝑓
(

𝑥𝑖𝑘
)

(C.4)

where 𝑓𝑖𝑡 is the fitness of particles; 𝑓 is the objective function; 𝑥𝑖𝑘 is
the position of particle 𝑖 in cycle 𝑘.

3. Change the position of particles.

𝑣𝑖𝑘+1 = 𝑣𝑖𝑘 + 𝑐1𝑟1
(

𝑝𝑖 − 𝑥𝑖𝑘
)

+ 𝑐2𝑟2
(

𝑝𝑔 − 𝑥𝑖𝑘
)

(C.5)

𝑥𝑖temp = 𝑥𝑖𝑘 + 𝑣𝑖𝑘+1 (C.6)

where 𝑐1 and 𝑐2 are constants; 𝑟1 and 𝑟2 are valued randomly between 0
and 1; 𝑣𝑖𝑘 is the velocity of particle 𝑖 in cycle 𝑘, and 𝑣𝑖𝑘+1 is its velocity in
cycle 𝑘+1; 𝑝g is the global-best, which is the position of particle whose
fitness is biggest in all particles till now; 𝑝𝑖 is the individual-best, which
is the position of the particle where its fitness is biggest till now; 𝑥𝑖temp
is a possible position where the particle might be after this cycle, and
it is decided by the two equations:

𝑓𝑖𝑡
(

𝑥𝑖temp

)

> 𝑓𝑖𝑡
(

𝑥𝑖𝑘
)

(C.7)
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⎜
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)
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(

𝑥𝑖𝑘
)

)

𝑇𝑘

⎞

⎟

⎟
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⎠

> 𝑟3 (C.8)

here 𝑟3 is valued randomly between 0 and 1. Particles will move
f they meet at least one of these equations. That is 𝑥𝑖𝑘+1 = 𝑥𝑖temp.

Otherwise particles will not move.
4. Lower the temperature.

𝑇𝑘+1 = 𝑐𝑇𝑘 (C.9)

where 𝑐 is a coefficient of the operation.
5. Repeat steps 2 to 4 until the condition of convergence is meet.

Then, 𝑝g is the optimal solution for the function.
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