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Abstract: The extended range temperature prediction is of great importance for public health,
energy and agriculture. The two machine learning methods, namely, the neural networks and natural
gradient boosting (NGBoost), are applied to improve the prediction skills of the 2-m maximum air
temperature with lead times of 1–35 days over East Asia based on the Environmental Modeling Center,
Global Ensemble Forecast System (EMC-GEFS), under the Subseasonal Experiment (SubX) of the
National Centers for Environmental Prediction (NCEP). The ensemble model output statistics (EMOS)
method is conducted as the benchmark for comparison. The results show that all the post-processing
methods can efficiently reduce the prediction biases and uncertainties, especially in the lead week
1–2. The two machine learning methods outperform EMOS by approximately 0.2 in terms of the
continuous ranked probability score (CRPS) overall. The neural networks and NGBoost behave
as the best models in more than 90% of the study area over the validation period. In our study,
CRPS, which is not a common loss function in machine learning, is introduced to make probabilistic
forecasting possible for traditional neural networks. Moreover, we extend the NGBoost model to
atmospheric sciences of probabilistic temperature forecasting which obtains satisfying performances.

Keywords: machine learning; probabilistic temperature forecast; extended range; neural networks;
natural gradient boosting

1. Introduction

Subseasonal or extended range weather forecasts are used to predict heat waves, extreme cold
events, thunderstorms, droughts and floods as far as four weeks ahead. Subseasonal forecasts can
deliver relevant weather information, such as the timing of the onset of a rainy season and the risk
of extreme rainfall events or heat waves. However, there is a well-known gap in current numerical
prediction systems for the subseasonal timescale of 10 days to one month. This gap falls between
medium-range weather forecasts (up to 10 days) and seasonal climate predictions (longer than one
month). Medium-range weather forecasts are influenced by the initial conditions of the atmosphere,
whereas predictions of the seasonal climate are more affected by slowly evolving surface boundary
conditions, such as the sea surface temperature and soil moisture content [1–6]. Predictions on the
subseasonal timescale have made progress in some regions and seasons [1,7,8], although the full
potential of their predictability requires further exploration.
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The Subseasonal Experiment (SubX) [9] is a multi-model ensemble experiment for subseasonal
prediction. It is a research-to-operations project including global climate prediction models from
both operation and research centers. It was developed to provide guidance for real-time subseasonal
prediction and to improve forecast skills. SubX covers seven global models from US and Canadian
modeling groups and has produced 17 years of historical retrospective (re)forecasts. It is an open
research database (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/) designed to operational
standards [9]. The reforecasts from all seven global models are required to include, but are not
limited to, the period from 1999 to 2015, with at least three ensemble members, a minimum of weekly
initialization and forecasting at least 32 days in advance. In addition, some SubX models have also
provided more than 18 months of real-time forecasts since 2016.

The systematic bias of the raw ensemble forecasts can be corrected using statistical post-processing
methods. These methods reduce bias by learning a function that relates predictors to the variable of
interest, which can be viewed as a supervised machine learning task. Bayesian model averaging [10]
and ensemble model output statistics (EMOS) [11] are two state-of-the-art methods used in probabilistic
forecasting. However, both of these methods specifically rely on parametric forecast distributions,
which means that a predictive distribution has to be specified in advance and its parameters estimated.
We have used the EMOS frame as a benchmark method because of its superior performance [11] and
time saving capability. Two alternative approaches based on machine learning, neural networks and
natural gradient boosting (NGBoost), which learn nonlinear mapping using abundant predictors in a
data-driven way, are also considered here.

Compared to the traditional multi-model superensemble forecasts which may perform better than
the best individual model forecasts and multi-model ensemble mean forecasts [12–16], a neural network
is a flexible machine learning algorithm that can deal with complex problems using arbitrary nonlinear
functions [17]. A neural network consists of interconnected nodes organized in layers and regulated by
an activation function. Neural networks are used in a number of different fields, including computer
vision and natural language processing [18], as well as in biology, physics and chemistry [19,20].
In the atmospheric sciences, neural networks have been applied to precipitation nowcasting [21,22]
as well as short- and medium-range weather forecasts [23]. Rasp and Lerch [24] trained neural
networks without a hidden layer and with a single hidden layer for post-processing ensemble
temperature forecasts to establish nonlinear mapping between the outputs of numerical models and
the corresponding observations to reduce the bias from raw ensemble prediction systems.

NGBoost is an algorithm that allows gradient boosting to make probabilistic forecasts in a generic
way [25]. Gradient boosting is a supervised learning method that combines several weak learners to
give an additive ensemble [26]. The gradient boosting method has been widely applied in prediction
tasks, although it has rarely been applied to probabilistic forecasting. NGBoost combines the natural
gradient with a multi-parameter boosting algorithm to estimate intuitively how parameters vary with
the observed features. Experiments on several regression datasets have shown that NGBoost is more
flexible, modular and faster than existing methods for probabilistic forecasting [25,27]. We used two
post-processing methods (neural networks and NGBoost) in a machine learning framework and the
EMOS benchmark post-processing method to extend the range of the 2-m maximum air temperature
probabilistic forecast.

This paper is organized as follows. Section 2 describes the datasets used, followed by the
introduction of three post-processing methods and scoring rules in Section 3. Section 4 presents our
main results and a summary is provided in Section 5. The discussions about the two machine learning
methods are given in Section 6.

2. Data

We obtain raw ensemble forecasts from the Environmental Modeling Center, Global Ensemble
Forecast System (EMC-GEFS) model under the SubX project (http://iridl.ldeo.columbia.edu/

SOURCES/.Models/.SubX/) [9]. The base model of the EMC-GEFS is a numerical weather prediction
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atmosphere–land model forced with prescribed sea surface temperatures. This base model
contributes 11 ensemble members to the SubX reforecasts. The group provides reforecasts for
the 1999–2016 period with weekly initialization and a lead time of 1–35 days. The anomaly correlation
coefficients of precipitation and the 2-m temperature for week three, the anomaly correlation coefficients
of the Real-time Multivariate Madden–Julian Oscillation indices and the North Atlantic Oscillation
index all prove the superior prediction skills of the EMC-GEFS model [9].

We focus on the 2-m maximum air temperature forecasts over East Asia (15–60◦ N, 70–140◦ E) with
a resolution of 1◦ × 1◦ for a lead time of 1–35 days. To ensure that our verification procedure mimics
operational conditions, we set aside the data for the year 2016 as a validation set. The observations
used for verification are obtained from the National Oceanic and Atmospheric Administration Climate
Prediction Center (ftp://ftp.cdc.noaa.gov/Datasets/cpc_global_temp/) [9]. For the 2-m maximum air
temperature over the land, the Climate Prediction Center provides a maximum daily temperature
(Tmax) dataset with a horizontal resolution of 0.5◦ × 0.5◦ [28]. The verification data are re-gridded to a
coarser EMC-GEFS model resolution of 1◦ × 1◦.

3. Post-Processing and Verification Methods

3.1. Ensemble Model Output Statistics

EMOS is a variant of the model output statistics method and regression techniques designed for
probabilistic forecasting [29,30]. In the simple frame of model output statistics, which only uses the
ensemble member forecasts x or x1, . . . , xk as predictors and multiple linear regression as the transfer
function, the predictand y can be written as:

y = a + b1x1 + · · ·+ bKxK (1)

where a and b1, . . . , bk (or denoted by b) are the regression coefficients; K is the number of
ensemble members.

There has been little research into the application of regression techniques to probabilistic
forecasting [31]. Following Gneiting et al. [11], the conditional distribution of the predictand y
based on the ensemble member forecast xcan be modeled by a single parametric distribution Pθwith
parameters θ ∈ Rd:

y
∣∣∣x ∼ Pθ(x) (2)

When the distribution of the weather variable of interest y (e.g., temperature) is Gaussian,
Equation (2) can be written as:

y
∣∣∣x ∼ N(

µ, σ2
)

(3)

where µ is the mean and σ is the standard deviation. By applying regression theory to probabilistic
forecasting, the EMOS method attempts to reduce the bias between the predictive mean/variance and
the regression estimate by using a bias-corrected weighted average. Hence we use a linear function
with the ensemble mean and spread to fit the predictive mean and variance:{

µ = a + b1x1 + · · ·+ bKxK

σ2 = c + dS2 (4)

where S2 is the ensemble spread and c and d are nonnegative coefficients. Combining Equations (3)
and (4), the Gaussian predictive distribution can be written as:

y
∣∣∣x ∼ N(

a + b1x1 + · · ·+ bKxK, c + dS2
)

(5)

These EMOS coefficients θ= (a, b, c, d) are estimated by minimizing the correct scoring
rule (e.g., the continuous ranked probability score (CRPS) or the maximum likelihood estimation

ftp://ftp.cdc.noaa.gov/Datasets/cpc_global_temp/


Atmosphere 2020, 11, 823 4 of 17

(MLE)) during the training period. Our EMOS experiments are implemented in R using the
scoringRules package [32].

3.2. Neural Networks

As in the flowchart of neural networks shown in Figure 1, the neural networks consist of nodes
organized in layers. The first (input) layer contains the input features, whereas the last (output) layer
represents the output targets. The layers between the input and output layers are referred to as hidden
layers. Apart from the input features, each node in the network can be computed as:

zl
j = f

(
al

j

)
(6)

where f is an activation function, zl
j is the value of the jth node in the lth layer and al

j is the weighted

average of the outputs zl−1
i in the previous layer. Additionally, al

j can be written as: al
j =

ml∑
i=1

wl
jiz

l−1
i + b;

wl
ji is the weight between the ith node in the (l − 1)th layer and the jth node in the lth layer; b is a bias

term and is usually constant. The activation function f is usually a nonlinear function which allows the
network to be more complex and robust and the rectified linear unit (ReLU) is used here apart from in
the output layer. The weights and biases are optimized to reduce the loss function using the Adam
optimization method [33]. The topological structure of the neural networks is of great importance
for its performance in which the number of nodes in each hidden layer is usually optimized via
cross-validation. In our study, we take the 11 raw ensemble forecasts as the inputs and the predictive
parameter µ and σ as the targets of the neural networks. Then we use an analogous-linear search
method to test the optimal configuration of the neural networks where we build several models which
consist of different number of nodes (i.e., 8, 16, 32, . . . , 256, 512, 1024) in the hidden layers. After the
assessments (not shown), we finally build the neural networks model consisting of two hidden layers
which contains 64 and 256 nodes, respectively.
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Figure 1. The flowchart of neural networks. F or f 1, f 2, . . . , f 11, the raw ensemble forecasts and as the
inputs; W or W1, W, . . . , Wm, the weights of nodes; a or a1, a2, . . . ,am, the weighted average of the
outputs in the previous layer; z or z1, z2, . . . , zm, the outputs with the rectified linear function, ReLU,
applied in a; µ and σ, the two target parameters: mean and standard deviation; 0, the verification or
the observation; CRPS, the continuous ranked probability score. Here, m is the number of the nodes.

Neural networks can be applied to a range of problems but have rarely been applied to probabilistic
forecasting [24]. The difficulty lies in building the correct loss function for probabilistic forecasting.
Here, we use a closed form expression of the CRPS (see Section 3.4) with a Gaussian distribution for
temperature probabilistic forecasting. The experiment described the conditional distribution of the
observation y given the ensemble member forecast x as the input.
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3.3. Natural Gradient Boosting

Figure 2 presents the flowchart of NGBoost. NGBoost is a supervised learning method for probabilistic
forecasting. The approach uses the natural gradient to address the technical challenges that are difficult in
generic probabilistic forecasts with existing gradient boosting methods. The origins of the natural gradient
can be traced to the field of information geometry [34], where it was initially defined for the statistical
manifold with the distance measure using Kullback–Leibler divergence [35]. The generalized natural
gradient is the direction of steepest ascent in Riemannian space and is formed as:
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Figure 2. The flowchart of natural gradient boosting (NGBoost). F or f 1, f 2, . . . , f 11, the raw ensemble
forecasts and as the inputs; L or L1, L2, . . . , Lm, the base learner; µ and σ, the two target parameters:
mean and standard deviation; 0, the verification or the observation; CRPS, the continuous ranked
probability score. Here, m is the number of base learners.

By assigning a score between a forecasted probability density f at the verifying observation y,
the scoring rule S(f, y) represents the bias between the forecast and the true distribution [36]. Proper
scoring rules prompt the model to obtain more calibrated probabilities during training as loss functions.
The most commonly used proper scoring rules are MLE and CRPS, although CRPS is generally
considered more robust than MLE [37]. Therefore, we chose CRPS as the target scoring rule in our
experiments (see Section 3.4).

We focused on temperature probabilistic forecasting. The input x contains raw ensemble forecasts
and the target y is the corresponding observation. Assuming that the variable temperature follows
a normal distribution, θ = (µ, log σ) are appointed as the predicted parameters and linear learners
are used here as the base learner l to speed up the calculation. The total number M of training linear
learners is set up to 100.

To obtain the predicted parameters θfor the input x, each base learner l(k) (k = 1, . . . , m) first makes
an independent prediction based on the same xand then the results are integrated. Note that there are two

base learners l(k) =
(
l(k)µ , l(k)log σ

)
per stage for a normal distribution with parameters µ and log σ.
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We use a stage-specific scaling factor ρ(k) and a common learning rate η to scale the predicted
outputs in ith iteration:

θ(i) = θ(i−1)
− η

m∑
k=1

ρ(k)·l(k)(x) (8)

The predicted parameters are updated to θ(i) by adding to each θ(i−1) the scaled projected natural
gradient ρ(k)·l(k)(x) and scaled by a small learning rate η. The learning algorithm starts with a
random common θ(0) and minimizes the sum of the scoring rule S by training all the training samples.
More details are available in Duan et al. [25].

3.4. Verification Methods

Probabilistic forecasting aims to maximize the sharpness of the predictive distributions through
calibration [38]. For calibration, the forecast probability density functions (PDFs) and verifications are
expected to be consistent with each other and, for sharpness, the prediction intervals are expected to
be narrowed by post-processing methods to obtain a more concentrated and sharper forecast PDF.

The Talagrand diagrams, also known as the verification rank histogram [39–42] and the probability
integral transform (PIT) histograms are often adopted to evaluate the calibration of the ensemble forecast.
They are analogous, but the Talagrand diagrams tend to assess the spread, whereas the PIT histograms
assess the PDF forecasts. An ideal ensemble forecast usually behaves as a uniform distribution.
However, in most cases, it exhibits U-shaped PIT histograms due to the under-dispersive forecasts.
Here, PIT histograms have been selected to discuss the calibration of the post-processing methods.

In addition to showing PIT histograms, we computed the coverage and average width of the 88.33%
central prediction interval, which is chosen from the range of an 11-member ensemble. The coverage
represents the accuracy while the average width is used to assess the sharpness.

To verify the deterministic forecasts, we computed the mean absolute error (MAE) and the
root-mean-square error (RMSE). Denoting µs,t as a deterministic forecast and ys,t as the observation,
the MAE is defined as:

MAE =
1
N

N∑
n=1

∣∣∣yn − µn
∣∣∣ (9)

and the RMSE can be written as:

RMSE =

√√√
1
N

N∑
n=1

(yn − µn)
2 (10)

where N is the number of cases in the training set.
We also computed the CRPS for the assessment of predictive PDFs to address the calibration and

sharpness simultaneously. The CRPS is the integral of the Brier scores at all possible threshold values
for a continuous predictand [43]. Denoting Fθ as the predictive cumulative distribution function (CDF)
with parameters θ and y as the observations, the CRPS is defined as:

crps(Fθ, y) =
∫ y

−∞

Fθ(z)
2dz +

∫
∞

y
(1− Fθ(z))

2dz (11)

when Fθ is the CDF of a normal distribution with θ (µ, σ2), Equation (11) can be written as:

crps(N(µ, σ2), y) = σ(
y− µ
σ

(2Φ
( y− µ
σ

) − 1) + 2ϕ(
y− µ
σ

) −
1
√
π
) (12)

where ϕ and Φ denote the PDF and the CDF, respectively. The CRPS is negatively oriented in a similar
manner to the MAE, where a smaller value is better.
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The continuous ranked probability skill score (CRPSS) is used to measure the probabilistic skill
relative to a reference predictive distribution Fref:

CRPSS(F, y) = 1−
CRPS(F, y)

CRPS
(
Fre f , y

) (13)

The CRPSS is positively oriented, which means that positive values indicate an improvement on
the reference forecast. We use the raw ensemble forecasts as the reference forecasts.

Here, we assess the application of EMOS and two machine learning post-processing methods to
1–35 day forecasts of the 2-m maximum air temperature for all land grid points over East Asia
(15–60◦ N, 70–140◦ E) using the raw ensemble forecast from EMC-GEFS described by Zhu [44].
The calendar year 2016 is used as the validation period. Noted that the EMC-GEFS model initializes
once a week so the actual validation period is 53 days.

4. Results

4.1. Overall Performance of EMOS, the Neural Network and NGBoost

Table 1 provides the summary measures of the deterministic-style forecast accuracy. For a better
visualization and understanding, we average the MAE and RMSE with a lead time of one week instead
of one day. The MAE in the first lead week (week 1) is the average MAE of each grid point in the study
area during the validation period, with a lead time of 1–7 days. The deterministic neural network
forecast clearly gives the best performance, with the mean MAE 24% and 9% reduced than the mean of
the raw ensemble and the EMOS forecasts, respectively, for lead times of 1–35 days. The NGBoost
method shows similar results, whereas the neural network method performs slightly better for longer
lead times.

Table 1. Comparison of deterministic forecasts of the 2-m maximum air temperature over East Asia for
the year 2016 at different lead times. The values representing the best performance are marked in bold.
ENS, raw ensemble; EMOS, ensemble model output statistics; NGB, natural gradient boosting; NN,
neural networks; MAE, mean absolute error; RMSE, root-mean-square-error.

Week 1 Week 2 Week 3 Week 4 Week 5

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ENS 2.91 3.52 3.12 3.80 3.31 4.05 3.49 4.30 3.64 4.50
EMOS 2.20 2.84 2.49 3.21 2.78 3.57 3.05 3.90 3.26 4.17
NGB 2.05 2.63 2.30 2.93 2.54 3.24 2.77 3.53 2.97 3.77
NN 2.05 2.64 2.28 2.92 2.52 3.22 2.75 3.50 2.93 3.73

The comparison of the CRPS between these three post-processing methods and the raw ensemble
is presented in Figure 3. It shows that the raw ensemble forecasts are of great uncertainty and all
the post-processing methods are able to reduce the CRPS values relative to the raw ensemble for all
lead times, especially the two machine learning methods. The improvement in performance could be
divided into two parts: weeks 1–2 and weeks 3–5. At a lead time of weeks 1–2, the prediction skill of
all the post-processing methods and the raw ensemble decreases with increasing lead time in terms of
the CRPS. All the post-processing methods reduced the forecast bias sharply. The neural network and
NGBoost methods perform best and increase the available lead time for about 10 days. EMOS achieves
similar results to the two machine learning methods in week 1 but performs relatively poorly following
week 2. The prediction skill of the post-processing methods and the raw ensemble tends to be stable
with little variance as the lead time increases over week 3.
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Figure 3. Mean continuous ranked probability skill score of the different post-processing methods for
the 2-m maximum air temperature at all land grid points over East Asia in 2016 with lead times of
1–35 days. CRPS, continuous ranked probability score; ENS, raw ensemble; EMOS, ensemble model
output statistics; NGB, natural gradient boosting; NN, neural networks.

Table 2 presents the CRPS and the coverage and average width of the 88.33% central prediction
intervals to assess the accuracy and sharpness, respectively. NGBoost reduces the CRPS score by 39%
and 7.5%, respectively, compared with the raw ensemble and the EMOS. The neural network achieves
similar results in terms of the CRPS, whereas the NGBoost prediction intervals show better coverage.
The raw ensemble prediction intervals are narrow and the accuracy and coverage are unsatisfactory.
By contrast, the NGBoost prediction intervals are not much wider than those of the raw ensemble,
presenting better CRPS and coverage scores.

Table 2. Comparison of probabilistic forecasts of the 2-m maximum air temperature over East Asia
for the whole year of 2016 at different lead times. The values representing the best performance are
marked in bold. CRPS, continuous ranked probability score; ENS, raw ensemble; EMOS, ensemble
model output statistics; NGB, natural gradient boosting; NN, neural network; MAE, mean absolute
error; RMSE, root-mean-square-error.

Week 1 Week 2 Week 3 Week 4 Week 5

CRPS

ENS 2.40 2.51 2.61 2.71 2.80
EMOS 1.60 1.81 2.02 2.21 2.36
NGB 1.48 1.65 1.82 1.98 2.12
NN 1.49 1.66 1.83 1.98 2.11

Coverage at 88.33% Prediction Interval

ENS 41.73 47.73 52.45 55.99 58.28
EMOS 67.88 67.76 67.91 67.99 67.94
NGB 80.30 80.06 79.98 79.94 79.71
NN 76.43 76.92 77.48 78.51 78.78

Average Width at 88.33% Prediction Interval

ENS 2.16 2.75 3.29 3.77 4.12
EMOS 2.87 3.27 3.68 4.06 4.34
NGB 3.52 3.94 4.38 4.78 5.10
NN 3.35 3.76 4.19 4.64 4.95
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CRPSS is useful in probabilistic forecasts of multi-category events. Positive values of CRPSS
indicate that the forecasts are better than the reference prediction. Figure 4 shows the mean CRPSS of
different post-processed forecasts compared with the raw ensemble in different lead weeks. The two
machine learning post-processing methods achieve the best and similar results, with mean CRPSS
values >0.18 at each lead week. EMOS has a poorer performance, although the mean CRPSS values
are >0.08. These results suggest that all the post-processing methods improve the raw ensemble
probabilistic forecasts and that the two machine learning methods show the best performance.
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Figure 4. Boxplots of the mean continuous ranked probability skill score of all the post-processing
models at different lead times using the raw ensemble as the reference forecast. CRPSS, continuous
ranked probability skill score; EMOS, ensemble model output statistics; NGB, natural gradient boosting;
NN, neural network.

The PIT histograms of the raw and post-processed forecasts used to assess the calibration are shown
in Figure 5. The raw ensemble forecasts are under-dispersed, as indicated by the U-shaped verification
rank histogram at almost all the selected lead days. This means that the observations often fall
outside the range of the raw ensemble. By contrast, the two machine learning post-processed forecast
distributions are better calibrated and the corresponding PIT histograms show much smaller deviations
from uniformity at each selected lead day. From this perspective, by calibrating the under-dispersive
raw ensemble forecasts with nonlinear functions in the neural networks and NGBoost frames, we obtain
more idealized ensemble forecasts which reduce the uncertainty and improve the accuracy. The poor
performance of EMOS in the PIT histograms with the increasing lead days may reflect the disadvantages
of the traditional method that is based on the multi-linear regression techniques.
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Figure 5. Probability integral transform (PIT) histograms of extended range 2-m maximum air
temperature probabilistic forecasts for all land grid points over East Asia using different post-processing
methods at different lead times. ENS, raw ensemble; EMOS, ensemble model output statistics;
NGB, natural gradient boosting; NN, neural networks.

4.2. Spatiotemporal Characteristics

Figure 6 presents the daily CRPS of the raw ensemble and post-processed forecasts in the
validation period at different lead days. The method presented by Vigaud et al. (2017) is applied in this
study. This evaluates the weekly forecasts initialized in the year 2016, which contains 52 validation
periods. Figure 6 shows that the raw ensemble has the poorest performance at each selected lead
day. The post-processed forecasts are consistent with the raw ensemble, but perform much better
in reducing the CRPS of the raw ensemble, particularly for shorter lead times. The two machine
learning methods achieve the best and similar results on most days during the validation periods.
The improvements are stable even at long lead times.
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Figure 6. Mean continuous ranked probability skill score of the 2-m maximum air temperature
probabilistic forecasts for all land grid points over East Asia on each calendar day during the
validation period for the raw ensemble and using different post-processing methods at different lead
times. CRPS, continuous ranked probability score; ENS, raw ensemble; EMOS, ensemble model output
statistics; NGB, natural gradient boosting; NN, neural networks.

Figure 7 shows the spatial distributions of the CRPSS over East Asia for the 2-m maximum
air temperature using different post-processing methods, taking the raw ensemble as the reference
forecast. Great improvements are achieved by all the post-processing methods in week 1. Most of
the grid points in the study area obtain a positive CRPSS, especially those on the Tibetan Plateau.
The two machine learning methods reduce the negative CRPSS area more than the EMOS forecast,
which indicates that the NGBoost and neural network methods are practicable in broader regions.
In week 2 and later, the EMOS forecast skill decreases rapidly and performs poorly in most of Russia,
Mongolia and mid-eastern China. However, the two machine learning methods still perform well in
those regions. Although the improvements decrease, the post-processed forecast of the two machine
learning methods give a positive CRPSS for most grid points in the study area. The neural network
forecasts perform better in the northwest of China and most of Russia than the NGBoost outputs.
The results indicate that these two machine learning methods could make improvements in complex
terrains (such as mountainous areas, deserts) which are often of poor prediction skills. We consider
that the improvements describe the nonlinearity to some extent as the thermodynamics and dynamics
processes often have.



Atmosphere 2020, 11, 823 12 of 17Atmosphere 2020, 11, x FOR PEER REVIEW 12 of 17 

 

 

 

 

 

 

Figure 7. Continuous ranked probability skill score distribution of the 2-m maximum air temperature 

probabilistic forecasts for all land grid points over East Asia verified against the raw ensemble using 

different post-processing methods at different lead times. EMOS, ensemble model output statistics; 

NGB, natural gradient boosting; NN, neural networks. 

The performance of the neural network is similar to that of NGBoost and thus the best model 

distribution is introduced to provide a simple comparison. The maps with the best-performing 

models, in terms of the mean CRPS for each land grid point at different lead weeks, are shown in 

Figure 8. The two machine learning methods provide the best predictions for most of the grid points. 

Regardless of the lead week, the two machine learning methods perform better at >90% of the grid 

Figure 7. Continuous ranked probability skill score distribution of the 2-m maximum air temperature
probabilistic forecasts for all land grid points over East Asia verified against the raw ensemble using
different post-processing methods at different lead times. EMOS, ensemble model output statistics;
NGB, natural gradient boosting; NN, neural networks.

The performance of the neural network is similar to that of NGBoost and thus the best model
distribution is introduced to provide a simple comparison. The maps with the best-performing models,
in terms of the mean CRPS for each land grid point at different lead weeks, are shown in Figure 8.
The two machine learning methods provide the best predictions for most of the grid points. Regardless
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of the lead week, the two machine learning methods perform better at >90% of the grid points,
with clearer advantages at longer lead times. The NGBoost method performs better in week 1, whereas
the neural network method is better in week 2. The two machine learning methods are comparable for
longer lead times. For most of the areas, such as the Tibetan Plateau, the Yunnan–Guizhou Plateau,
the Loess Plateau, the Inner Mongolia Plateau, the central Siberian Plateau and the East Siberian
mountainous area, neural networks behave as the best model despite the overwhelming performance
in week 1. There are also some differences over the Tibetan Plateau, for instance, the best model over the
west of it tends to be changing from the neural network forecasts to that of NGBoost. In the meantime,
over the areas including the northwest of China where the terrains comprising mountains, deserts
and basins (in the Xinjiang Province), the neural networks model behaves better, while the NGBoost
method dominates in the basins, such as the Qaidam Basin in Qinghai Province and the Sichuan basin
in the southeast center of China. For the most populated areas, such as the plains and hilly areas
in China, neural networks and NGBoost perform competitively. In all, these two machine learning
methods have their own benefits in different areas, but both of them are good at dealing with the
complex terrains and adjusting the ensemble spread to provide more reasonable forecasts.
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Figure 8. Percentage of the best-performing post-processing methods over the land surface in
terms of the mean continuous ranked probability score over validation period at different lead
times. The percentage of the best-performing forecast of each method is listed under the mosaic
image. ENS, raw ensemble; EMOS, ensemble model output statistics; NGB, natural gradient boosting;
NN, neural network.
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5. Conclusions

We compare the performance of the EMOS method and other two methods based on machine
learning (a neural network and NGBoost) in extended range temperature probabilistic forecasts over
East Asia. The EMOS method has been widely used and is already able to reduce systematic bias and
is therefore used as the benchmark for the machine learning methods. Both the neural network and
NGBoost improve the forecast skills compared with EMOS over the entire study domain and for each
forecast lead time.

For convenience, the lead time is separated into five groups from the first lead week to the fifth
lead week and the scoring rules are averaged over the lead time intervals. From the perspective
of deterministic forecast, MAE and RMSE are used to assess the accuracy of forecasts from the raw
ensembles, EMOS, NGBoost and the neural network. The neural network and NGBoost outperform
both the raw ensemble and EMOS outputs and the neural network is slightly better than NGBoost.
In terms of convenience and reliability, the neural network is more appropriate and superior for
extended range temperature forecasts. However, NGBoost is more flexible and is designed to develop
probabilistic forecasts. From the perspective of probabilistic forecasts, both the neural network and
NGBoost are superior in terms of CRPS and coverage at the 88.33% prediction interval over the
raw ensemble outputs and EMOS results. NGBoost shows advantages over the neural network
from the first to third lead weeks in CRPS and the entire forecast’s lead weeks in terms of coverage.
The raw ensemble forecasts perform better in terms of the under-dispersive spread but give poorer
scores. After calibration, EMOS, the neural network and NGBoost expand the spread into a more
correct status.

The spatiotemporal distributions are investigated over multiple lead times. The raw ensemble
forecasts perform the worst, offering a space for EMOS, the neural network and NGBoost to make
progress. The gaps among the three methods decrease with increasing lead times from seven to 28 days.
A greater improvement is seen for shorter lead times. The CRPSSs are characterized by spatial variance
but are still practical and improved. All the three methods show remarkable forecast skill over the most
areas, especially over the Tibetan Plateau. Both the neural network and NGBoost outputs perform
better than the EMOS output over East Asia. With increasing forecast lead times, the forecast skill of
EMOS decreases remarkably from the first to the second lead week, whereas the other two machine
learning methods show sustainably better forecast skills.

The NGBoost and neural network give an outstanding performance in extended range probabilistic
forecasts over East Asia for the variable of interest, which can be fitted by a normal distribution.
The neural network and NGBoost are well matched. It is difficult to distinguish which one of these
two methods is better and we therefore introduced the best model distribution to provide a simple
comparison. The neural network and NGB account for almost 90% of the area and they perform better in
different lead weeks. However, further investigation of the machine learning applications still required
for those variables with a non-normal distribution (e.g., precipitation, wind speed and wind direction).

6. Discussion

This paper demonstrates the application of two machine learning methods, the neural networks
and NGBoost, to the extended range 2-m maximum air temperature probabilistic forecasts. Following
the EMOS frame proposed by Gneiting et al. [11], the neural networks and NGBoost are two parametric
methods which directly calibrate the individual raw ensemble members by optimizing a proper scoring
rule. However, neural networks and NGBoost show advantages in model robustness and the searching
for optimized parameters.

As shown in the flowchart of neural networks (see Figure 1), a neural network consists of two
main parts, the forward and backward propagation. For a given forecast time and station, the inputs,
the 11 raw ensemble forecasts, are multiplied by m (the node number in the hidden layer) randomly
initialized weights W and then activated by a nonlinear function ReLU in the forward propagation
to predict the mean µ and standard deviation σ. Over the training dataset, the mean CRPS is
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computed as the scoring rule by the predictive µ and σ with corresponding observations. In our study,
the Adam optimization is applied to gradient descent in the backward propagation for its learning
rate varies with training which helps accelerate the convergence.

It is notable that the CRPS is not a common lose function in machine learning. Since the traditional
neural networks are incapable for probabilistic forecasting, here we introduce a close form of the CRPS
for a Gaussian distribution which helps to extend the neural networks to probabilistic temperature
forecast. Furthermore, the inputs of neural networks are more arbitrary, which can add auxiliary
predictors to improve prediction skills [24].

This study tackles probabilistic temperature forecasting in atmospheric sciences using NGBoost.
It helps make up the gap of gradient boosting method (GBM) in generic probability prediction.
The outstanding performance of NGBoost in our study confirms its ability to solve the practical
problems. It is a promising machine learning method for probabilistic forecasting for its flexibility
and modularization.

Different to neural networks in the forward propagation, NGBoost introduces a weak base
learner (for instance, the tree model) to replace the activation function of the neural network frame.
By integrating the base learners, we obtain the parameters µ and σ of the predictive PDFs. Another
difference lies in the parameter optimization where the natural gradient is introduced in NGBoost to
overcome the difficulty of simultaneous boosting the two predictive parameters (µ and σ) from the
base learners, which is a challenge to the existing GBMs. Furthermore, the natural gradient helps to
reflect how the space of distribution moves when updating [25].

For the probabilistic temperature forecast here, the results of bias correction using neural networks
and NGBoost are remarkably superior to the traditional EMOS. Neural networks and NGBoost
could represent a high nonlinear relationship which is deficiently described in the traditional linear
models. Maybe this is the reason why machine learning methods applied in this study perform better.
Plus, the machine learning methods are more flexible and the objective function could be adjusted
according to the problems to be solved. Compared with the neural networks, the NGBoost is a
more integrated and modular method which is especially advantaged with a small training dataset.
However, the NGBoost is limited in some skewed probability distribution, for instance, precipitation
and wind speed. The neural networks are more suitable for the flexible cases which have more arbitrary
predictors and strong nonlinearity.
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