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Highlights

SVR, KELM, BPNN and SR are applied to the hourly Os; concentration
prediction.

Meteorological el ements, precursors and O3 concentrations 6 hours ago are used
as model inputs.

Improving models using WT and PLS methods.

The KELM-WT-PLS model has better prediction effect with R up to 0.78.
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ABSTRACT

In this paper, we develop a method for predictizgne(Q) concentration based on kernel extreme learning
machine (KELM) and support vector machine regres$8VR) and pretreat it by wavelet transformatigvirj and
partial least squares (PLS). To test the methdtésteveness, the observation (2014 — 2016 sumofdf)e precursors,
meteorology and hourly Oconcentrations in the Nanjing industrial zone wapplied. The mean absolute error
(MAE), mean absolute percentage error (MAPE), moetan squared error (RMSE), normalized root meamrsqu
error (NRMSE) and coefficient of determinatiBf( were chosen to evaluate the model. Results denadeshat the
KELM and SVR perform better than stepwise regres§8R) methods and back propagation neural net(BPRN)
for predicting Q concentration. WT decomposes the original timéesesf Q concentration into a few sub-series
with less variability, and then improve the perfarme of SVR and KELM by 16.99%~30.91% and 16.00%8625,
respectively. The variable importance in project{diP) value was used to filter the influence fastof each sub—
sequence, which can remove redundant informatidnratuce the calculation amount of the model. lditaxh, the

WT and PLS methods enhance the predictive abilti¢6€ELM and SVR for higher @concentrations by 21% and 35%
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respectively. The KELM-WT-PLS model shows the bésof the O; hourly concentration, and the corresponding

MAE, MAPE, RMSE, NRMSE and® are 7.71 ppb, 0.37, 9.75 ppb, 11.83% and 0.78ewWiLM predict the @

hourly concentration more accurately.

keywords. ozone concentration forecast; kernel extreme iegrnrmachine; support vector machine; wavelet

transformation; partial least squares; variableartgnce in projection

1. Introduction

With the development of industry and Commerce dmel increase of cars ownership, the anthropogenic

emissions of nitrogen oxides (NGDuncan et al., 2016; Krotkov et al., 2016) aothtile organic compounds (VOCS)
(Lu et al.,, 2013; Smedt et al., 2015) in the neafase atmosphere are increasing. The complex d@lutipn
problems such as photochemical smog (Hamer eR@l5) are seriously affecting human health (Goodetaal.,
2015; Karlsson et al.,, 2017) and ecological envitent (Feng et al., 2015; Wang et al., 2012). Sngiythe
forecasting method of air pollutants and estabtigta timely early warning mechanism of air polldsaare of great
application value for improving the air quality @fies and formulating control strategies.

Air pollution prediction methods can be generalljided into numerical and statistical predictiomelnumerical
prediction methods realize the simulation of palhittransformation, migration and diffusion andeefthe changing
law of pollutants, but they are based on a largaeber of meteorological data, pollutant emissiornrseulata and air
monitoring data, need to grasp the mechanisms laftpm change and take a long time to calculaie@nhcentration
forecast involves nonlinear, strong coupling andtivariate problems, thus the numerical predictwiti be a very
complicated system engineering. Statistical foregsnethods such as regression model (An and W201); Zhai
et al., 2018) are widely used in operational fostiog which have the advantages of simple calanatiow data
requirement and high accuracy. However, most oimtlage based on linear regression theory, assurhizgthe

pollutant concentrations are not directly relatedhe source of pollution, it is difficult to appthhem to non—linear
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and strong coupling systems. In recent years, thighdevelopment of computer technology, artifioiélligence and
machine learning theory have been widely studietl ggpplied. Machine learning methods that basedtatistcal
theory such as neural network (Gao et al., 2018 Btaal., 2017), decision tree (Ding et al., 20ByR and ELM
have shown excellent performances in dealing watlHtinear problems.

SVR follows the principle of structural risk minimation. Unlike traditional machine learning methadsich
follow the principle of empirical risk minimizatigthe SVR avoids the problems of over—fitting, looptimization,
difficulty in parameter adjustment and slow conesrce (Lu and Wang, 2005; Nieto et al., 2013), @ulires fewer
parameters to be adjusted. In recent years, SVRhatagnly used to predict solar radiation (Queglet2017), cloud
cover (Zhao et al., 2016) and visibility (Wu et &017), but also widely used to predict air p@hitconcentrations
such as @ (Lee et al., 2018; Luna et al., 2014; Mehdipoud atemarianfard, 2019; Ortiz-Garcia et al., 2010;
Salazar-Ruiz et al., 2008; Xu et al., 2016). Soemearchers compared the SVR with commonly usedtital
forecasting models such as multilayer perceptiomFM(Nieto et al., 2017), linear regression modearfu and
Rakotomamonjy, 2001), vector auto regressive mpdeRMA) and auto—regressive integral moving averagslel
(ARIMA) (Nieto et al., 2018), found that the SVRshbetter prediction effect on pollutants. Compangith many

statistical forecasting methods, the SVR showederfeasibility and superiority.

In order to overcome the limitations of the artdlcneural network based model, the extreme legrmiachine
(ELM) was proposed, which is a new single hiddereldeed—forward neural network training method &higi and
Chen, 2007; Huang et al., 2011). After randomlyethatning the input hidden weights and hidden biades hidden
output weights can be directly obtained by caldutathe Moore—Penrose generalized inverse of tHdem output
matrix. Compared to gradient—based methods, the BaMbetter generalization capabilities and fdetmning rates,
and it has been initially applied in;@rediction and performed well (Feng et al., 20R8ng et al., 2017; Zhang and
Fu, 2017). However, the main drawback of ELM arsdviariants is that they rely on the choice of nesrm the

hidden layer and the correct activation functiong @dhe established prediction system is unstaldesdive this
3
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problem, Huang et al. (2012) proposed the KELM bgparing the modelling and solving processes betviddV
and vector machines. Compared with ELM, the KELMmisere robust and performs better in solving regoess
prediction problems. In recent years, KELM has be&tely used in engineering technology (Lin et 2D18; Shi et
al., 2019), however, its validation in air pollutauprediction has not been tested.

WT is a useful tool for obtaining time and frequgmeformation from sequences (Chen and Zhao, 20413,
has been widely used in information science. Iremég/ears, WT theory has also shown strong vitafitythe
atmospheric field (Li and Tao, 2018; Liu et al.,18D. O; has complex non-linear response relationship with
precursors and meteorological conditions (Borreg@le 2003; Liu et al., 2017a), whose time sehese non—
stationary and high variability characteristicsd anis difficult to accurately predict. Using Wheory to transform
high—variability time series into multiple low vakility sub—sequences has obvious advantages. &sirmodels, the
WT method was an effective way to improve the preoin accuracy (Dunea et al., 2015; FarajzadehAdizddenh,
2017). On the other hand, the ozone concentraticnsiffected by multiple factors such as meteorctdgonditions
and precursors, it is not advisable to take allaides into account because of the interactionaofdrs. PLS is a
supervised feature extraction method, which canaekthe most comprehensive explanatory variathiesugh the
principal component analysis (PCA) and the synghekvariable extraction, and effectively improved explanatory
and accuracy of the prediction models (Li and 284,8; Yeganeh et al., 2012).

The work presented in this study aims to examieeféasibility of applying SVR and KELM models tcegict
Os; hourly concentrations based on the measured dagabaNanjing, try to optimize these two modelswi¥T and
PLS methods and compare their performances. Thdseallmodels provide novel alternative and optirdizéea for

air pollutants concentration forecasting.

2. Data and Method

2.1 Sampling site and modelling dataset
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The modelling data including hourly30NO, NG, CO and VOCs concentrations (1-h mean value) were
collected at the observation site of Qixiang Buitdi(32.21°N, 118.72°E) located on the Nanjing Ursitg of
Information Science and Technology, China (Fig. The data's observation period during 1/5/2014 5(8/2014,

1/6/2015 to 30/8/2015 and 1/5/2016 to 27/8/2016vmeostly in the summer with high; ©@oncentrations.

Fig. 1. Location of the observation site and theawunding environment.

0;, NO, NQ, and CO concentrations were continuously measusaét calibrated instruments from Thermo
Environmental Instruments (TEI Inc., USA). The mstents’ detailed parameters and calibration methzath be
found in reference (An et al., 2015). VOCs concaiuns were online monitored using the GC5000 amslyystem
from AMA Instruments GmbH (AMA, Germany), and thegre classified into four classes in the studyaaé&k@LK),
olefin (OLE), acetylene ACE) and aromatic hydrocarborl), the specific species classified and detailedyénal
method can be found in reference (An et al., 20l%}his paper, values were expressed by volumengiratios
(ppb).The intuitive statistical information of pollutardsita is shown in Figure S1.

The meteorological hourly data (1-h mean valueeveailected by the automatic weather station orcémepus

which is approximately 800 m from the observatiite, Sncluding temperaturdl), atmospheric pressurE)( relative
5



109

humidity (RH), wind speedW9, and wind directionWD).

110 Table 1 shows the correlation analysis results afous variables. The correlation between ad relative
111 humidity (-0.74) is the best, followed by temperat0.58). Among several ;Qrecursors, NO, NQ olefin and
112  aromatic hydrocarbon are relatively more importémthis paper, the single—site ozone predictiomidated by local
113  photochemical reactions is mainly considered, ttays with rainfall more than 0 mm were removédrther, figure 2
114 shows that the wind speed during observation pesiodostly lower than 5 m/s, and it can be considehat there is
115  no strong horizontal transport of pollutants, ahd tlata used for modelling can represent the Iplsatochemical
116  reaction. A detailed statistical summary of modellidata including minimum, maximum, mean and stethda
117  deviation is shown in Table 2.
118
119  Table 1. Correlation analysis of all data usedrgdition of Q.

O3 NO NQ NO, CcoO ALK  OLE ACE AH WS T RH WD P |
O3 1 -050 -0.36 -045 -0.31 -038 -041 -020 -044 035 058 -074 0.07 -0.12
NO -0.50 1 0.52 0.67 0.32 0.37 0.47 0.16 0.330.06 -0.26 0.32 -0.15 0.09
NO, -0.36  0.52 1 0.97 0.51 0.62 0.49 0.52 0.580.20 -0.23 0.12 -0.32 0.16
NO, -0.45 0.67 0.97 1 0.53 0.63 0.53 0.50 0.590.20 -0.27 0.21 -0.31 0.15
CO -0.31 0.32 0.51 0.53 1 0.53 0.38 0.32 0.540.10 - 0.26 -0.35 0.05
ALK  -0.38 0.37 0.62 0.63 0.53 1 0.65 0.56 0.7770.28 -0.19 0.29 -0.40 0.05
OLE -041 047 0.49 0.53 0.38 0.65 1 0.25 0.51-:0.24 -0.15 0.33 -0.27  0.07
ACE -0.20 0.16 0.52 0.50 0.32 0.56 0.25 1 0.560.28 -0.15 0.17 -0.10 -
AH -0.44 0.33 0.58 0.59 0.54 0.77 0.51 0.56 1 -024 -022 0.36 -0.39  0.07
WS 0.35 -0.06 -0.20 -0.20 -0.10 -0.28 -0.24 28. -0.24 1 0.21 -0.51 -0.15 0.0
T 0.58 -0.26 -0.23 -0.27 - -0.19 -0.15 -0.150.22 0.21 1 -0.45 - -0.4°
RH -0.74 0.32 0.12 0.21 0.26 0.29 0.33 0.17 360. -051 -045 1 - -
WD 0.07 -0.15 -032 -031 -0.35 -040 -0.27 100. -0.39 -0.15 - - 1 -
P -0.12  0.09 0.16 0.15 0.05 0.05 0.07 - 0.070.05 -047 - - 1
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121 Fig. 2. Wind speed and wind direction during theasliation period from 2014 to 2016.
122

123  Table 2. Statistics of measured values. Unit, mimmmaximum, mean, and standard deviation valugaglu

124  observation period.

Variable Unit Min Max Mean Rstd (%)
Os ppb 0.50 116.20 32.94 74.86
NO ppb 0.25 102.87 5.16 146.90
NO, ppb 0.25 81.00 20.11 57.28
NOy ppb 1.60 129.45 25.27 64.62
CcO ppb 20.00 4288.46 807.05 68.46
Alkane ppb 2.76 73.98 16.45 61.28
Olefin ppb 0.14 97.07 7.18 94.01
Acetylene ppb 0.02 17.59 3.52 61.08
Aromatic hydrocarbon ppb 0.80 71.85 8.39 79.14
Wind speed ms 0.00 6.40 1.82 50.55
Wind direction ° 0.00 359.00 165.91 52.08
Temperature °C 9.80 40.30 25.96 16.87
Relative humidity % 13.00 100.00 64.39 29.77
Atmospheric pressure hPa 995.70 1021.40 1004.70 0.37

125
126 2.2 Wavelet transformation
127 Wavelet transformation (WT) is an effective timeeuency analysis method for the signal process,itand

128 decomposes a signal directly according to the #aqy The WT can be divided into continuous wavelet
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transformation (CWT) and discrete wavelet transttiom (DWT). Among them, the DWT proposed by Ma({k889)
requires less time and is easy to implement, asdban widely used. For n—level decomposition acdnstruction,
the original signas can be expressed as:
s=a,+ Z};l d; (1)

where a,, is the approximation series representing the losgtfency component, which contains trend
information;d; is the detail series on j level representing thghhirequency component, which contains periodic
information. Essentially, this is a process in vhtbe low frequency sequence is decomposed intofleguency
subsequences and relatively high frequency subsegsevith the increase of n (Fig. 3). The detand ealculation

procedures of the WT algorithm can be found inresfee (Liu et al., 2017b).

d
s < o
a < din-1)

ay < < dn

an-1)

an

Fig. 3. Schematic diagram oflevel wavelet decomposition.

Fig. 4 shows the results of the 5-level wavelebdgmosition of the original time series of €oncentrations by
applying Daubechies Db5 wavelets implemented inviheelet toolbox of MATLAB R2014b. Db5 is chosenthe
wavelet function because it provides smaller valitglof time series at the particular levels arnsl demonstrated
good performance in related studies (He et al.728iwek and Osowski, 2012; Xiao et al., 2015). dpamal value

of n was determined by the smoothness measure whichecamitten as:

YN a(i+1)-a;()? 2)
TN s+ 1) -s(D)?2

Smooth(j) =
whereN represents the length of the series; j represggtemposition levelss is the original series, ang is the

approximation series on j level. Once Smogth( 0.005,] can be selected as the optimal decomposition .level
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Calculate the Smooth value ¢ffrom 1 to 7, as shown in Table 3, Smooth (5) =B,080 5-level wavelet

decomposition is used in this paper.

120

80
sm 4
0 .
60 F
40
AS 20 -
0
40 F
D, O MWVWVWVVM}\[KM\AMN\MN«M/\/MMWM
40
40 F
D, 0
40 |
40F
D, o
A0 b
40 F
p, O WWMH—WWMWW
40 E
20
Dl 0
20 1 1 I I I
0 400 800 1200 1600 2000 2400

Time (hr)

Fig. 4. The wavelet decomposition of the origimadd series of O; concentrations: B-Ds denote the wavelet

coefficients at different levels and # the approximated signal 8bn the fifth level.

Table 3. Value of Smooth from level 1 to level 7.

Level 1 2 3 4 5 6 7

Smooth  0.6481  0.4104 0.2501 0.0209 0.0021 04.00 0.0001

2.3 Support vector machine regression

Support vector machine (SVM) developed by Vapnilsupervised machine learning algorithm that is lyide
employed for regression and forecasting. As contpdoe the ANN model that normally uses empiricalkris
minimization, the SVR uses the structural risk mmiziation principle which provides an upper bound tbe

generalization error (Vapnik, 2000). The approxedategression functions in the SVR algorithm isegated by



162  applying a set of high—dimension linear functioasalows:
163 y=we(x)+b (3)
164  whereg(X) is the higher—dimensional feature spackes, the input spacey is the outputw is the weights vector ariul

165 is a parameter of bias, that both can be estintatedinimizing the following regularized risk funoh:

2
. R="1 1 C3N L (xyi f) @
167  where
oy (Vi = feDd =& Iy = fx)| = €
168 Ls(xl' yl’f) - { O, otherwise (5)

2
169 Here, thel@ regularization term is used as a measurement aftibm flatness;C is the cost parameter that
170  determines the trade—off between the model flataesssthe training errog is the tube size; Thie. (x;, y;, f) is e—
171  insensitive loss function, which penalizes the reg@ater thar. Eq. (4) is expressed in the following constrained

172  formation by introducing slack variablés¢;':

173 min (@ +C Z£V=1(§L + 51*)) (6)

174  subjectto

175 yi—((wxxi)+b)Ss+€i @)
176 (Wxx)+b)—y; <e+§& (8)
177 &,620 9)
178 The method of using the Lagrangian multiplieccan be used to solve this quadratic programmirdplem.

179  Thus,f(x) can be finally expressed in an explicit form:

180 FG) =T (e — a)K (%) + b (10)
181  whereq;a} =0, a;, a = 0.K(x;,x) is the kernel function and obtained K¢x;, x) = ¢(x;)T¢(x) in the feature
182  space. The common radial basis funcfiaix;, x) = exp(—gl|x; — x||?) whereg is the spread of the RBF kernel is
183  used in this study. The details and calculatiorc@dorres of the SVR algorithm can be found in Vag2d00).

184 The SVR algorithm in this study is applied using e thLIBSVM3.22 software package

10
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(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) on thATLAB platform, the cost paramet€ and the parameterin the

kernel function are optimized by systematic gridrsh method using 5—fold cross validation on th&ing set.

2.4 Kernel extreme learning machine
The extreme learning machine (ELM) is a simple deay algorithm for single—hidden layer feed—forward
network (SLFN), randomly assigning the input wegghnhd hidden layer biases (Huang et al., 2006), hexsdthe
advantages of simple implementation, fast learrgpged, less intervention conditions and strong rgdimation
ability (Huang et al., 2012). For any given setN\ofraining sample§(x;,y;),x; € R™,y; € R",j = 1,2,..., N}, the
output of a conventional SLFN withhidden nodes, can be expressed as below:
0j =X Big(wix; +b;), j=12,..,N (11)
wherex; = [xj1, xj, ...,xjm]T is the input vector with m nodes; = [0j4, 0j,, ...,ojn]T is the output vector with n
nodesw; = [wjy, wjs, ...,wjm]T is the weight vector between the input nodes ara ithh hidden nodef; =
[Bj1, Bjzs ...,ﬂjn]T is the weight vector between the output nodes laad-th hidden nodés; represents the bias of the
i—-th hidden node angl(*) is the nonlinear activation function of the hiddayer.
The above expression can be written as:
T = HB (12)
whereT is the respected output of the SLANis the output matrix of the hidden layer of the 8I_kvhich can be

expressed as:

g(Wlx.l +by) - g(WLx.l +by)

H = _[ . .
gwixy +by) - gwpxy + byl

h(x,)
: ] (13)

h(xy)

The optimization objective of ELM is to find apprigte parameters makirij, [lo; — y;|| = 0 hold, when
existingw;, B; andb; make Eq. (14) set up:
y] = Z%=1 ﬁig(wixj + bi), ] =12,..,N (14)

The minimal norm least square solution of weigltteep is shown as below:
11
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g =H'T (15)
whereHT is the Moore—Penrose generalized inverse of mHtriBased on orthogonal projection method and ridge
regression theory (Hoerl and Kennard, 1970), tipelegization coefficienC was adopted in the optimization phase,
then the solution of output weigftbecomes:

p=(H"H+1) H'T (16)
wherel denotes the identity matrix. Hence, the output fiamcof ELM can be written as follows:
f(x) = h()B = h(x) (HTH + %)_1 HTT (17)

In order to overcome the randomness of ELM, andrave its stability and generalization capabilitgriel
functions can be used for the optimized ELM, nanibly kernel extreme learning machine (KELM) (Huatal.,
2012; Yao et al., 2014).In the KELM, the activatfoimctionh(x) is replaced by kernel matri(x, x;), which can be
shown as:

Q= HHT:QELML-J- = h(xl-)h(xj) = K (x;, x;) (18)

The output function of the KELM can be expressed as

K(x,x1)

fe0) = (Qem+2) (19)

K(x,xy)

Thus, only the type of the kernel function need$®é¢odefined instead of the hidden layer’s node remamd
activation function. The details and calculationgadures of the ELM algorithm can be found in Huahgl.(2006).

In this study, the radial basis functisnused as a kernel function similar to SVR.

2.5 Back Propagation neural network

Back Propagation neural network (BPNN) is one @f tommonly used neural networks with strong noaline
regression capability (Bai et al., 2016; Feng gt20)11). The architecture of this network is cetesd of input layer,
one or more hidden layers and output layers. Eaghrlconsists of multiple neurons. In this papesingle hidden

layer was selected. The tansig and purelin functicnused as the transfer functions for the hiddger and the
12
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output layer, respectively. When modelling with BRNhe number of hidden nodes is directly rela@draining

efficiency. Normally, the trial and error methoddaempirical formula are applied to solve this pesbl(Shen et al.,

2008), which can be expressed as:

hidden nodes =, /m+p+a (20)

wherem s the number of input layer nodgsis the number of output layer nodesiepresents a constant between 0

and 10. Through experiments, mean squared erravelet the networks outputs and the actual obsenmii®

minimal, when the number of hidden layer node®id® 6. Therefore, the structure of the BPNN iedurined to be

14-6-1 in this study.

2.6 Variable importance in projection techniquedobsn PLS

Partial Least Squares (Wold, 1966) is one of thufes of extraction method, which constructs edirmodel to

describe the connection between dependent variabéesl predictor variables X. This linear modekatipts to find

the multidimensional direction in the X space teaplains the maximum multidimensional co—varianizedtion in

the Y space. The variable importance in projec(Mif) is an assistant technology based on PLS, wban be used

to select important variables. The VIP can meathweexplanatory power of each independent varitbiependent

variable, for the j—th independent variable, itPWbrmula is as follows:

h=1 r? (y.cn) h

VI = [ S 20w (21)
wherex; is the independent variablesis the dependent variabldsis the number of independent variablgsis the
principal components extracted from the relevamiatdes;r(y,c,) is the correlation coefficient between dependent
variables and principal components, indicating ¢xplanatory ability of the principal componentsytow, is the
weight of the independent variables on the prifagpanponents.

The explanatory effect of ony is transmitted through the principal componenif the explanatory effect af,
ony is very strong, and the interpretationxpbn c, is also very large, then it can be consideredxhlaas a greater
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2.7 Performance evaluation
The models’ performance on learning and testingaasessed using the following five indexes: measolate
error (MAE), mean absolute percentage error (MARBYt mean squared error (RMSHrmalized root mean

square error (NRMSE) and coefficient of determimaiR’). These parameters can be defined as below:

1
MAE =~ 10; — Py (22)
1 |Pi—0i]
MAPE = %L, == (23)
1
RMSE = \/; M (0= P)? (24)
NRMSE = —£ . 100% (25)

max~— Ymin
n 2
_ Zi:l (Oi—Pi)

R?=1 >
S, (0i—0m)

(26)
where0; is the observed value at timed,,, 4, Omin aNd0,,, are the maximum, minimum and average values of the

observed value, respectiveR;is the predicted value at tinn@ndn is the total number of samples.

3. Results and discussion
In this study, experiments were carried out in MAB.2014 environment running in an Intel i5, 1.6 GBRU.
Data for 2014 and 2015 were used for training amdlation, accounting for about 80% of the totaladat, and the

data for 2016 were used for testing. Before maalgllall variables were normalized to [0,1] by Equai{1):
re @
where x is the original variablex,,,;,is minimum value of the variable;, ,,.is maximum value of the variable and
y is the variable transformed by normalization.
The previous ozone concentration characterizesctineulative effect of pollutants, which could efigety

improve the prediction accuracy when forecastingnezconcentration (Chelani, 2010). Taking into actahe
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292

293
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296

timeliness of the forecast and the diurnal variatib ozone, the ozone concentration 6—h & ) was also taken
as a variable in this study.
3.1 Comparing the prediction performance of SVRLKEBPNN and SR

The stepwise regression, as a traditional statistitethod, is still widely used in business foréiogs By
inputting all variables into the stepwise regressimdel (F probability0.05 to enter and F probability0.10 to exit),
the ozone hourly concentration prediction equationld be constructed as follows:

03 = —315.693 — 0.245N0, — 0.197NO,, — 0.002C0 + 0.249ALK — 0.7300LE + 1.634ACE
—0.2094H + 2.612T + 0.334P — 0.681RH — 1.722WS — 0.011WD + 0.04005_6 (28)

Fig. 5 shows the prediction effect of inputting dlriables into the KELM, SVR, BPNN and SR sepdyatee
scatter plots are used to describe the relationd®et the observed and predicted value, which iitssthat the higher
the consistency between the two data sets, the pwnés tend to concentrate near the identity tiregked as ‘ideal
fit' in the figure. As can be seen from Table 4 tkELM has the best performance among the four tepdéth its
MAE, MAPE, RMSE, NRMSE and® are 10.50 ppb, 0.60, 12.97 ppb, 15.73%, 0.58 otispdy. The five indicator
values of SVR and BPNN, which represent predictioouracy, are similar in the study, and the forirees a slight
advantage. The SR method has the lowest performamtets MAE, MAPE, RMSE and NRMSE are about 16%,
40%, 9%, 9% worse than SVR or BPNN, respectivelge Tesults indicate the relationships between ozone
concentration, precursors and meteorological cmmditare nonlinear, which are difficult to be aetaly reflected
with traditional linear statistical models. Moreovéor the three machine learning methods, the liadetime of
KELM including cross validation was 22.35 s, whiglas about 1.5 times faster than SVR and 3 timdsrfadlsan
BPNN, KELM performs better in terms of the learnsgeed. In this study, KELM and SVR with betterdic&on

effect were selected for further optimization andhparison.
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Fig. 5. Comparison of prediction effect of the S\KELM, BPNN and SR.

Table 4. Comparison of five evaluation indexes agn8R, BPNN, SVR and KELM.

MAE (ppb) MAPE  RMSE (ppb) NRMSE (%) R

SR 15.58 0.89 18.61 22.57 0.54
BPNN 12.98 0.51 16.90 20.50 0.53
SVR 12.95 0.53 16.82 20.40 0.55
KELM 10.50 0.60 12.97 15.73 0.58

3.2 The result of WT and PLS methods on prediction

The 14 variables were decomposed into six sub—segsaespectively, including five high frequencgusmnces
(D,~Ds) which describe random characteristics, and oneftequency sequence £{Awhich describes trend change.
The sub-sequences of Ebncentration were used as the prediction obgent,the sub—sequences of the remaining 13
variables at corresponding levels were used a4 iiagtors. Modelling and prediction were carried atisix levels

respectively, and the final prediction results alptained by adding the prediction results of thes@b—sequences of
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328

the six models. Applying the above method to KELMI&SVR, it can be seen from Table 3 that KELM—WE fi
better than SVR-WT at most levels, andRteven reaches 0.91 in,D

The VIP was used in variable screening in this pajfeeach variable has the same explanatory efbect
dependent variables, the VIP values of each variat# all 1. For the independent variable withlatirely large VIP
value, its contribution to dependent variablesadipularly important. Generally, a variable witretVIP> 0.8 can be
considered to have a large contribution to the deépet variable (Wold, 1995). In this study, simplif calculations
were used at all levels, as long as the VIP ondependent variable for a principal component éatgr than 1, it is
retained. The influencing factors of; Gub—sequences are shown in Table 5. Temperatdreetative humidity are
important at most levels. Precursors are the mdlnencing factor for detailed sub—sequences thatacterize the
sudden change ofOThe traffic trunk lines and integrated industaaéas near the observation point were the main
anthropogenic sources of these precursors (Lin.,eP@15). In addition, aromatic hydrocarbons am@renmportant
among the four VOCs. In Nanjing, the contributidnasomatic hydrocarbons to OFP j@rmation potential) and
RIR (relative incremental reactivity) were verydar and it was one of the two most effective sygetoecontrol the
concentration of @(Yang et al., 2016; Zhang et al., 2018). With therease of decomposition levels, the main
influencing factors of Abecomel, RH andO3_§ indicating that the trend of;@oncentration changes is dominated
by meteorological conditions and the cumulativeetfbf pollutants.

As shown in Table 5, after using the PLS methoddiect variables, the accuracy of mostsOb—sequences
prediction models including SVR and KELM is impraveandR? is increased by 1.10%~16.18%, which shows the

effectiveness of the input variables selected uiedPLS method.

Table 5. Input data used in prediction of sixd0ales respectively and effect of using PLS tectelariables.

+
WT+PLS WT. all
Scal variables
cales
. R R
Input variable
SVR/KEL SVR/KELM
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329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

M

D, NO, NO,, NO,, CO, T 0.63/0.63 0.55/0.60
D, NO, NO,, NG, CO, T, RH 0.60/0.58 0.59/0.57
Ds NG, NG, AH, T, RH 0.71/0.79 0.71/0.81
D4 NO,, NG, ALK, ACE AH, WS T, RH 0.87/0.92 0.87/0.91
Ds NO, NG, AH, T, RH 0.58/0.61 0.55/0.59
As ACE T,RH, O3_6 0.68/0.79 0.62/0.68

3.3 Discussion on SVR-WT-PLS and KELM-WT-PLS

Table 6 shows the statistics of the final predittresults of each model. It can be seen that tkdigiron
accuracy of the model is improved by using WT basethe original prediction method. Among them, MAEAPE,
RMSE, NRMSE and? of SVR-WT are 10.75 ppb, 0.54, 13.46 ppb, 16.38% @72, respectively. The prediction
accuracy is 16.99%~30.91% higher than that of SMRE, MAPE, RMSE, NRMSE an® of KELM-WT are 8.82
ppb, 0.47, 10.79 ppb, 13.08% and 0.73, which aré0®6, 21.67%, 16.81%, 16.85% and 25.86% better KM,
respectively. The results show that the accuraaypadel prediction can be effectively improved bga®posing the
original G; time series with high variability into several ssbries with lower variability, and then performing
modelling and prediction separately.

Comparing the final prediction results of SVR-WH&VR-WT-PLS, it is found that the MAE, MAPE, RMSE,
NRMSE andR® of SVR-WT—-PLS are 18.60%, 24.07%, 15.97%, 15.98% h39% better than that of SVR-WT
respectively after using PLS to select variablasaddition, KELM-WT—-PLS shows the best predictidiect, with
MAE, MAPE, RMSE, NRMSE ané® are 7.71 ppb, 0.37, 9.75 ppb, 11.83% and 0.78hwhiere 12.59%, 21.28%,
9.64%, 9.56% and 6.85% better than KELM—-WT, respelst The excessive number of input variables walise
information redundancy and slow down the calcuraipeed of the model. The PLS selection methodetam more
important variables related to; @rediction, shorten the running time of the maoaladl greatly improve the accuracy
of the prediction.

Fig. 6 shows the model predictions and observatiom® intuitively. Both the KELM and the SVR haveideal
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348 fit to the G hourly concentration, which can capture the peak\alley values of ©@concentration more accurately.
349  With the addition of optimization methods such a$ &d PLS, the predictions of the high and low galof the two
350 models are closer to the observations to varyirgyess. According to the actual situation gfddservation data, the
351  O; concentration were divided into three classes([low < 40 ppb), medium (40 ppb[O;] < 60 ppb) and high([¢)

352 > 60 ppb) to further evaluate the prediction resoftdhe model, and the results are shown in Tablgvidh the
353 increase of @concentration, the prediction work is more difficand the prediction accuracy of each model for O
354  high—level is lower than that of the mid—level dad—level. However, after optimization by WT and $imethods,
355  the accuracy of the model for; ©@oncentration prediction in three classes is graauproved. For high—level Othat

356  people are concerned about, the MAE, MAPE, RMSE MR#ISE of SVR-WT-PLS are decreased by about 35%
357  compared with SVR, and the prediction accuracy BEKI-WT—PLS is also increased by about 21%, indizathat

358 the prediction abilities of the two methods forlhimzone concentration are improved.

------- Observed concentration ; —— SVR-WT —<—KELM-WT

) )
A

A
30t

------- Observed concentration ; —>— SVR-WT-PLS —+—KELM-WT-PLS
.

o
4
I

O, concentration (ppb)

Time (hr)

359

360 Fig. 6. Predictions of the SVR-WT, KELM-WT, SVR-WHLS and KELM-WT-PLS.

361

362 Table 6. Performance measures of six models a&rdift ozone concentration levels.

Estimator Classification Intervals (ppb)
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363

364

365

366

367

368

369

370

371

372

373

374

375

376

all test

[Os] <40 43 [O4] <60 [O5] >60 database
MAE (ppb) 9.61/9.32 18.02/10.23  21.78/17.27 12.050Q
MAPE 0.62/0.80 0.37/0.21 0.32/0.25 0.53/0.60
SVR/KELM RMSE (ppb) 11.97/11.62  21.68/12.13  26.43/19.53 2AGB97
NRMSE (%) 31.74/30.81 108.67/60.81 108.26/80.01 4@0Q5.73
R 0.39/0.34 0.15/0.19 0.01/0.00 0.55/0.58
MAE (ppb) 9.14/7.72 11.31/8.87 18.28/14.53  10.718.
MAPE 0.70/0.61 0.23/0.18 0.27/0.21 0.54/0.47
SVR-WT/KELM-WT RMSE (ppb) 11.43/9.29 13.75/10.48  20.87/16.94 133189
NRMSE (%) 30.32/24.64 68.92/52.53 85.51/69.38  16.33/13.08
R 0.54/0.51 0.20/0.23 0.00/0.03 0.72/0.73
MAE (ppb) 7.20/6.37 10.39/8.55 14.12/13.37  8.797.7
SVROWT—PLS/KEL M- MAPE 0.52/0.47 0.21/0.18 0.21/0.20 0.41/0.37
WT—PLS RMSE (ppb) 9.33/8.04 12.54/10.05 17.12/15.70 193%
NRMSE (%) 24.74/21.32 62.87/50.39  70.15/64.31  13.72/11.83
R 0.58/0.62 0.20/0.24 0.01/0.03 0.73/0.78
Number of samples 350 115 66 531

Whether WT and PLS are used or not, the KELM ex&ibuperior performance over the SVR in the pratict

process. Compared with SVR-WT-PLS, the MAE, MAPB/SE and NRMSE of KELM-WT-PLS are 11.89%,

9.76%, 13.79%, 13.78% lower respectively, &iis 6.85% higher. KELM-WT—PLS shows certain advgesain the

prediction of Q hourly concentration.

4. Conclusions

Based on the KELM and SVR methods, the summer ZW\arbne concentration is predicted and improved by

WT and PLS methods. The KELM and SVR methods wetecgd as the optimization objects because of the

relatively higher prediction accuracy when compandith the result of linear regression and the BPiN&thod. The

WT method was used to decompose the high varihitite series into several sub-series with loweraality, and

then prediction strategy was applied to each subssef different scales. Meanwhile the predictamturacy of SVR

and KELM is improved by 16.99%~30.91% and 16.00%8@%, respectively. In addition, the application\dP

value based on PLS method for variable selectiap kaore important information for prediction andién the
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model running timeTemperature and relative humidity are input paransetor prediction at most levels. The main
influencing factors of the low-level detail seriase precursors, while the approximation seriesfisced by
meteorological conditions and the accumulatgdTe WT and PLS methods improve the predictivégperance of
both KELM and SVR significantly. In particular, therediction accuracy of high ozone concentrationctvhs the
focus of air pollution forecasting increase by 2af6l 35% respectively. Overall, the KELM has thedygtrediction
ability than SVR. The MAE, MAPE, RMSE, NRMSE aRfAof KELM-WT-PLS method are 7.71 ppb, 0.37, 9.75 ppb

11.83% and 0.78, respectively, implying the advgetaf predicting the summer; @ourly concentration in Nanjing.
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Figures

Fig. 1. Location of the observation site and the@wnding environment.

Fig. 2. Wind speed and wind direction during theasliation period from 2014 to 2016.

Fig. 3. Schematic diagram oflevel wavelet decomposition.

Fig. 4. The wavelet decomposition of the origitiale series of O; concentrations: B-Ds denote the wavelet
coefficients at different levels and # the approximated signal 8bn the fifth level.

Fig. 5. Comparison of prediction effect of the S\KELM, BPNN and SR.

Fig. 6. Predictions of the SVR-WT, KELM-WT, SVR-WHLS and KELM-WT-PLS.
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Table 6. Performance measures of six models ardift ozone concentration levels.

Supplement

Fig. S1. Distribution characteristics of pollutadtga.

29



Table 1. Correlation analysis of all data usedradjztion of Q.

0Os NO NO, NOy CcO ALK OLE ACE AH WS T RH WD P
0Os 1 -050 -0.36 -045 -0.31 -0.38 -041 -0.20 -044 035 058 -0.74  0.07 -0.12
NO -050 1 0.52 0.67 0.32 0.37 0.47 0.16 0.330.06 -0.26 0.32 -0.15 0.09
NO, -0.36 0.52 1 0.97 0.51 0.62 0.49 0.52 0.580.20 -0.23 0.12 -0.32 0.16
NOy -0.45 0.67 0.97 1 0.53 0.63 0.53 0.50 0.590.20 -0.27 0.21 -0.31 0.15
CcO -0.31 0.32 0.51 0.53 1 0.53 0.38 0.32 0.540.10 - 0.26 -0.35 0.05
ALK -0.38 0.37 0.62 0.63 0.53 1 0.65 0.56 0.77-0.28 -0.19 0.29 -0.40 0.05
OLE -0.41 047 0.49 0.53 0.38 0.65 1 0.25 0.51-:0.24 -0.15 0.33 -0.27  0.07
ACE -0.20 0.16 0.52 0.50 0.32 0.56 0.25 1 0.560.28 -0.15 0.17 -0.10 -
AH -0.44 0.33 0.58 0.59 0.54 0.77 0.51 0.56 1 -0.24 -022 0.36 -0.39  0.07
WS 0.35 -0.06 -0.20 -0.20 -0.10 -0.28 -0.24 280. -0.24 1 0.21 -0.51 -0.15 0.0
T 0.58 -0.26 -0.23 -0.27 - -0.19 -0.15 -0.150.22 0.21 1 -0.45 - -0.4°
RH -0.74 0.32 0.12 0.21 0.26 0.29 0.33 0.17 360. -051 -045 1 - -
WD 0.07 -0.15 -0.32 -0.31 -0.35 -0.40 -0.27 100. -0.39 -0.15 - - 1 -
P -0.12  0.09 0.16 0.15 0.05 0.05 0.07 - 0.070.05 -047 - - 1
Table 2. Statistics of measured values. Unit, mimmmaximum, mean, and standard
deviation values during observation period.
Variable Unit Min Max Mean Rstd (%)
O3 ppb 0.50 116.20 32.94 74.86
NO ppb 0.25 102.87 5.16 146.90
NO, ppb 0.25 81.00 20.11 57.28
NO ppb 1.60 129.45 25.27 64.62
(6{0) ppb 20.00 4288.46 807.05 68.46
Alkane ppb 2.76 73.98 16.45 61.28
Olefin ppb 0.14 97.07 7.18 94.01
Acetylene ppb 0.02 17.59 3.52 61.08
Aromatic hydrocarbon ppb 0.80 71.85 8.39 79.14
Wind speed ms 0.00 6.40 1.82 50.55
Wind direction ° 0.00 359.00 165.91 52.08
Temperature °C 9.80 40.30 25.96 16.87
Relative humidity % 13.00 100.00 64.39 29.77
Atmospheric pressure hPa 995.70 1021.40 1004.70 0.37
Table 3. Value of Smooth from level 1 to level 7.
Level 1 2 3 5 6 7



Smooth  0.6481  0.4104  0.2501

0.0209

0.0021

04.00 0.0001

Table 4. Comparison of five evaluation indexes agn8R, BPNN, SVR and KELM.

MAE (ppb) MAPE  RMSE (ppb) NRMSE (%) R
SR 15.58 0.89 18.61 2257 0.54
BPNN 12.98 0.51 16.90 20.50 0.53
SVR 12.95 0.53 16.82 20.40 0.55
KELM 10.50 0.60 12.97 15.73 0.58

Table 5. Input data used in prediction of sixd0ales respectively and effect of using PLS to

select variables.

WT+PLS WT. +al
variables

Scales R R

Input variable SVR/KEL SVR/KELM

M

D, NO, NO,, NO,, CO, T 0.63/0.63 0.55/0.60
D, NO, NO,, NO,, CO, T, RH 0.60/0.58 0.59/0.57
D3 NO,, NO,, AH, T, RH 0.71/0.79 0.71/0.81
D, NO,, NO,, ALK, ACE, AH, WS, T, RH 0.87/0.92 0.87/0.91
Ds NO, NO,, AH, T, RH 0.58/0.61 0.55/0.59
As ACE, T,RH, O; 6 0.68/0.79 0.62/0.68

Table 6. Performance measures of six models a&rdift ozone concentration levels.

Classification Intervals (ppb)

Estimator [04] <40 40:[0] <60 [0 >60 all test
- - database
MAE (ppb) 9.61/9.32 18.02/10.23  21.78/17.27 12.0%Q
MAPE 0.62/0.80 0.37/0.21 0.32/0.25 0.53/0.60
SVR/KELM RMSE (ppb) 11.97/11.62 21.68/12.13  26.43/19.53 2/6R97
NRMSE (%) 31.74/30.81 108.67/60.81 108.26/80.01 4@05.73
R 0.39/0.34 0.15/0.19 0.01/0.00 0.55/0.58
MAE (ppb) 9.14/7.72 11.31/8.87 18.28/14.53  10.7#8.
SVRAWT/KELM—WT MAPE 0.70/0.61 0.23/0.18 0.27/0.21 0.54/0.47
RMSE (ppb) 11.43/9.29 13.75/10.48  20.87/16.94 13089
NRMSE (%) 30.32/24.64 68.92/52.53 85.51/69.38  16.33/13.08



SVR-WT-PLS/KELM-
WT-PLS

Number of samples

R 0.54/0.51 0.20/0.23 0.00/0.03 0.72/0.73

MAE (ppb) 7.20/6.37 10.39/8.55  14.12/13.37 8.7%7.7

MAPE 0.52/0.47 0.21/0.18 0.21/0.20 0.41/0.37

RMSE (ppb)  9.33/8.04 12.54/10.05 17.12/15.70 19.3%

NRMSE (%) 24.74/21.32  62.87/50.39  70.15/64.31  13.72/11.83

R 0.58/0.62 0.20/0.24 0.01/0.03 0.73/0.78
350 115 66 531
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