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Deep Head Pose: Gaze-Direction
Estimation in Multimodal Video
Sankha S. Mukherjee and Neil Martin Robertson, Senior Member, IEEE

Abstract—In this paper we present a convolutional neural
network (CNN)-based model for human head pose estimation in
low-resolution multi-modal RGB-D data. We pose the problem
as one of classification of human gazing direction. We further
fine-tune a regressor based on the learned deep classifier. Next we
combine the two models (classification and regression) to estimate
approximate regression confidence. We present state-of-the-art
results in datasets that span the range of high-resolution human
robot interaction (close up faces plus depth information) data to
challenging low resolution outdoor surveillance data. We build
upon our robust head-pose estimation and further introduce a
new visual attention model to recover interaction with the
environment. Using this probabilistic model, we show that
many higher level scene understanding like human-human/scene
interaction detection can be achieved. Our solution runs in
real-time on commercial hardware.

Index Terms—Convolutional neural networks (CNNs), deep
learning, gaze direction, head-pose, RGB-D.

I. INTRODUCTION

M ODELING human head pose is a challenging problem
in computer vision and signal processing. It is desir-

able because this headpose signal gives us important meta-in-
formation about communicative gestures [1], salient regions in
a scene based on focus of attention [2], group detection, crowd
behavioral dynamics and tracking [3], and anomaly detection.
The grand aim of our work is to exploit the advanced signal ac-
quired from head pose to achieve, what is called, “Social Signal
Processing”. In domains where close level iris/eye tracking is
not possible, human head pose is the most important feature
in estimating human focus-of-attention. Head pose estimation
has been studied in two separate and distinct domains, visual
surveillance [4]–[7] and Human Computer Interactions (HCI)
[8]–[10] with different methodologies required due to the dif-
ference in the quality of the input. In this work we develop a
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Fig. 1. Illustrative outputs of our system showing gazing direction estimation
across a range of imaging modalities, resolutions, and applications: (a) visual
attention modeling in the 3-D environment; (b) human-human and human-ma-
chine interaction recognition; and (c) gazing direction in low-resolution surveil-
lance video, which may ultimately be used for tracking and anomaly detection.

new technique which unifies these research areas and exploits
themultiple modalities of range images and colour images when
it is beneficial so to do. Themethod is also highly robust and fast
to compute as we demonstrate on data from both domains.
In the surveillance domain the nature of the problem requires

the exploitation of priors such as walking direction [6] to aug-
ment the low resolution visual features. In the close range (i.e.
higher resolution) domain of HCI, facial landmark detection
approaches are employed for better accuracy [8]. However in
HCI, the problem has been formulated with natural user inter-
action in mind, i.e., the user is always facing (near frontal) the
sensor and is fairly close by (not more than 1-2 meters). Facial
landmark based techniques typical of HCI cannot perform un-
constrained head pose estimation at a distance. Furthermore, in
most indoor interaction scenarios, the subjects are static and can
be frequently occluded.
Hence the priors such as motion direction, body direction

that are easily exploitable in a surveillance scenario may not be
useful. Our focus in this paper is to introduce a system that ad-
dresses these issues by estimating the unconstrained head-pose
by using a unified approach. Fig. 1 shows some illustrative out-
puts of our method.

A. Motivation

Although the problem of head pose in two domains of HCI
and surveillance have been solved with very different tech-
niques, the underlying data is the same. As shown in Blanz
et al. [11] human heads lie in a high dimensional manifold. See
Fig. 2.
Any image of the head can be used to estimate parameters in

this manifold. Occlusions such as hair, accessories like glasses,
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Fig. 2. Conceptual diagram showing different parameters controlling the ap-
pearance of the human head. The headpose can be considered as dimensions in
this parametric space.

and/or low resolution make accurate estimation difficult. How-
ever since pose has a very high variance in the feature space, and
thus a large eigenvalue principal component, this should allow
us to recover the head pose in a holistic manner that spans the
range of HCI to surveillance. Furthermore, in the surveillance
domain the techniques rely on motion priors like walking di-
rection to smooth the head pose estimation [5], [6]. This is valid
only because most people tend to look where they are going. The
drawback of such smoothing is that the information of the head
pose signal itself is attenuated. As shown by Baxter et al. in [3]
the cases of actual interest are when people deviate from this be-
haviour (i.e. look somewhere else). This information could be
useful for anomaly detection or improving tracking and should
not be smoothed out by a prior simply in order to achieve a
more accurate tracking metric. Similarly, in the HCI domain,
most techniques rely on the detection of facial landmarks. This
is a valid assumption given the use-case scenarios. However this
leaves a large gap in the applicability of such methods when
it comes to achieving a reliable head-pose estimation in close
range for non-frontal head pose. In summary, we address these
problems by presenting the theory and implementation of a new
technique that:
1) exploits high-resolution to low-resolution imageries and

exploits multiple imaging modalities, i.e. RGB and depth
where possible;

2) is independent of explicit facial landmark detection; and
3) does not require motion priors (“instantaneous”, i.e., only

requiring single frames).

B. Contributions of This Work
We have identified that there is a gap in the landmark free

head-pose estimation research when it comes to unconstrained
head-pose estimation in mid-low resolution which we address
in this paper. Briefly, the scientific contributions of this paper
are as follows: (a) Defining a machine learning framework for
unified head pose estimation in RGB and/or RGB-D data that
spans from high to very low resolutions; (b) Introduction of a re-
gression loss that lets us pose the cyclic function (it is wrapped

in a sphere) in the Euclidean space by using vector decompo-
sition of the unit directional vector. (c) Creation of a headpose
dataset which is publicly available (contact lead author for ac-
cess) that fills a major void in head pose research datasets by of-
fering in one unified set, desirable properties in terms of modal-
ities (RGB and Depth), constraints (all poses, not only frontal),
quality (accurately labelled for regression) and at the same time
one that spans from close to long range resulting in high to
low quality data respectively. (d) Modeling human gaze and its
spatial uncertainty from head-pose as a spherical Von-Misses
Fisher distribution on a spherical manifold in ; (e) Defining
person-person and person-scene interaction metrics and evalu-
ating them on comprehensive open datasets.

II. RELATED WORK

We now discuss the related work in two main threads: prior
works in both head-pose estimation and deep learning.

A. Head Pose Estimation
The pioneering work on low resolution head pose estimation

was proposed by Robertson and Reid [4] which used a detector
based on template training to classify head poses in eight di-
rectional bins. This approach is heavily reliant on skin colour
detection. Subsequently this template-based technique was ex-
tended to a color invariant technique by Benfold et al. [5]. They
proposed a randomized fern classifier for hair face segmenta-
tion for the template matching. This work was later improved
upon by Siriteerakul et al. [12] using pair-wise local intensity
and colour differences. However, in keeping with all template
based techniques in head-pose estimation, these suffer from two
major problems: first, it is non-trivial to localize the head in low
resolution images; second, different poses of the same person
may appear more similar compared to the same head-pose of
different persons.
This led some researchers to propose representing head

images in a different feature space that has more discriminatory
property for head pose independent of persons. Non-linear
regression approaches like Artificial Neural Networks [13],
[14] and high-dimensional manifold based approaches [15],
[16] try to estimate the head poses in a continuous range.
Chen and Odobez [6] proposed the state-of-the-art method for
unconstrained coupled head-pose and body-pose estimation
in surveillance videos. They used multi-level Histogram of
Oriented Gradients (HOG) [17] for the head and body pose
features and extracted a feature vector for an adaptive classi-
fication using high dimensional kernel space methods. These
techniques are quite general and do not depend on the heads
being in near frontal poses unlike the HCI techniques. Never-
theless the high degree of error or uncertainties that arise from
these methods, render them unsuitable for the tasks like fine
grained human interaction or attention modeling.
On the other hand, on the HCI side of the problem the formu-

lation is limited to 2 meter distance from the sensor along with
near-frontal head-poses. An iterative closest point (ICP) based
mesh fitting approach has been employed for head pose detec-
tion [9], [18]. In [10] the candidate head poses are rendered and
matched to the input depth image and the 6 degree of freedom
pose is solved by optimizing via particle swarm optimisation.
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Fanelli et al. [8] used a randomized patch based decision forest
regression for head pose regression. Work on head pose regres-
sion for scene and human interaction understanding has been
presented [19]. This work focuses on head-pose regression and
interaction detection in 2D movie/ tv-series scenes. While it is
quite robust, this approach is limited in that it only works with
yaw angles of . However it does not depend on motion
priors or specific facial landmark detections. Recently, mani-
fold based metric learning methods have been applied to head
pose estimation [20]. In another approach to manifold learning
the spherical nature of the view manifold of objects is used as a
strong prior [21]. Another approach reported in [22] uses reflec-
tion symmetry information in covariant features extracted from
Gabor features. Features derived from local directional quater-
nary patterns (LDQP) have been used in conjunction with linear
SVM successfully in high resolution RGB data [23].

B. Deep Learning and Convolutional Neural Networks (CNN)
Recently, deep learning, especially CNNs have been shown

to learn robust non-linear representations from input data and
have been especially successful on images [24], [25] and audio
[26]. This is in contrast to traditional computer vision pipelines
where problem specific ad-hoc features like HOG [17] are
extracted. These features would typically be used as input to
machine learning framework such as support vector machines
(SVM) to achieve classification or regression. The power of
deep models lie in their ability to learn layers of non-linear
transformations on the data [25]. The resurgence of these
methods started with the successful introduction of a class of
deep generative models called Deep Belief Networks (DBN)
and their unsupervised training using Contrastive Divergence
(CD) [27]. The power of a generative model, as shown by Tang
et al. [28], lies in being able to reconstruct original images
under noise or heavy occlusions [27]. CNNs [24] on the other
hand are supervised, discriminative and have mostly surpassed
the DBNs in terms of accuracy on large labelled datasets like
the Imagenet [29].
CNNs have also been applied in the multimodal RGB-D

domain. Lu [30] demonstrated early fusion of RGB-D channels
and used transfer learning to initialise the weights of the green,
blue and depth channels with filters learned from the depth
channel. More recently it has been shown that this form of
early fusion is not very helpful because the network can not
propagate meaningful gradients across channels [31], [32].
Hence RGB-D networks are generally trained with late fusion
where the modalities are learned separately and combined in
the classifier phase [31], [32].

III. THEORY AND METHODOLOGY

In this paper we do not concern ourselves with the problem
of detecting heads. Instead we can adapt the output of any head
detector and normalize the heads to as input to our
algorithm. Once we have the normalized RGB-D heads as input
the rest of the process can be briefly summarized as follows.
First, if available, we encode the depth image using a scheme
that we name DAE encoding which encodes the depth modality
with three channels of depth, surface normal azimuthal and sur-
face normal elevation angle as shown in Fig. 3 and is similar to

Fig. 3. Input modalities. (a) shows the RGB input. (b), (c), and (d) show the
depth, surface normal elevation angle, and surface normal azimuthal angle, re-
spectively, that form the three channels of the DAE encoding.

Fig. 4. Visualization of the first level of learned filters on both the RGB network
and the depth network.

HHA of [31]. We do not encode the preferred gravity direction
in DAE like HHA as all our heads are upright. These inputs are
then used to train a CNN each for RGB and DAE and we call
them RGB CNN and Depth CNN respectively. The combina-
tion of the posteriors of the two CNNs are called the RGB-D
CNN.

A. Convolutional Neural Networks
Convolutional neural networks belong to a class of fully

supervised deep models that have proven to be very successful
in a wide variety of tasks. The power of CNNs lie in the ability
to learn multiple levels of non linear transforms on the input
data using labeled examples through gradient descent based
optimizations. The basic building blocks of CNNs are fully
parametrized (trainable) convolution filter banks (as shown in
Fig. 4) that convolve the input to produce feature maps (as can
be seen from Fig. 5), non-linearities (like sigmoid or Rectified
Linear Units/ReLU), pooling layers/downsampling layers (e.g.
max pooling, mean pooling etc.) that downsample the feature
maps, and fully connected layers. CNNs in particular through
their multiple levels of convolution and pooling achieve a
high degree of translation invariance in their features. Recent
studies from Simonyan and Zisserman [33] have shown that
deeper models with smaller filters achieve great expressive
power in terms of learning powerful features from data in
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Fig. 5. Visualization of the features extracted after the first level of convolution.
We show only the first 36 channels out of the 64 channels. It is easy to see
that some filters are bringing out the facial landmarks (top red, where they are
detected, and bottom red, where they are not), whereas others have learned skin
maps (indicated in green), among other real facial features.

tasks like object recognition on large scale datasets like the
Imagenet [34]. As the model go deeper the number of weights/
parameters or the networks grow significantly. It then becomes
imperative to use large scale labelled training data to train
these networks. However one should note that the number of
parameters in the convolution layers are orders of magnitude
lower than the fully connected layer [35]. Hence by having
more convolution layers helps alleviate the problem of this
parameter explosion while retaining the expressive properties
on the deep models. One such model is the recently introduced
Googlenet model [24]. We train two CNNs on the RGB and
depth modalities based on this architecture [24]. This architec-
ture has the state-of-the-art results on the Imagenet dataset [34].
In our experiment the same network also gave the best results
on our task. The advantage of this network lies in that it is very
deep but has a lot less parameters (around 5 million) compared
to other contemporary networks like the VGG-16 [33] which
has more than 130 million parameters. This lets us train the
networks using considerably less training data. We modified the
network by changing the Rectified Linear Unit non-linearities
(RELU) with Parametric Rectified Linear Unit (PRELU) and
their corresponding weight initialization introduced in [36].
The non-linearities are defined as follows:

if
if (1)

if
if (2)

where , the slope in the negative is a learned free parameter.
The reason the PRELU activations are better than their RELU

counterpart lies in the fact that PRELU activations have non
zero outputs and non zero gradients in the negative values. This
makes them easier to propagate gradients from.Whereas in case

of RELU, if some neuron’s output becomes less than equal to
zero, its gradients also vanish and it hampers learning through
gradient descent. The motivation for doing it is that this small
change, without increasing the number of parameters of the net-
work significantly improves the accuracy (see [36]).
We also exploit the ability of CNNs to learn from multiple

types of labels for the same kind of underlying data to achieve
a valid representation learnt on the data. Since there are few ex-
plicit head-pose regression datasets, we initialize the training
of models with classification into 8 head pose classes spanning
360 degrees. The representative head-pose classes are shown
in Fig. 6. We learn an initial representation that is then trans-
ferred to the regression network and fine tuned for regression.
Fig. 6 also shows how the CNN features separate easily in only
two dimensions whereas the HOG feature that is used in other
techniques including [37], [6], [19] is nowhere near as effective.
It can also be seen from Fig. 4 and 5 that the network learns fil-
ters, some which could have been developed by intuition, where
as other features are not as intuitive but effective nonetheless. It
is interesting to note that the feature space embedding presented
in Fig. 6 shows that the CNN learns the implicit circular geom-
etry of the view manifold from the data itself. This is in contrast
to [21] where this shape is imposed as a prior assumption. How-
ever due to imaging noises and low resolution they might not lie
in an ideal circle. Besides, ideal circular distribution may or may
not be ideal for a classifier as can be seen from Figs. 7 and 8.
Hence, it is our belief that an end to end approach without prior
assumption leads to better results for classification.
For regression we expect to see a similar distribution that

is more evenly spread out on the manifold instead of forming
clusters. Fig. 7 shows the output scatter plot of the first two
LDA components of our fine-tuned features on regression on
our dataset.
The regression output is then combined heuristically to ob-

tain a probabilistic attention distribution which we parameterise
as a Von-Misses Fisher distribution. This distribution captures
two important properties of the head pose regressor output.
First, it inherently models the regressor output confidence
directly into the distribution concentration parameter ; second,
it also models the inherent irreducible uncertainty in every gaze
tracking technique where eye balls are not tracked. We have
performed experiments to determine the mean discrepancy
between eye and head-pose to model this phenomenon.
We now discuss each of these steps in detail in the subsections

that follow.

B. DAE Depth Encoding

For depth data it is important to encode some spatial and sur-
face information into the data itself, as shown by Gupta et al.
[31]. We follow a similar approach however we do not encode
the inferred gravity (vertical) direction, because in our case the
heads are always upright and this parameter would yield no
more information. We do however encode the surface normal
azimuthal angle and the surface normal elevation angle along
with the depth data to form three channels as can be seen in
Fig. 3.
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Fig. 6. LDA projected scatter plot of the clusters of the head pose classes after initial training for classification. We compare it with the HOG feature [17] which
is most common in the comparable literature. Not only are our clusters well separated, they maintain the approximate closed topology of the circular head-pose
manifold. The clusters have their mean near the pose class angles and spread around the circumference of the manifold. This validates our choice of transferring
this network to the regression task.

Fig. 7. LDA projected scatter plot of regression features on our dataset with
a color map that spans the range of 0–360 degrees. The features maintain the
manifold.

Surface normals have proved to be a very useful feature for
object recognition [38]. We compute the surface normals via

(3)

where is the normalized normal vector at
which in turn are the real world coordinate at depth image point

Fig. 8. LDA projected scatter plot of the regression features on the BIWI
dataset [8]. This shows the headpose regression features thinly form around the
frontal pose manifold. This dataset is relatively easy as it is very high resolution
and contains only frontal/near-frontal head poses.

and is the X derivative and the Y deriva-
tive at point . To compute the derivatives we use implicit
filtering techniques as described in [39]. Implicit filtering tech-
niques are much more accurate than the standard morpholog-
ical derivative as can be seen in Fig. 9. Implicit filtering also
involves larger neighbourhoods for computing more accurate
gradients. Considering all these benefits we chose to use the one
parameter family of implicit differentiation with the frequency
domain transfer function defined as the following spatial do-
main equation:

(4)
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Fig. 9. Benefit of implicit differentiation is shown in this graph. It can be seen
that the frequency response of the implicit Lele’s and Fourier-Pade-Gelerkin
schemes [39] better approximate the original derivative compared to the explicit
second order central difference scheme.

where and are the derivative and the function value re-
spectively at . and its corresponding frequency domain
counterpart is defined as follows:

(5)

where are user chosen parameters.
The derivative can be computed similarly. There are many

standard parameter choices for a,b,c, , and . Here we use the
Lele coefficient values [39].

C. Fine-Tuning for Regression
The classification network is turned into a regression network

by replacing the last Softmax layer with an Euclidian loss layer
that measures the L2 distance of the prediction from the target.
To activate the fine-tuning on regression on the head-pose data
the following must be considered. The regression problem is
ill-posed for the linear Euclidean manifold where we compute
the regression L2 loss. This is because the normalized regression
label goes from 0 to 1 where 0 is the back of the head to 0.5 that
is for front facing to 1 (360 degree) that is again back of the head.
Now the distance between the angle 0.1 and 0.9 should be 0.2
on the circular manifold. In the stated example the heads look
very similar, however the loss function penalizes the network by
having an error of 0.98, hence the gradients for weight update
are large and these force large changes. Ideally the loss function
would be defined as:

if
if

(6)

where t is the target angle and o is the output of the network.
However this function is not everywhere differentiable (with
a discontinuity at ). In order to perform gradient
descent the loss must be differentiable w.r.t the weights. To
overcome this issue, instead of using the angles for regression,
we use the X,Y coordinate of the unit vector pointing in that
angle, the problem can be posed on the linear Euclidean man-
ifold again. So instead of a single number we have a pair. For
both Yaw and Pitch this same technique can be easily extended

Fig. 10. Quality of depth data degrades rapidly while RGB stays much more
reliable with distance.

to use the X,Y and Z coordinates of the head pose vector in 3-D.
The network fine-tuned for regression should have features that
are thinly spread along the manifold.We see this expected result
in Fig. 8 where we plot the features projected to two dimensions
using Linear Discriminant Analysis (LDA) on the Biwi dataset
[8]. We also plot the same using our dataset in Fig. 7.

D. Fusion of RGB and Depth Modalities
Whenever available, both RGB and depth give complemen-

tary information that can be combined to achieve an overall in-
formation gain. Apart from that depth information can further
be exploited to compute the scene interaction/ attention metric
in 3D that maps the head pose based attention to the 3D envi-
ronment as can be seen from Fig. 1(a). Hence whenever pos-
sible, we average the class posterior scores from both the RGB
and depth classifiers. However we note that depth information
quality is highly dependent on distance from the sensor. Also
from our experiments we have found out that the back of the
head depth images are extremely noisy.
Fig. 10 shows the reliability of the RGB vs Depth informa-

tion as a function of distance from the sensor (in this work we
used both the Kinect and Kinect v2 sensors). We compute the
confidence of the RGB and Depth information from the rela-
tive error with respect to ground truth. From our experiments
we have seen that unless the distance of the detected head is
taken into account, depth information is not very reliable after
3.5 meters as far as headpose is concerned. Hence if depth data
is available and the detected head is less than 3.5 m distant, we
average the output of the RGB and Depth models. Otherwise we
only use the RGB information (e.g. in the surveillance domain).
As can be seen from Fig. 11, depth information also degrades
rapidly for non frontal poses but is very useful close HCI do-
main data.

E. Regression Confidence Estimate
We determine the regression confidence by combining the re-

gression angle output on the yaw angle with the classifier pos-
terior on the angles. For this we train a Softmax classifier with a
granularity of 1 degree (360 classes) on top of the final regres-
sion network while keeping the rest of the network weights con-
stant. This enables the computation of the variance of the poste-
rior to estimate the confidence of the regression. Fig. 12 shows
the output of the classifier posterior along with regression.
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Fig. 11. LDA scatter of depth information shows that it is not very reliable for
back of the head poses. This is in line with our expectation as hair does not
reflect the depth sensor infrared illuminant very well and this often results in
very noisy and sparse data. However, the depth information is quite good for
the frontal poses.

Fig. 12. To estimate the confidence of the regression model into the atten-
tion metric, we use the same network to get a posterior distribution on the 360
degrees. We show the regression output, the ground truth, and the probability
distributions.

IV. VALIDATION OF THE TECHNIQUE

We have generated a dataset using the Kinect and Kinect 2
sensors where we recorded 46 people (32 males, 14 females)
freely moving around with various head-poses in front of the
sensor. To get accurate head pose ground truth data we used
a discreet (actually hidden) wearable miniature X-BIMU IMU
sensor which provides the head orientation as a quaternion. We
then recorded each individual for one minute moving in the
field of view with varying distance (2 m - 8 m). We anno-
tated the head in each frame and associated the IMU data with
it in each frame. We acquired around 1500 frames for each
person giving a dataset of the order of 68000 training examples.
This dataset, which we will release publicly for all academic re-
searchers addresses a vital gap in head pose research, i.e. it is
the first of its kind head pose estimation dataset which is mul-
timodal (RGB-D), is accurately labeled for regression, covers
all poses (not only constrained to frontal poses), and also spans
a wide range of depths leading to both high quality and low
quality/noisy data.

To maximise the training corpus, we gathered data from
multiple sources that had similar underlying distributions.
Datasets annotated for unconstrained face recognition, facial
landmark detection, expression detection all have facial data
under various poses. The different head pose datasets that
we used are the Oxford town centre dataset [5], the BIWI
Kinect head-pose dataset [40], the Caviar shopping centre
dataset [41], the HIIT Head Orientation dataset along with the
IDIAP head-pose dataset [42]. It should be highlighted that
the different datasets have different annotations; some of them
have real-valued ground truth, others have 6-8 classes spanning
the 360 . The datasets also vary in resolution from very high
(BIWI) to very low (Caviar). To compare with the other high
resolution RGB methods we also report our result on the CMU
Multi-PIE dataset [43].

A. Experimental Setup

We train one network for RGB and Depth each. This is done
to unify the problem of both HCI and surveillance domains.
Typically, one might adapt the networks for each domain, how-
ever from our initial experiments we found that including both
high and low resolution imagery in the training set improved
classification performance on the low resolution inference while
the high resolution inference results were more or less the same.
The convergence rate during training was faster as well. We
think this is because the high resolution images help the network
estimate the underlying model better and that translates into
better parameter estimation for low resolution and/or noisy im-
ages. For training and validation we split the combined dataset
in a ratio of 70:30 randomly across several trial runs and aver-
aged the mean squared error. For training we used a dropout rate
of 20% on before every fully connected layer. We jittered the
input images by mirroring them (with corresponding change in
groundtruth) scaling the bounding box and cropping them with
scales 0.75, 0.9, 1.5, 1.8, 2.0, and 2.5. For all scales greater than
1, we also translated the images randomly by 20% in both direc-
tions. This was done to improve scale invariance along with mit-
igating the effects of poorly-aligned or partially-occluded head
detections. We used a modified version of the deep learning
framework Caffe [44] to train our network. We translated the
centroid of each head to ( ) in 3D Euclidean space and
uniformly re-sampled the point cloud to an organized
set. For re-sampling we used bi-cubic interpolation for the RGB
values and nearest neighbour interpolation for the XYZ values.
To obtain the mean inherent variance due to eye balls (the true
focus of attention is somewhat independent of head pose), we
set up an experiment with where we tracked the difference be-
tween the absolute head-pose (using the IMU) and the focus of
attention of the eye using the Gazepoint eye tracker, which has a
resolution of 0.5 degrees at upto 30 cm distance. We computed
the mean variance for 11 people. This provides us with an in-
teresting insight to the problem. In conclusion, head-pose error
less the mean error of 12.35 does not make any sense for the
application of true visual attention estimation without tracking
the additional dimensional freedom provided by the eyeballs.
In order to gain a good understanding of human attention model
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Fig. 13. Comparison of our method on the BIWI dataset with respect to the
random forest (RF) algorithm [8]. Our RGB+Depth CNNs (both RELU and
PRELU) outperform the HCI technique without explicitly tracking facial land-
marks. Here in this range we see the tangible benefit of having depth information
along with RGB data.

without eyeball tracking, further studies into human gaze pat-
tern with respect to scene saliency and semantic contextual in-
formation would be needed.
We selectively fused the RGB and Depth modalities based on

availability and quality of the depth data as shown in Fig. 10.We
only fuse the depth classification if the detected head is less than
3.5 meters in distance, otherwise the reliability of the depth data
falls off rapidly as can be seen directly from the lower curve in
Fig. 10.

B. Results
Here we present the comprehensive validation of our tech-

nique on both HCI and surveillance domains.
1) Validation on BIWI Kinect Headpose Dataset [8] : The

data in this dataset has been captured very close to the sensor and
does not contain non-frontal poses. Here the output of our RGB
and Depth models are averaged to get the result. This data lets
us compare our general technique to a finer grained HCI tech-
nique as presented in [8]. The comparative results are shown in
Fig. 13. We use mean angular error as the metric which is the
same used in comparable literature [8]. In both pitch and yaw
we outperform the best method [8], which has the advantage
of explicit landmark detection, by 7%. It should be noted that
while we do not detect landmarks explicitly, from Fig. 5, it is
clear that the CNN has now learned landmark detection auto-
matically. However as can be seen from Fig. 5 the network de-
tects landmarks whenever necessary implicitly along with other
non obvious features. We also see that depth information ac-
tually improves the results in this range when combined with
RGB.
2) Validation on Our Dataset: One weakness of the BIWI

dataset is that it does not contain non frontal or distant head-pose
data. To overcome this, and to show the power of our technique
we report the results obtained on our dataset which is far more
challenging. Our two baseline methods are the “Here’s Looking
at You Kid” (HLYK) [19] which uses only the RGB data and
the Random forest (RF henceforth) based approach [8] which
uses only the depth and normal data. We outperform both the
techniques by a significant margin as shown in Fig. 14. We re-
duce the relative error by 40% to that of our closest competing
technique [19].

Fig. 14. Mean squared errors (MSE) of the RF [8] and HLYK [19] techniques,
compared to ours on our dataset.

Fig. 15. Mean squared error on the Oxford dataset. Here we compare our re-
gression output with the Benfold [36] and the Chen [6] techniques.

3) Validation on Low-Resolution Surveillance Dataset: For
the low resolution surveillance domain dataset, we report our re-
sults on the Oxford and the Caviar datasets. In these datasets we
classify the head pose into 8 equally spaced (45 ) angular bins
as shown in Fig. 6. For comparison with [6] and Benfold [37]
we use the Oxford dataset in which both have reported results.
One consideration has to be made while comparing because [6]
reported the mean square error (MSE) which they derived from
a weighted combination of their 8 class classifier output mul-
tiplied with the bin angles as where is the clas-
sifier output value for the class and is the unit vector in
that angular direction. Fig. 15 shows the comparison between
our method with the previous state-of-the-art results. In terms of
MSE we have achieved the best published results. The margin
alone does not give the true picture of performance. We there-
fore present the confusion matrices on the Oxford and Caviar
datasets, as shown in Fig. 16.
On the Oxford dataset, for comparison, we also show the

output confusion matrix of the Benfold algorithm [5] along with
our confusion matrix as shown in Fig. 16.
4) Validation on Multi-PIE Dataset [43]: The Multi-PIE

dataset consists of 337 subjects, under 15 view angles and
19 illumination conditions. This is a close range high res-
olution RGB dataset. We compare our method against two
state-of-the-art techniques on this dataset 1. LDQP [23] and
2. circle23Sphere [21]. As shown in Table I we outperform both
competing techniques [23] and [21] in terms of Mean Angular
Error(MAE) by a significant margin without any training on
this dataset.
5) Comparison Between PRELU and RELU: In all our ex-

periments PRELU activation outperformed RELU consistently.
As can be seen from Fig. 15, in case of low resolution surveil-
lance domain dataset [5], we gain improvement in angular
error by using PRELU. On our challenging RGB-D dataset the
effect is even more pronounced with an improvement of around
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Fig. 16. Confusion matrix comparing the methods the results. (a) Oxford data, benfold algorithm [37]. (b) Oxford data, our RGB CNN. (c) Caviar data, our RGB
CNN. On both datasets we have the state-of-the-art results by far .

TABLE I
RESULTS ON THE MULTI-PIE DATASET

2.9 as seen in Fig. 14. Results on the CMU Multi-PIE dataset
as reported in Table I suggests that PRELU provides an addi-
tional reduction inMAE of 0.36 . Finally in Fig. 13, on the Biwi
dataset where error rates are already pretty low, we get less im-
provement (0.2 ), but consistent improvement nonetheless by
using PRELU over RELU.
6) Discussion: We validated our approach on two datasets.

In the first HCI domain BIWI dataset [8] our more general tech-
nique came very close in terms of accuracy compared to the
Random Forest method employed there. While this was ex-
pected, we want to argue that without specifically tracking the
eye balls, an error less than carries no meaning by it-
self as has been established by our experiment on eye gaze and
head-pose variance. As long as the error is less than that, as is
the case for both the techniques on this dataset, any two tech-
niques are equivalent for true focus of attention (as in HCI).
On our, more challenging dataset, there are a few observa-

tions worth noting. As the distance increases and the quality of
depth data decreases, we see that the error in the depth feature
based techniques have a larger gradient than the HOG based
technique. This is because the loss in colour resolution is not as
high compared to the loss in quality of the depth data. This sug-
gests that better depth reconstruction techniques should improve
results further. However interpolation schemes like bi-cubic in-
terpolation produced significant artefacts around the edges and
further degraded the results. So we used nearest neighbour in-
terpolation for resampling the head point cloud.We now believe
that a “data driven” head depth reconstruction will be the way
forward and warrants further investigation in future work. We
show the qualitative results on different datasets in Fig. 17.

V. EXPLOITING HEAD-POSE AS A SOCIAL SIGNAL
We use our robust head-pose estimation technique to further

infer meta information regarding human centric scene under-
standing i.e. we wish to know what people are looking at in the

Fig. 17. Qualitative output of our headpose estimation system on various
datasets. (a) Caviar dataset. (b) Oxford Dataset. (c) Our RGB dataset. (d) Our
low-resolution RGB-D dataset.

real world, not merely the image plane. To this end we first de-
fine a “human attention metric” based on the regression output.

A. Probabilistic Attention Metric
While pure head pose angle is important, we note that it car-

ries little meaning by itself if there is no object at which the
person is gazing. If we model the head-pose as a spread of at-
tention with a mean direction and a uncertainty spread that de-
pends upon regressor confidence that is computed by taking the
variance of the classifier output (we also compute the 360 clas-
sification result along with the regression output), along with the
inherent uncertainty due to not tracking the eye, we can gain a
lot more useful information. Our aim is to achieve gaze esti-
mation as a spatial probability distribution in an unified frame-
work that can be used for both gaze estimation and interaction
detection. This is distinct from approaches defined in literature.
In [18] head pose is used for estimating gaze through a fixed
sized disc surrounding the intersection point of the head pose
ray and the object/camera plane. This approach does not incor-
porate the confidence of the head pose estimate to peak or dif-
fuse the gaze estimate that our technique proposes. Whereas the
LAEO system [19], while useful for interaction detection, lacks
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Fig. 18. Von-Misses Fisher distribution visualized on a unit sphere. The mean
direction is represented by the red line and the factor represents the concen-
tration of the distribution.

the ability to project the headpose estimate into gaze estimate.
Our proposed approach, the Attention Metric (AM) solves both
these problems in a unified fashion.
To define the field of attention given the Regressor output

of the yaw ( ) and pitch ( ) head angles and their cor-
responding variances ( ) for each frame, we turn to
the field of directional statistics. We define a unit 2-D spherical
probability distribution manifold in the 3-D space using the Von
Mises–Fisher distribution [45]. This distribution is analogous to
a 2-D normal distribution but wrapped around a 2 dimensional
unit sphere in . In general for a ( ) dimensional sphere
in the von Misses-Fisher distribution for the p-dimensional
unit vector is defined as

(7)

where is the concentration factor (inversely proportional
to the variance ) and is the unit vector in the direction
of the mean and is the normalization factor defined as

(8)

where denotes the modified Bessel function of the first kind
and order . In our case of or It reduces to

(9)

Fig. 18 shows the Von Mises-Fisher distribution for various .
In our particular case we compute the mean direction unit

vector from the yaw and pitch angles in spherical coordinates,
and also the concentration factor assuming isotropic variance
in both yaw and pitch angles as

(10)

The and are the sum of the regressor variance ( ) and the
inherent mean uncertainty (E- constant due to no eye tracking)
in standard deviation units.
In case one needs to preserve anisotropic variances in both di-

rections one can use the Kent distribution [45] which preserves
those properties. However from our experience, we decided not
to use it (keeping in mind its higher computational complexity).
So our final attention metric for person i is defined as

(11)

Fig. 19. In this figure, we show the use of the head pose angles with the interac-
tion metrics LAEO [19] and AM to do interaction detection. (a) and (b) show the
yaw and the pitch angles along with their 95% confidence intervals, of two heads
in a sequence of two people interacting. (c) shows the output of our interaction
metric (IM) (in blue) and interaction detection (dotted cyan), and (d) compares
the LAEO [19] metric (blue) and its corresponding interaction detection (dotted
cyan). The ground truth for interaction is shown for reference in red in both
(c) and (d) and the signal is binary (the interaction is either happening or not).
IM clearly outperforms LAEO.

Fig. 20. Precision recall curve comparing our attention metric to the LAEO
metric on our dataset.

To detect interaction between any two people (i,j) we multiply
two attention matrices ( and ) together computed at
the location of the other person’s head. Hence the interaction
metric (IM) for a pair of people (i,j) with their corresponding
head positions and is defined as

(12)
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Fig. 21. We show the interaction and WCC head pose signals. The binary ground truth for interaction is shown in red. The raw head pose signals are same as 17
(a) and (b). The scenario can be described with the four snap shots as follows. (1) Two people are talking facing each other, and from (b) the IM can be observed
to be high while from (a) the WCC is not observed high. (2) One person looks away towards the direction of the camera which is followed by a drastic fall in the
IM in (b), while the WCC in (a) falls while the two heads behave differently and stabilizes. (3) The person looks back intermittently and we see the corresponding
change in IM. (4) Finally, the person walks away with the other person looking at the same place. This makes the WCC fall drastically. The peak WCC is achieved
around frame 200 when both of them look at the general direction of the camera.

Fig. 22. In this scenario, two people are interacting as can be seen from (1). This results in the corresponding IM and WCC signals in (b) and (a), respectively.
Then in (2), they start walking together in the same direction facing the camera. This makes the WCC signal go up. The WCC signal stays high when they look at
the same object of interest together in (3). Finally, in (4) they walk away together looking towards the camera. The dip in the WCC signal near frame 220 is caused
when one person walks away before the other.

where is the euclidean distance between the pair of heads.
Fig. 19 shows the output of our Interaction metric along with

interaction detection on our dataset. For comparison we also
show the HLYK interaction detection scheme, i.e. looking at
each other (LAEO) as reported in [19]. We also show the raw
yaw and pitch angles for both persons. In both the interaction
detection signals, namely IM and LAEO the interaction ground

truth is plotted in red, and the IM and LAEO signals are plotted
in blue. To detect interactions from IM we can simply specify a
threshold above which interaction is detected. This is the only
free parameter in the IM scheme. We cross validated the param-
eter for various values and found that setting this IM threshold
to 0.32 results in highest accuracy. In contrast, LAEO requires
three free parameters, the aperture of the viewing cone , the
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Fig. 23. In this scenario, the two people are not behaving similarly at the beginning and are looking at different things at different times. In (3) they are attracted
by the same thing on the wall on the left and look at it together. This makes their head pose signal to become highly correlated as can be seen from (a). Finally,
they walk away their separate ways and we see a drop in the WCC signal.

temporal window for smoothing and the interaction threshold
. We computed LAEO using the best reported values for these
parameters from [19]. It is note worthy that IM in bound be-
tween [0,1] allowing a probabilistic interpretation of the same,
whereas the LAEO signal is not bounded. From Fig. 20, where
we show the precision-recall curves comparing both IM and
LAEO, it is evident that IM outperforms LAEO consistently
across all parameter choices.
We show another instance of our interaction metric in Fig. 21.

In this instance there are two people who are interacting in the
beginning (high IM signal), then one person looks away towards
the camera while the other person keeps looking at the said
person (low IM signal), near the middle of the sequence they
interact intermittently, and finally one person walks away. Both
the binary ground truth for interaction (red) and the IM signal
(blue) are shown.
Apart from showing interaction metric we also show another

social signal metric called windowed cross correlation (WCC
henceforth) [46]. This signal measures the similarity between
any pair of time series head pose signals (within some time
window; leading or lagging) and can be used to detect group
behavior.
To further show our system we consider the scenarios shown

in Figs. 22 and 23 by using the both the interaction metric (IM)
and WCC signals. In the case of Fig. 22, the scenario starts with
two people looking with each other. During this period we see
that the IM signal is indicative of the scenario. Then both the
persons start walking together in the same direction. This leads
to a high valued WCC signal and zero IM signal. This state of
the signals persists as both of them look together into the same
object of interest. Finally, one person walks away before the
other causing a drop in the WCC signal, which again goes up
as the other person joins moments later. All this while the IM
signal is zero or near-zero as no interaction is taking place.

In the case of Fig. 23, the scenario represents two people loi-
tering in a common area until suddenly something attracts their
attention and both look towards the same thing. This leads to a
low WCC signal at the beginning which is followed by a high
WCC signal when both of them look towards the same thing.
Finally when they move apart from the scene we see a corre-
sponding drop in the WCC signal.
Discussion: The IM signal was quantitatively evaluated in

Fig. 20 and compared against the state-of-the-art metric LAEO
as described in [19]. The IM signal with significantly less
number of free parameters to tune (one, namely the interaction
threshold) outperformed LAEO in all scenarios. Subsequently
from all the qualitative scenarios described in Figs. 19, 21, 22,
and 23, we see that both the IM and WCC signals are intuitive,
and both provide key evidences that can contribute towards
higher level behaviour inference in social signal processing.

VI. FUTURE WORK AND CONCLUSION

In this paper we presented a novel approach towards human
attention modeling via head-pose estimation. We unified the
low-resolution and high-resolution application domains and
outperformed the best reported methods in each. We showed
that our approach achieves state-of-the-art results on uncon-
strained head pose estimation on RGB-D point clouds. In future
we plan to do a detailed expansion of the different components
of the algorithm. It is interesting to note that our eyes have an
additional degree of freedom, so it may not make sense to im-
prove accuracy to less than without eyeball tracking.
To achieve better performance the authors believe a hybrid
approach where semantic information about salient regions in
a scene have to be probabilistically fused with the regressor.
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