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Highlights 

� SVR, KELM, BPNN and SR are applied to the hourly O3 concentration 
prediction. 

� Meteorological elements, precursors and O3 concentrations 6 hours ago are used 
as model inputs. 

� Improving models using WT and PLS methods. 
� The KELM-WT-PLS model has better prediction effect with R2 up to 0.78. 
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 10 

ABSTRACT 11 

In this paper, we develop a method for predicting ozone(O3) concentration based on kernel extreme learning 12 

machine (KELM) and support vector machine regression (SVR) and pretreat it by wavelet transformation (WT) and 13 

partial least squares (PLS). To test the method’s effectiveness, the observation (2014 – 2016 summer) of the precursors, 14 

meteorology and hourly O3 concentrations in the Nanjing industrial zone were applied. The mean absolute error 15 

(MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE), normalized root mean square 16 

error (NRMSE) and coefficient of determination(R2) were chosen to evaluate the model. Results demonstrate that the 17 

KELM and SVR perform better than stepwise regression (SR) methods and back propagation neural network (BPNN) 18 

for predicting O3 concentration. WT decomposes the original time series of O3 concentration into a few sub–series 19 

with less variability, and then improve the performance of SVR and KELM by 16.99%~30.91% and 16.00%~25.86%, 20 

respectively. The variable importance in projection (VIP) value was used to filter the influence factors of each sub–21 

sequence, which can remove redundant information and reduce the calculation amount of the model. In addition, the 22 

WT and PLS methods enhance the predictive abilities of KELM and SVR for higher O3 concentrations by 21% and 35% 23 



2 
 

respectively. The KELM-WT-PLS model shows the best fit of the O3 hourly concentration, and the corresponding 24 

MAE, MAPE, RMSE, NRMSE and R2 are 7.71 ppb, 0.37, 9.75 ppb, 11.83% and 0.78, while KELM predict the O3 25 

hourly concentration more accurately. 26 

keywords: ozone concentration forecast; kernel extreme learning machine; support vector machine; wavelet 27 

transformation; partial least squares; variable importance in projection 28 

 29 

1. Introduction 30 

With the development of industry and Commerce and the increase of cars ownership, the anthropogenic 31 

emissions of nitrogen oxides (NOx) (Duncan et al., 2016; Krotkov et al., 2016) and volatile organic compounds (VOCs) 32 

(Lu et al., 2013; Smedt et al., 2015) in the near–surface atmosphere are increasing. The complex air pollution 33 

problems such as photochemical smog (Hamer et al., 2015) are seriously affecting human health (Goodman et al., 34 

2015; Karlsson et al., 2017) and ecological environment (Feng et al., 2015; Wang et al., 2012). Studying the 35 

forecasting method of air pollutants and establishing a timely early warning mechanism of air pollutants are of great 36 

application value for improving the air quality of cities and formulating control strategies. 37 

Air pollution prediction methods can be generally divided into numerical and statistical prediction. The numerical 38 

prediction methods realize the simulation of pollutant transformation, migration and diffusion and reflect the changing 39 

law of pollutants, but they are based on a large number of meteorological data, pollutant emission source data and air 40 

monitoring data, need to grasp the mechanisms of pollution change and take a long time to calculate.O3 concentration 41 

forecast involves nonlinear, strong coupling and multivariate problems, thus the numerical prediction will be a very 42 

complicated system engineering. Statistical forecasting methods such as regression model (An and Wang, 2010; Zhai 43 

et al., 2018) are widely used in operational forecasting which have the advantages of simple calculation, low data 44 

requirement and high accuracy. However, most of them are based on linear regression theory, assuming that the 45 

pollutant concentrations are not directly related to the source of pollution, it is difficult to apply them to non–linear 46 
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and strong coupling systems. In recent years, with the development of computer technology, artificial intelligence and 47 

machine learning theory have been widely studied and applied. Machine learning methods that based on statistical 48 

theory such as neural network (Gao et al., 2018; Mao et al., 2017), decision tree (Ding et al., 2018), SVR and ELM 49 

have shown excellent performances in dealing with non–linear problems. 50 

SVR follows the principle of structural risk minimization. Unlike traditional machine learning methods which 51 

follow the principle of empirical risk minimization, the SVR avoids the problems of over–fitting, local optimization, 52 

difficulty in parameter adjustment and slow convergence (Lu and Wang, 2005; Nieto et al., 2013), and requires fewer 53 

parameters to be adjusted. In recent years, SVR was not only used to predict solar radiation (Quej et al., 2017), cloud 54 

cover (Zhao et al., 2016) and visibility (Wu et al., 2017), but also widely used to predict air pollutant concentrations 55 

such as O3 (Lee et al., 2018; Luna et al., 2014; Mehdipour and Memarianfard, 2019; Ortiz-García et al., 2010; 56 

Salazar-Ruiz et al., 2008; Xu et al., 2016). Some researchers compared the SVR with commonly used statistical 57 

forecasting models such as multilayer perception (MLP) (Nieto et al., 2017), linear regression model (Canu and 58 

Rakotomamonjy, 2001), vector auto regressive model (VARMA) and auto–regressive integral moving average model 59 

(ARIMA) (Nieto et al., 2018), found that the SVR has better prediction effect on pollutants. Compared with many 60 

statistical forecasting methods, the SVR showed more feasibility and superiority. 61 

In order to overcome the limitations of the artificial neural network based model, the extreme learning machine 62 

(ELM) was proposed, which is a new single hidden layer feed–forward neural network training method (Huang and 63 

Chen, 2007; Huang et al., 2011). After randomly determining the input hidden weights and hidden biases, the hidden 64 

output weights can be directly obtained by calculating the Moore–Penrose generalized inverse of the hidden output 65 

matrix. Compared to gradient–based methods, the ELM has better generalization capabilities and faster learning rates, 66 

and it has been initially applied in O3 prediction and performed well (Feng et al., 2019; Peng et al., 2017; Zhang and 67 

Fu, 2017). However, the main drawback of ELM and its variants is that they rely on the choice of neurons in the 68 

hidden layer and the correct activation function, and the established prediction system is unstable. To solve this 69 
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problem, Huang et al. (2012) proposed the KELM by comparing the modelling and solving processes between ELM 70 

and vector machines. Compared with ELM, the KELM is more robust and performs better in solving regression 71 

prediction problems. In recent years, KELM has been widely used in engineering technology (Lin et al., 2018; Shi et 72 

al., 2019), however, its validation in air pollutants prediction has not been tested. 73 

WT is a useful tool for obtaining time and frequency information from sequences (Chen and Zhao, 2013), and 74 

has been widely used in information science. In recent years, WT theory has also shown strong vitality in the 75 

atmospheric field (Li and Tao, 2018; Liu et al., 2018). O3 has complex non–linear response relationship with 76 

precursors and meteorological conditions (Borrego et al., 2003; Liu et al., 2017a), whose time series have non–77 

stationary and high variability characteristics, and it is difficult to accurately predict. Using WT theory to transform 78 

high–variability time series into multiple low variability sub–sequences has obvious advantages. For most models, the 79 

WT method was an effective way to improve the prediction accuracy (Dunea et al., 2015; Farajzadeh and Alizadeh, 80 

2017). On the other hand, the ozone concentrations are affected by multiple factors such as meteorological conditions 81 

and precursors, it is not advisable to take all variables into account because of the interaction of factors. PLS is a 82 

supervised feature extraction method, which can extract the most comprehensive explanatory variables through the 83 

principal component analysis (PCA) and the synthesis of variable extraction, and effectively improved the explanatory 84 

and accuracy of the prediction models (Li and Tao, 2018; Yeganeh et al., 2012).  85 

The work presented in this study aims to examine the feasibility of applying SVR and KELM models to predict 86 

O3 hourly concentrations based on the measured database in Nanjing, try to optimize these two models with WT and 87 

PLS methods and compare their performances. These hybrid models provide novel alternative and optimized idea for 88 

air pollutants concentration forecasting. 89 

 90 

2. Data and Method 91 

2.1 Sampling site and modelling dataset 92 
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The modelling data including hourly O3, NO, NO2, CO and VOCs concentrations (1–h mean value) were 93 

collected at the observation site of Qixiang Building (32.21°N, 118.72°E) located on the Nanjing University of 94 

Information Science and Technology, China (Fig. 1). The data's observation period during 1/5/2014 to 25/8/2014, 95 

1/6/2015 to 30/8/2015 and 1/5/2016 to 27/8/2016 were mostly in the summer with high O3 concentrations. 96 

 97 

Fig. 1. Location of the observation site and the surrounding environment. 98 

 99 

O3, NO, NO2, and CO concentrations were continuously measured using calibrated instruments from Thermo 100 

Environmental Instruments (TEI Inc., USA). The instruments’ detailed parameters and calibration methods can be 101 

found in reference (An et al., 2015). VOCs concentrations were online monitored using the GC5000 analysis system 102 

from AMA Instruments GmbH (AMA, Germany), and they were classified into four classes in the study: alkane (ALK), 103 

olefin (OLE), acetylene (ACE) and aromatic hydrocarbon (AH), the specific species classified and detailed analytical 104 

method can be found in reference (An et al., 2014). In this paper, values were expressed by volume mixing ratios 105 

(ppb). The intuitive statistical information of pollutants data is shown in Figure S1. 106 

The meteorological hourly data (1–h mean value) were collected by the automatic weather station on the campus 107 

which is approximately 800 m from the observation site, including temperature (T), atmospheric pressure (P), relative 108 
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humidity (RH), wind speed (WS), and wind direction (WD). 109 

Table 1 shows the correlation analysis results of various variables. The correlation between O3 and relative 110 

humidity (-0.74) is the best, followed by temperature (0.58). Among several O3 precursors, NO, NOx, olefin and 111 

aromatic hydrocarbon are relatively more important. In this paper, the single–site ozone prediction dominated by local 112 

photochemical reactions is mainly considered, thus days with rainfall more than 0 mm were removed. Further, figure 2 113 

shows that the wind speed during observation period is mostly lower than 5 m/s, and it can be considered that there is 114 

no strong horizontal transport of pollutants, and the data used for modelling can represent the local photochemical 115 

reaction. A detailed statistical summary of modelling data including minimum, maximum, mean and standard 116 

deviation is shown in Table 2.  117 

 118 

Table 1. Correlation analysis of all data used in prediction of O3. 119 

 O3 NO NO2 NOx CO ALK OLE ACE AH WS T RH WD P 

O3 1  -0.50  -0.36  -0.45  -0.31  -0.38  -0.41  -0.20  -0.44  0.35  0.58  -0.74  0.07  -0.12  

NO -0.50  1  0.52  0.67  0.32  0.37  0.47  0.16  0.33  -0.06  -0.26  0.32  -0.15  0.09  

NO2 -0.36  0.52  1  0.97  0.51  0.62  0.49  0.52  0.58  -0.20  -0.23  0.12  -0.32  0.16  

NOx -0.45  0.67  0.97  1  0.53  0.63  0.53  0.50  0.59  -0.20  -0.27  0.21  -0.31  0.15  

CO -0.31  0.32  0.51  0.53  1  0.53  0.38  0.32  0.54  -0.10  – 0.26  -0.35  0.05  

ALK -0.38  0.37  0.62  0.63  0.53  1  0.65  0.56  0.77  -0.28  -0.19  0.29  -0.40  0.05  

OLE -0.41  0.47  0.49  0.53  0.38  0.65  1  0.25  0.51  -0.24  -0.15  0.33  -0.27  0.07  

ACE -0.20  0.16  0.52  0.50  0.32  0.56  0.25  1  0.56  -0.28  -0.15  0.17  -0.10  – 

AH -0.44  0.33  0.58  0.59  0.54  0.77  0.51  0.56  1  -0.24  -0.22  0.36  -0.39  0.07  

WS 0.35  -0.06  -0.20  -0.20  -0.10  -0.28  -0.24  -0.28  -0.24  1  0.21  -0.51  -0.15  0.05  

T 0.58  -0.26  -0.23  -0.27  – -0.19  -0.15  -0.15  -0.22  0.21  1  -0.45  – -0.47  

RH -0.74  0.32  0.12  0.21  0.26  0.29  0.33  0.17  0.36  -0.51  -0.45  1  – – 

WD 0.07  -0.15  -0.32  -0.31  -0.35  -0.40  -0.27  -0.10  -0.39  -0.15  – – 1  – 

P -0.12  0.09  0.16  0.15  0.05  0.05  0.07  – 0.07  0.05  -0.47  – – 1  
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 120 
Fig. 2. Wind speed and wind direction during the observation period from 2014 to 2016. 121 

 122 

Table 2. Statistics of measured values. Unit, minimum, maximum, mean, and standard deviation values during 123 

observation period. 124 

Variable Unit Min Max Mean Rstd (%) 

O3 ppb 0.50  116.20  32.94  74.86  

NO ppb 0.25  102.87  5.16  146.90 

NO2 ppb 0.25  81.00  20.11  57.28 

NOx ppb 1.60  129.45  25.27  64.62  

CO ppb 20.00  4288.46  807.05  68.46  

Alkane ppb 2.76  73.98  16.45  61.28  

Olefin ppb 0.14  97.07  7.18  94.01  

Acetylene ppb 0.02  17.59  3.52  61.08  

Aromatic hydrocarbon ppb 0.80  71.85  8.39  79.14  

Wind speed m·s-1 0.00  6.40  1.82  50.55  

Wind direction ° 0.00  359.00  165.91  52.08  

Temperature °C 9.80  40.30  25.96  16.87  

Relative humidity % 13.00  100.00  64.39  29.77  

Atmospheric pressure hPa 995.70  1021.40  1004.70  0.37  

 125 

2.2 Wavelet transformation 126 

Wavelet transformation (WT) is an effective time–frequency analysis method for the signal process, and it 127 

decomposes a signal directly according to the frequency. The WT can be divided into continuous wavelet 128 
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transformation (CWT) and discrete wavelet transformation (DWT). Among them, the DWT proposed by Mallat (1989) 129 

requires less time and is easy to implement, and has been widely used. For n–level decomposition and reconstruction, 130 

the original signal s can be expressed as: 131 

� = �� + ∑ ����	
                                     (1) 132 

where	��	 is the approximation series representing the low–frequency component, which contains trend 133 

information;	�� 	is the detail series on j level representing the high–frequency component, which contains periodic 134 

information. Essentially, this is a process in which the low frequency sequence is decomposed into low frequency 135 

subsequences and relatively high frequency subsequences with the increase of n (Fig. 3). The details and calculation 136 

procedures of the WT algorithm can be found in reference (Liu et al., 2017b). 137 

 138 

Fig. 3. Schematic diagram of n-level wavelet decomposition. 139 

 140 

Fig. 4 shows the results of the 5–level wavelet decomposition of the original time series of O3 concentrations by 141 

applying Daubechies Db5 wavelets implemented in the wavelet toolbox of MATLAB R2014b. Db5 is chosen as the 142 

wavelet function because it provides smaller variability of time series at the particular levels and its demonstrated 143 

good performance in related studies (He et al., 2017; Siwek and Osowski, 2012; Xiao et al., 2015). The optimal value 144 

of n was determined by the smoothness measure which can be written as: 145 

Smooth(�) = ∑ (��(��
)���(�))�������∑ (�(��
)��(�))�������                          (2) 146 

where N represents the length of the series; j represents decomposition levels; s is the original series, and	��	is the 147 

approximation series on j level. Once Smooth(j) ≤ 0.005, j can be selected as the optimal decomposition level. 148 

............    

s 

d(n-1) 
d2 

a(n-1) 
a2 dn 

a1 

an 

d1 
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Calculate the Smooth value of j from 1 to 7, as shown in Table 3, Smooth (5) =0.003, so 5–level wavelet 149 

decomposition is used in this paper. 150 

 151 

Fig. 4. The wavelet decomposition of the original time series s of O3 concentrations: D1~D5 denote the wavelet 152 

coefficients at different levels and A5 is the approximated signal of s on the fifth level. 153 

 154 

Table 3. Value of Smooth from level 1 to level 7. 155 

Level 1 2 3 4 5 6 7 

Smooth 0.6481  0.4104  0.2501  0.0209  0.0021  0.0004  0.0001  

 156 

2.3 Support vector machine regression  157 

Support vector machine (SVM) developed by Vapnik is supervised machine learning algorithm that is widely 158 

employed for regression and forecasting. As compared to the ANN model that normally uses empirical risk 159 

minimization, the SVR uses the structural risk minimization principle which provides an upper bound on the 160 

generalization error (Vapnik, 2000). The approximated regression functions in the SVR algorithm is generated by 161 
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applying a set of high–dimension linear functions as follows: 162 

 = !"(#) + $                                     (3) 163 

where φ(x) is the higher–dimensional feature space; x is the input space; y is the output; w is the weights vector and b 164 

is a parameter of bias, that both can be estimated by minimizing the following regularized risk function: 165 

% = ‖'‖�
( + ) ∑ *+,�	
 (#�,  � , .)                             (4) 166 

where 167 

*+(#�,  � , .) = /| � − .(#�)| − 2, | � − .(#�)| ≥ 20, otherwise                    (5) 168 

Here, the	‖'‖�
( 	regularization term is used as a measurement of function flatness; C is the cost parameter that 169 

determines the trade–off between the model flatness and the training error; ε is the tube size; The	*+(#�,  � , .)	is ε–170 

insensitive loss function, which penalizes the error greater than ε. Eq. (4) is expressed in the following constrained 171 

formation by introducing slack variables	:�,:�∗: 172 

min=‖'‖�
( + ) ∑ (:� + :�∗),�	
 >																									             (6) 173 

subject to 174 

 � − ?(! × #�) + $A ≤ 2 + :�																						              (7) 175 

?(! × #�) + $A −  � ≤ 2 + :�∗																								             (8) 176 

:�∗, :� ≥ 0																																                (9) 177 

The method of using the Lagrangian multiplier α can be used to solve this quadratic programming problem. 178 

Thus,	.(#)	can be finally expressed in an explicit form: 179 

.(#) = ∑ (C� − C�∗)D(#�, #) + $,�	
                         (10) 180 

where	C�C�∗ = 0, C�,	C�∗ ≥ 0.	D(#� , #)	is the kernel function and obtained by	D(#� , #) = "(#�)E"(#)	in the feature 181 

space. The common radial basis function	D(#� , #) = exp(−H‖#� − #‖()	where g is the spread of the RBF kernel is 182 

used in this study. The details and calculation procedures of the SVR algorithm can be found in Vapnik (2000). 183 

The SVR algorithm in this study is applied using the LIBSVM3.22 software package 184 
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(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) on the MATLAB platform, the cost parameter C and the parameter g in the 185 

kernel function are optimized by systematic grid search method using 5–fold cross validation on the training set. 186 

 187 

2.4 Kernel extreme learning machine  188 

The extreme learning machine (ELM) is a simple learning algorithm for single–hidden layer feed–forward 189 

network (SLFN), randomly assigning the input weights and hidden layer biases (Huang et al., 2006), and has the 190 

advantages of simple implementation, fast learning speed, less intervention conditions and strong generalization 191 

ability (Huang et al., 2012). For any given set of N training samples	{(J�, K�), J� ∈ MN, K� ∈ M�, � = 1,2,… ,R}, the 192 

output of a conventional SLFN with L hidden nodes, can be expressed as below: 193 

T� = ∑ U�H?V�J� + $�A,				� = 1,2, … ,RW�	
                     (11) 194 

where	J� = [#�
, #�(, … , #�N]Z	is the input vector with m nodes;	T� = [[�
, [�(, … , [��]Z	is the output vector with n 195 

nodes;	V� = [!�
, !�(, … , !�N]Z	is the weight vector between the input nodes and the i–th hidden node;	U� =196 

[\�
, \�(, … , \��]Z	is the weight vector between the output nodes and the i–th hidden node;	$�	represents the bias of the 197 

i–th hidden node and	H(∙)	is the nonlinear activation function of the hidden layer.  198 

The above expression can be written as: 199 

^ = _`                                    (12) 200 

where	^	is the respected output of the SLFN;	_	is the output matrix of the hidden layer of the SLFN, which can be 201 

expressed as: 202 

 _ = aℎ(#
)⋮ℎ(#,)d = aH(!
#
 + $
) ⋯ H(!W#
 + $W)⋮ ⋯ ⋮H(!
#, + $
) ⋯ H(!W#, + $W d,×W
             (13) 203 

The optimization objective of ELM is to find appropriate parameters making	∑ fT� − K�f = 0,�	
 	hold, when 204 

existing	V�,	U� 	and	$�	make Eq. (14) set up: 205 

K� = ∑ U�H?V�J� + $�A,				� = 1,2, … ,RW�	
                    (14) 206 

The minimal norm least square solution of weight vector β is shown as below:  207 
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` = _g^                                    (15) 208 

where	_g	is the Moore–Penrose generalized inverse of matrix	_. Based on orthogonal projection method and ridge 209 

regression theory (Hoerl and Kennard, 1970), the regularization coefficient C was adopted in the optimization phase, 210 

then the solution of output weight	`	becomes: 211 

` = =_Z_+ h
i>�
_Z^                               (16) 212 

where	h	denotes the identity matrix. Hence, the output function of ELM can be written as follows: 213 

.(#) = ℎ(#)` = ℎ(#) =_Z_+ h
i>�
_Z^                     (17) 214 

In order to overcome the randomness of ELM, and improve its stability and generalization capability, kernel 215 

functions can be used for the optimized ELM, namely the kernel extreme learning machine (KELM) (Huang et al., 216 

2012; Yao et al., 2014).In the KELM, the activation function h(x) is replaced by kernel matrix	D(#, #�), which can be 217 

shown as: 218 

Ω = __Z: Ωlmn�,� = ℎ(#�)ℎ?#�A = D(#�, #�)                    (18) 219 

The output function of the KELM can be expressed as 220 

.(#) = aD(#, #
)⋮D(#, #,)d =Ωlmn + h
i>�
 ^                        (19) 221 

Thus, only the type of the kernel function needs to be defined instead of the hidden layer’s node number and 222 

activation function. The details and calculation procedures of the ELM algorithm can be found in Huang et al.(2006). 223 

In this study, the radial basis function	is used as a kernel function similar to SVR. 224 

 225 

2.5 Back Propagation neural network  226 

Back Propagation neural network (BPNN) is one of the commonly used neural networks with strong nonlinear 227 

regression capability (Bai et al., 2016; Feng et al., 2011). The architecture of this network is consisted of input layer, 228 

one or more hidden layers and output layers. Each layer consists of multiple neurons. In this paper, a single hidden 229 

layer was selected. The tansig and purelin function are used as the transfer functions for the hidden layer and the 230 
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output layer, respectively. When modelling with BPNN, the number of hidden nodes is directly related to training 231 

efficiency. Normally, the trial and error method and empirical formula are applied to solve this problem (Shen et al., 232 

2008), which can be expressed as: 233 

hidden	nodes = pq + r + �                           (20) 234 

where m is the number of input layer nodes; p is the number of output layer nodes; a represents a constant between 0 235 

and 10. Through experiments, mean squared error between the networks outputs and the actual observations is 236 

minimal, when the number of hidden layer nodes is set to 6. Therefore, the structure of the BPNN is determined to be 237 

14–6–1 in this study. 238 

 239 

2.6 Variable importance in projection technique based on PLS 240 

Partial Least Squares (Wold, 1966) is one of the features of extraction method, which constructs a linear model to 241 

describe the connection between dependent variables Y and predictor variables X. This linear model attempts to find 242 

the multidimensional direction in the X space that explains the maximum multidimensional co–variance direction in 243 

the Y space. The variable importance in projection (VIP) is an assistant technology based on PLS, which can be used 244 

to select important variables. The VIP can measure the explanatory power of each independent variable to dependent 245 

variable, for the j–th independent variable, its VIP formula is as follows: 246 

VIP� = v w∑ x�(y,z{)|{�� ∑ }(( , ~�)!��(N�	
                        (21) 247 

where xj is the independent variables; y is the dependent variables; k is the number of independent variables; ch is the 248 

principal components extracted from the relevant variables; r(y,ch) is the correlation coefficient between dependent 249 

variables and principal components, indicating the explanatory ability of the principal components to y; whj is the 250 

weight of the independent variables on the principal components. 251 

The explanatory effect of xj on y is transmitted through the principal component ch. If the explanatory effect of ch 252 

on y is very strong, and the interpretation of xj on ch is also very large, then it can be considered that xj has a greater 253 
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explanatory effect on y. 254 

 255 

2.7 Performance evaluation 256 

The models’ performance on learning and testing are assessed using the following five indexes: mean absolute 257 

error (MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE), normalized root mean 258 

square error (NRMSE) and coefficient of determination (R2). These parameters can be defined as below: 259 

MAE = 

�∑ |�� − ��|��	
                               (22)                         260 

MAPE = 

�∑ |�����|����	
                                 (23) 261 

RMSE = v

�� (�� − ��)(��	
                            (24) 262 

NRMSE = ����
�|����|�� ∙ 100%                           (25) 263 

%( = 1 − ∑ （�����）�����
∑ （�����）�����

                             (26) 264 

where	�� 	is the observed value at time i;	�N��,	�N��	and	�N	are the maximum, minimum and average values of the 265 

observed value, respectively;	��	is the predicted value at time i and n is the total number of samples. 266 

 267 

3. Results and discussion 268 

In this study, experiments were carried out in MATLAB 2014 environment running in an Intel i5, 1.6 GHZ CPU. 269 

Data for 2014 and 2015 were used for training and validation, accounting for about 80% of the total dataset, and the 270 

data for 2016 were used for testing. Before modelling, all variables were normalized to [0,1] by Equation (1): 271 

 = ���|���|����|��                                  (27) 272 

where # is the original variable;	#N��is minimum value of the variable;	#N��is maximum value of the variable and 273 

  is the variable transformed by normalization. 274 

The previous ozone concentration characterizes the cumulative effect of pollutants, which could effectively 275 

improve the prediction accuracy when forecasting ozone concentration (Chelani, 2010). Taking into account the 276 
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timeliness of the forecast and the diurnal variation of ozone, the ozone concentration 6–h ago (O3_6) was also taken 277 

as a variable in this study. 278 

3.1 Comparing the prediction performance of SVR, KELM, BPNN and SR 279 

The stepwise regression, as a traditional statistical method, is still widely used in business forecasting. By 280 

inputting all variables into the stepwise regression model (F probability ≤0.05 to enter and F probability ≥ 0.10 to exit), 281 

the ozone hourly concentration prediction equation could be constructed as follows: 282 

�� = −315.693 − 0.245R�( − 0.197R�� − 0.002)� + 0.249�*D − 0.730�*� + 1.634�)� 

−0.209�� + 2.612� + 0.334� − 0.681%� − 1.722¡¢ − 0.011¡£ + 0.040��_6          (28) 283 

Fig. 5 shows the prediction effect of inputting all variables into the KELM, SVR, BPNN and SR separately, the 284 

scatter plots are used to describe the relation between the observed and predicted value, which illustrate that the higher 285 

the consistency between the two data sets, the more points tend to concentrate near the identity line marked as ‘ideal 286 

fit’ in the figure. As can be seen from Table 4, the KELM has the best performance among the four models, with its 287 

MAE, MAPE, RMSE, NRMSE and R2 are 10.50 ppb, 0.60, 12.97 ppb, 15.73%, 0.58 respectively. The five indicator 288 

values of SVR and BPNN, which represent prediction accuracy, are similar in the study, and the former has a slight 289 

advantage. The SR method has the lowest performance and its MAE, MAPE, RMSE and NRMSE are about 16%, 290 

40%, 9%, 9% worse than SVR or BPNN, respectively. The results indicate the relationships between ozone 291 

concentration, precursors and meteorological conditions are nonlinear, which are difficult to be accurately reflected 292 

with traditional linear statistical models. Moreover, for the three machine learning methods, the modelling time of 293 

KELM including cross validation was 22.35 s, which was about 1.5 times faster than SVR and 3 times faster than 294 

BPNN, KELM performs better in terms of the learning speed. In this study, KELM and SVR with better prediction 295 

effect were selected for further optimization and comparison. 296 
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 297 

Fig. 5. Comparison of prediction effect of the SVR, KELM, BPNN and SR. 298 

 299 

Table 4. Comparison of five evaluation indexes among SR, BPNN, SVR and KELM. 300 

 MAE (ppb) MAPE RMSE (ppb) NRMSE (%) R2 

SR 15.58 0.89 18.61 22.57 0.54 

BPNN 12.98 0.51 16.90 20.50 0.53 

SVR 12.95 0.53 16.82 20.40 0.55 

KELM 10.50 0.60 12.97 15.73 0.58 

 301 

3.2 The result of WT and PLS methods on prediction 302 

The 14 variables were decomposed into six sub–sequences respectively, including five high frequency sequences 303 

(D1~D5) which describe random characteristics, and one low frequency sequence (A5) which describes trend change. 304 

The sub–sequences of O3 concentration were used as the prediction object, and the sub–sequences of the remaining 13 305 

variables at corresponding levels were used as input factors. Modelling and prediction were carried out at six levels 306 

respectively, and the final prediction results are obtained by adding the prediction results of the O3 sub–sequences of 307 
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the six models. Applying the above method to KELM and SVR, it can be seen from Table 3 that KELM–WT fits 308 

better than SVR–WT at most levels, and its R2 even reaches 0.91 in D4. 309 

The VIP was used in variable screening in this paper. If each variable has the same explanatory effect on 310 

dependent variables, the VIP values of each variable are all 1. For the independent variable with a relatively large VIP 311 

value, its contribution to dependent variables is particularly important. Generally, a variable with the VIP ≥ 0.8 can be 312 

considered to have a large contribution to the dependent variable (Wold, 1995). In this study, simplified calculations 313 

were used at all levels, as long as the VIP of an independent variable for a principal component is greater than 1, it is 314 

retained. The influencing factors of O3 sub–sequences are shown in Table 5. Temperature and relative humidity are 315 

important at most levels. Precursors are the main influencing factor for detailed sub–sequences that characterize the 316 

sudden change of O3. The traffic trunk lines and integrated industrial areas near the observation point were the main 317 

anthropogenic sources of these precursors (Lin et al., 2015). In addition, aromatic hydrocarbons are more important 318 

among the four VOCs. In Nanjing, the contribution of aromatic hydrocarbons to OFP (O3 formation potential) and 319 

RIR (relative incremental reactivity) were very large, and it was one of the two most effective species to control the 320 

concentration of O3 (Yang et al., 2016; Zhang et al., 2018). With the increase of decomposition levels, the main 321 

influencing factors of A5 become T, RH and O3_6, indicating that the trend of O3 concentration changes is dominated 322 

by meteorological conditions and the cumulative effect of pollutants. 323 

As shown in Table 5, after using the PLS method to select variables, the accuracy of most O3 sub–sequences 324 

prediction models including SVR and KELM is improved, and R2 is increased by 1.10%~16.18%, which shows the 325 

effectiveness of the input variables selected using the PLS method. 326 

 327 

Table 5. Input data used in prediction of six O3 scales respectively and effect of using PLS to select variables. 328 

Scales 

WT+PLS  
WT +all 

variables 

Input variable 
R2  R2 

SVR/KEL  SVR/KELM 
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M 

D1 NO, NO2, NOx, CO, T  0.63/0.63  0.55/0.60 

D2 NO, NO2, NOx, CO, T, RH  0.60/0.58  0.59/0.57 

D3 NO2, NOx, AH, T, RH  0.71/0.79  0.71/0.81 

D4 NO2, NOx, ALK, ACE, AH, WS, T, RH 0.87/0.92  0.87/0.91 

D5 NO, NOx, AH, T, RH 0.58/0.61  0.55/0.59 

A5 ACE, T, RH, O3_6 0.68/0.79  0.62/0.68 

 329 

3.3 Discussion on SVR–WT–PLS and KELM–WT–PLS 330 

Table 6 shows the statistics of the final prediction results of each model. It can be seen that the prediction 331 

accuracy of the model is improved by using WT based on the original prediction method. Among them, MAE, MAPE, 332 

RMSE, NRMSE and R2 of SVR–WT are 10.75 ppb, 0.54, 13.46 ppb, 16.33% and 0.72, respectively. The prediction 333 

accuracy is 16.99%~30.91% higher than that of SVR. MAE, MAPE, RMSE, NRMSE and R2 of KELM–WT are 8.82 334 

ppb, 0.47, 10.79 ppb, 13.08% and 0.73, which are 16.00%, 21.67%, 16.81%, 16.85% and 25.86% better than KELM, 335 

respectively. The results show that the accuracy of model prediction can be effectively improved by decomposing the 336 

original O3 time series with high variability into several sub–series with lower variability, and then performing 337 

modelling and prediction separately. 338 

Comparing the final prediction results of SVR–WT and SVR–WT–PLS, it is found that the MAE, MAPE, RMSE, 339 

NRMSE and R2 of SVR–WT–PLS are 18.60%, 24.07%, 15.97%, 15.98% and 1.39% better than that of SVR–WT 340 

respectively after using PLS to select variables. In addition, KELM–WT–PLS shows the best prediction effect, with 341 

MAE, MAPE, RMSE, NRMSE and R2 are 7.71 ppb, 0.37, 9.75 ppb, 11.83% and 0.78, which were 12.59%, 21.28%, 342 

9.64%, 9.56% and 6.85% better than KELM–WT, respectively. The excessive number of input variables will cause 343 

information redundancy and slow down the calculation speed of the model. The PLS selection method can retain more 344 

important variables related to O3 prediction, shorten the running time of the model and greatly improve the accuracy 345 

of the prediction. 346 

Fig. 6 shows the model predictions and observations more intuitively. Both the KELM and the SVR have an ideal 347 
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fit to the O3 hourly concentration, which can capture the peak and valley values of O3 concentration more accurately. 348 

With the addition of optimization methods such as WT and PLS, the predictions of the high and low values of the two 349 

models are closer to the observations to varying degrees. According to the actual situation of O3 observation data, the 350 

O3 concentration were divided into three classes: low([O3] < 40 ppb), medium (40 ppb ≤ [O3] < 60 ppb) and high([O3] 351 

≥ 60 ppb) to further evaluate the prediction results of the model, and the results are shown in Table 4. With the 352 

increase of O3 concentration, the prediction work is more difficult, and the prediction accuracy of each model for O3 353 

high–level is lower than that of the mid–level and low–level. However, after optimization by WT and PLS methods, 354 

the accuracy of the model for O3 concentration prediction in three classes is greatly improved. For high–level O3 that 355 

people are concerned about, the MAE, MAPE, RMSE and NRMSE of SVR–WT–PLS are decreased by about 35% 356 

compared with SVR, and the prediction accuracy of KELM–WT–PLS is also increased by about 21%, indicating that 357 

the prediction abilities of the two methods for high ozone concentration are improved. 358 

359 

Fig. 6. Predictions of the SVR–WT, KELM–WT, SVR–WT–PLS and KELM–WT–PLS. 360 

 361 

Table 6. Performance measures of six models at different ozone concentration levels. 362 

 Estimator Classification Intervals (ppb) 
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[O3] <40 40≤ [O3] <60 [O3] ≥60 
all test 

database 

SVR/KELM 

MAE (ppb) 9.61/9.32 18.02/10.23 21.78/17.27 12.95/10.50 

MAPE 0.62/0.80 0.37/0.21 0.32/0.25 0.53/0.60 

RMSE (ppb) 11.97/11.62 21.68/12.13 26.43/19.53 16.82/12.97 

NRMSE (%) 31.74/30.81 108.67/60.81 108.26/80.01 20.40/15.73 

R2 0.39/0.34 0.15/0.19 0.01/0.00 0.55/0.58 

SVR–WT/KELM–WT 

MAE (ppb) 9.14/7.72 11.31/8.87 18.28/14.53 10.75/8.82 

MAPE 0.70/0.61 0.23/0.18 0.27/0.21 0.54/0.47 

RMSE (ppb) 11.43/9.29 13.75/10.48 20.87/16.94 13.46/10.79 

NRMSE (%) 30.32/24.64 68.92/52.53 85.51/69.38 16.33/13.08 

R2 0.54/0.51 0.20/0.23 0.00/0.03 0.72/0.73 

SVR–WT–PLS/KELM–

WT–PLS 

MAE (ppb) 7.20/6.37 10.39/8.55 14.12/13.37 8.75/7.71 

MAPE 0.52/0.47 0.21/0.18 0.21/0.20 0.41/0.37 

RMSE (ppb) 9.33/8.04 12.54/10.05 17.12/15.70 11.31/9.75 

NRMSE (%) 24.74/21.32 62.87/50.39 70.15/64.31 13.72/11.83 

R2 0.58/0.62 0.20/0.24 0.01/0.03 0.73/0.78 

Number of samples 350 115 66 531 

 363 

Whether WT and PLS are used or not, the KELM exhibits superior performance over the SVR in the prediction 364 

process. Compared with SVR–WT–PLS, the MAE, MAPE, RMSE and NRMSE of KELM–WT–PLS are 11.89%, 365 

9.76%, 13.79%, 13.78% lower respectively, and R2 is 6.85% higher. KELM–WT–PLS shows certain advantages in the 366 

prediction of O3 hourly concentration. 367 

 368 

4. Conclusions 369 

Based on the KELM and SVR methods, the summer hourly ozone concentration is predicted and improved by 370 

WT and PLS methods. The KELM and SVR methods were selected as the optimization objects because of the 371 

relatively higher prediction accuracy when compared with the result of linear regression and the BPNN method. The 372 

WT method was used to decompose the high variability time series into several sub-series with lower variability, and 373 

then prediction strategy was applied to each sub-series of different scales. Meanwhile the prediction accuracy of SVR 374 

and KELM is improved by 16.99%~30.91% and 16.00%~25.86%, respectively. In addition, the application of VIP 375 

value based on PLS method for variable selection keep more important information for prediction and shorten the 376 
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model running time. Temperature and relative humidity are input parameters for prediction at most levels. The main 377 

influencing factors of the low-level detail series are precursors, while the approximation series is affected by 378 

meteorological conditions and the accumulated O3. The WT and PLS methods improve the predictive performance of 379 

both KELM and SVR significantly. In particular, the prediction accuracy of high ozone concentration which is the 380 

focus of air pollution forecasting increase by 21% and 35% respectively. Overall, the KELM has the better prediction 381 

ability than SVR. The MAE, MAPE, RMSE, NRMSE and R2 of KELM-WT-PLS method are 7.71 ppb, 0.37, 9.75 ppb, 382 

11.83% and 0.78, respectively, implying the advantage of predicting the summer O3 hourly concentration in Nanjing. 383 
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Table 1. Correlation analysis of all data used in prediction of O3. 

 O3 NO NO2 NOx CO ALK OLE ACE AH WS T RH WD P 

O3 1  -0.50  -0.36  -0.45  -0.31  -0.38  -0.41  -0.20  -0.44  0.35  0.58  -0.74  0.07  -0.12  

NO -0.50  1  0.52  0.67  0.32  0.37  0.47  0.16  0.33  -0.06  -0.26  0.32  -0.15  0.09  

NO2 -0.36  0.52  1  0.97  0.51  0.62  0.49  0.52  0.58  -0.20  -0.23  0.12  -0.32  0.16  

NOx -0.45  0.67  0.97  1  0.53  0.63  0.53  0.50  0.59  -0.20  -0.27  0.21  -0.31  0.15  

CO -0.31  0.32  0.51  0.53  1  0.53  0.38  0.32  0.54  -0.10  – 0.26  -0.35  0.05  

ALK -0.38  0.37  0.62  0.63  0.53  1  0.65  0.56  0.77  -0.28  -0.19  0.29  -0.40  0.05  

OLE -0.41  0.47  0.49  0.53  0.38  0.65  1  0.25  0.51  -0.24  -0.15  0.33  -0.27  0.07  

ACE -0.20  0.16  0.52  0.50  0.32  0.56  0.25  1  0.56  -0.28  -0.15  0.17  -0.10  – 

AH -0.44  0.33  0.58  0.59  0.54  0.77  0.51  0.56  1  -0.24  -0.22  0.36  -0.39  0.07  

WS 0.35  -0.06  -0.20  -0.20  -0.10  -0.28  -0.24  -0.28  -0.24  1  0.21  -0.51  -0.15  0.05  

T 0.58  -0.26  -0.23  -0.27  – -0.19  -0.15  -0.15  -0.22  0.21  1  -0.45  – -0.47  

RH -0.74  0.32  0.12  0.21  0.26  0.29  0.33  0.17  0.36  -0.51  -0.45  1  – – 

WD 0.07  -0.15  -0.32  -0.31  -0.35  -0.40  -0.27  -0.10  -0.39  -0.15  – – 1  – 

P -0.12  0.09  0.16  0.15  0.05  0.05  0.07  – 0.07  0.05  -0.47  – – 1  

 

Table 2. Statistics of measured values. Unit, minimum, maximum, mean, and standard 

deviation values during observation period. 

Variable Unit Min Max Mean Rstd (%) 

O3 ppb 0.50  116.20  32.94  74.86  

NO ppb 0.25  102.87  5.16  146.90 

NO2 ppb 0.25  81.00  20.11  57.28 

NOx ppb 1.60  129.45  25.27  64.62  

CO ppb 20.00  4288.46  807.05  68.46  

Alkane ppb 2.76  73.98  16.45  61.28  

Olefin ppb 0.14  97.07  7.18  94.01  

Acetylene ppb 0.02  17.59  3.52  61.08  

Aromatic hydrocarbon ppb 0.80  71.85  8.39  79.14  

Wind speed m·s-1 0.00  6.40  1.82  50.55  

Wind direction ° 0.00  359.00  165.91  52.08  

Temperature °C 9.80  40.30  25.96  16.87  

Relative humidity % 13.00  100.00  64.39  29.77  

Atmospheric pressure hPa 995.70  1021.40  1004.70  0.37  

 

Table 3. Value of Smooth from level 1 to level 7. 

Level 1 2 3 4 5 6 7 



Smooth 0.6481  0.4104  0.2501  0.0209  0.0021  0.0004  0.0001  

 

Table 4. Comparison of five evaluation indexes among SR, BPNN, SVR and KELM. 

 MAE (ppb) MAPE RMSE (ppb) NRMSE (%) R2 

SR 15.58 0.89 18.61 22.57 0.54 

BPNN 12.98 0.51 16.90 20.50 0.53 

SVR 12.95 0.53 16.82 20.40 0.55 

KELM 10.50 0.60 12.97 15.73 0.58 

 

Table 5. Input data used in prediction of six O3 scales respectively and effect of using PLS to 

select variables. 

Scales 

WT+PLS  
WT +all 

variables 

Input variable 

R2  R2 

SVR/KEL

M 
 SVR/KELM 

D1 NO, NO2, NOx, CO, T  0.63/0.63  0.55/0.60 

D2 NO, NO2, NOx, CO, T, RH  0.60/0.58  0.59/0.57 

D3 NO2, NOx, AH, T, RH  0.71/0.79  0.71/0.81 

D4 NO2, NOx, ALK, ACE, AH, WS, T, RH 0.87/0.92  0.87/0.91 

D5 NO, NOx, AH, T, RH 0.58/0.61  0.55/0.59 

A5 ACE, T, RH, O3_6 0.68/0.79  0.62/0.68 

 

Table 6. Performance measures of six models at different ozone concentration levels. 

 Estimator 

Classification Intervals (ppb) 

[O3] <40 40≤ [O3] <60 [O3] ≥60 
all test 

database 

SVR/KELM 

MAE (ppb) 9.61/9.32 18.02/10.23 21.78/17.27 12.95/10.50 

MAPE 0.62/0.80 0.37/0.21 0.32/0.25 0.53/0.60 

RMSE (ppb) 11.97/11.62 21.68/12.13 26.43/19.53 16.82/12.97 

NRMSE (%) 31.74/30.81 108.67/60.81 108.26/80.01 20.40/15.73 

R2 0.39/0.34 0.15/0.19 0.01/0.00 0.55/0.58 

SVR–WT/KELM–WT 

MAE (ppb) 9.14/7.72 11.31/8.87 18.28/14.53 10.75/8.82 

MAPE 0.70/0.61 0.23/0.18 0.27/0.21 0.54/0.47 

RMSE (ppb) 11.43/9.29 13.75/10.48 20.87/16.94 13.46/10.79 

NRMSE (%) 30.32/24.64 68.92/52.53 85.51/69.38 16.33/13.08 



R2 0.54/0.51 0.20/0.23 0.00/0.03 0.72/0.73 

SVR–WT–PLS/KELM–

WT–PLS 

MAE (ppb) 7.20/6.37 10.39/8.55 14.12/13.37 8.75/7.71 

MAPE 0.52/0.47 0.21/0.18 0.21/0.20 0.41/0.37 

RMSE (ppb) 9.33/8.04 12.54/10.05 17.12/15.70 11.31/9.75 

NRMSE (%) 24.74/21.32 62.87/50.39 70.15/64.31 13.72/11.83 

R2 0.58/0.62 0.20/0.24 0.01/0.03 0.73/0.78 

Number of samples 350 115 66 531 
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