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Abstract

Heat waves (HWs) exert severe impacts on ecosystem, social economy, and human lives. Thus, changes in HWs under a
warming climate have triggered extensive interests. In this study, the authors developed a new method to identify the HW events
in China by double thresholds and further classified them into four categories (i.e., mild, moderate, severe, and extreme HW5s)
according to their magnitudes by using the daily maximum temperature data from 701 observation stations. On this basis, the
spatiotemporal features of HWs with different severities in China from 1961 to 2015 were investigated. The results show that the
high HW frequency mainly appears in Jianghuai, South China and western Northwest China. Moreover, the high frequencies of
moderate, severe, and extreme HWs occur from June to August and reach the peak in July, while the mild HW frequency is
compared from May to September. Since the 1960s, the frequencies of the mild, moderate, severe, and extreme HWs in China
have increased significantly with rates of 7.5, 4.3, 1.4, and 1.8 events per year, respectively. The increases are the greatest in July
for the moderate, severe, and extreme HWs while comparable during May to September for the mild HW. Besides, an
interdecadal change is found to occur in the late 1990s. Compared with the former period (1961-1996), the occurrence of the
extreme HWs during the latter period (1997-2015) has increased most significantly in eastern Northwest China and North China,
while the frequency of the mild HWs increases most significantly in Jianghuai and South China.

1 Introduction

Heat wave (HW) is considered as a period of consecutive days
with anomalous high temperature. In recent decades, HWs
have happened in many regions around the world and resulted
in huge economic losses and deaths (e.g., Schér et al. 2004;
Garcia-Herrera et al. 2010; Anderson and Bell 2011; Song
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et al. 2014; Gao et al. 2015; Habeeb et al. 2015; Gu et al.
2016; Xu et al. 2016; Tomczyk and Sulikowska 2018;
Williams et al. 2018; Yang et al. 2019). For example, the
HW occurring in Europe in 2003 exerted a catastrophic effect
on human health and caused excess deaths of more than
70,000 people (Poumadére et al. 2005; Robine et al. 2008,
Trigo et al. 2009). A wider and stronger HW event, with the
temperature breaking the record, hit central Europe and Russia
in 2010 (Barriopedro et al. 2011; Grumm 2011). During the
summer time of 2013, eastern China was hit by an unprece-
dented HW (Xia et al. 2016). In 2017, western and central
Europe experienced a mega HW in June (Sanchez-Benitez
et al. 2018), and eastern and central China experienced a
HW in July, which affected nearly half of the national popu-
lation (Sparrow et al. 2018). In the late July and early August
of 2018, a historically significant HW affected parts of East
Asia, with the worst-hit area in Japan (WMO 2019).

Due to severe impacts of HWs, their secular change is of
great interest and major concern. So far, there have been a
number of studies devoted to changes in HWs over China. It
is revealed that there exists a remarkable increase of high
temperature in China in recent decades (e.g., Ding et al.
2010; Ding and Qian 2011; Zhou and Ren 2011; Ding and
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Ke 2015; Zhou et al. 2016; Wang et al. 2017a; You et al.
2017; Shi et al. 2018). Also, the intensity, frequency, and
duration of HWs are projected to intensify and exaggerate
toward the end of the twenty-first century in a future warmer
world (Sun et al. 2014; Zhou et al. 2014; Wang et al. 2015,
2017b; Guo et al. 2017).

Although there are many studies focusing on the spatiotem-
poral characteristics of HWs, a widely accepted and consistent
definition of the HW index has not been established (Meehl
and Tebaldi 2004; Xu et al. 2016). Due to different purposes
of researches, different HW indices were used. For instance,
some indices were defined based on absolute thresholds and
some indices based on relative thresholds (Smith et al. 2013;
Perkins 2015; Xu et al. 2016; You et al. 2017). For the indices
based on absolute thresholds, it is challenging to use them to
compare HWs across regions (Russo et al. 2014). The indices
defined by relative thresholds may overcome this problem, but
most of them capture the HW magnitude only by the number
of days exceeding the thresholds (Perkins 2015). Furthermore,
only using relative thresholds is hard to distinguish real HWs
from normal temperature anomalies particularly in cold re-
gions. Due to this reason, this study attempts to address the
characteristics of HWs in different regions of China in a con-
sistent way through constructing a new HW identification by
using the relative threshold combined with the absolute
threshold. In addition, given that few studies concentrated
on the changes in HWs with different severities (i.e., mild,
moderate, severe, and extreme) in China, we also examine
the spatiotemporal features of mild, moderate, severe, and
extreme HWs in China during the last decades in order to
provide a fruitful picture for climate change adaptation and
mitigation.

2 Data and methods
2.1 Data

The daily maximum temperature (7},,.¢) dataset of 768 mete-
orological stations in China during 1961-2015 is used, which
is provided by the China Meteorological Administration
(CMA) after quality control, homogeneity testing, and correc-
tion processing. Considering the integrity and continuity of
the series, stations with the missing data exceeding 31 days
were excluded in this study, finally leaving a total of 701
stations for analysis (Fig. 1). For these stations, the missing
daily records were filled by the climatological values of daily
Tnax during 1961-2015.

To investigate the characteristics of HWs in sub-regions of
China, following You et al. (2017), China is divided into eight
sub-regions (Fig. 1a) based on the division of administrative
regions and monsoon characteristics.
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Fig. 1 Distribution of the observation stations, superimposed by the
domains of eight sub-regions (NEC—Northeast China, 42.25°-
54.75°N/110.25°-135.25°E; NC—North China, 35.25°-42.25°N/
110.25°-129.75°E; JH—Jianghuai, 27.25°-35.25°N/107.25°-122.75°E;
SC—South China, 15.75°-27.25°N/107.25°-122.75°E; SWC—
Southwest China, 21.75°-35.25°N/97.25°-107.25°E; TP—Tibetan
Plateau, 26.75°-35.25°N/77.25°-97.25°E; WNC—western Northwest
China, 35.25°-49.75°N/72.25°-95°E; ENC—eastern Northwest China,
35.25°-42.75°N/95°-110.25°E)

2.2 ldentification of HWs

In the current study, a new HW identification is constructed by
both relative threshold and absolute threshold.

The relative threshold at a certain station on day d is the
90th percentile of the set A, which is defined as all the 7}«
from d — 15 days to d + 15 days in the reference period 1961—
1990 as recommended by the Expert Team on Climate
Change Detection and Indices (ETCCDI). The set A, is cal-
culated as:

1990 i=d+15
a= U U T, (1)
y=1961 i=d—-15 "

where U is the union of sets and 7}, ; is the T}, on day i in year
y. Each station has a corresponding set A.

The absolute threshold is defined as the mean of the set B
plus one standard deviation. The set B is calculated as:

701 1990 153
B =U,21Y, 0061Yi21 Ty (2)
where T, ,,; denotes the 71, on day 7 in year y at station n. The

number 153 indicates the total number of days from May 1 to
September 30 when HW events and hot days mainly occur
(Ding and Ke 2015; Yang et al. 2019). The number 701 indi-
cates the number of the stations. For a particular target region,
there is a specific B value. For the China region, the absolute
threshold is 30.9 °C.

If the time period when the 7;,,,, exceeds both relative and
absolute thresholds persists no less than 3 consecutive days, it
is considered as one HW event. We have compared the aver-
aged Tp.x of hot days captured by both relative and absolute
thresholds with that captured by the relative threshold only.
For hot days captured by the relative threshold only, the
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averaged Ti,.x across the Tibetan Plateau (TP) and some sta-
tions in Northeast China (NEC) are below 25 °C, suggesting
that even if the temperature in these regions is warmer than the
normal, it cannot be regarded as one HW event. Figure 2
shows the daily number of stations with the HWs respectively
identified by the relative threshold only and by both relative
and absolute thresholds from May to September on the clima-
tology. Compared to that captured by both relative and abso-
lute thresholds, only using the relative threshold overestimates
the occurrence of HWs, especially at the start and the end of
the summer time. Besides, the HWs based on the relative
threshold show little intraseasonal variation, which is consis-
tent with the result of Wang et al. (2017a). However, by con-
sidering both relative and absolute thresholds, the
intraseasonal variation is yielded. This result demonstrates
that taking relative and absolute thresholds together into con-
sideration can distinguish HWs from abnormal temperatures
and better display the intraseasonal variation of HWs.

2.3 Classification of HWs with different severities

The magnitude of HWs is calculated based on the HW mag-
nitude index daily (HWMId) method (Russo et al. 2015) in
terms of the equation:

T,~T ,
ﬂlfi Ty > T35 (3)

if 1 Ta<T30505p

My(Tq) = T30,750~T30025p

where T is the T, of hot day d in the HW event; T’,5, and
T39,75p are the 25th and 75th percentiles of all the 7}y, in the
reference period at a certain station, respectively. M, is the
ratio of the distance from the T}, of hot day d in the HW
event to the 25th percentile with the interquartile range (IQR).
It represents the abnormal excess fraction over the normal

excess, and can address climate characteristics in different
regions. The sum of M, for all hot days during one HW event
is defined as the HW magnitude in this study. This index can
simultaneously measure the duration and the intensity of HW,
which has been applied in several studies to examine the ob-
served and projected changes of HWs in Africa and Europe
(Zampieri et al. 2016; Russo et al. 2015, 2016; Dosio 2017,
Sanchez-Benitez et al. 2018).

Based on the magnitude, we classified the HWs into four
categories: the mild, moderate, severe, and extreme HWs, to
describe their severities. Specifically, we firstly counted the
number of HW events over a fixed threshold (HWMId mag-
nitude) at each station of China for the period 1961-2015.
Then, the percentage of stations that experience at least one
HW event over a fixed threshold (HWMId magnitude) was
calculated. According to the skewed distribution of the station
percentage, the severity of HWs was determined. Figure 3
presents the statistic result of station percentage corresponding
to different magnitudes. On average, there are about 62%,
40%, 20%, and 10% of stations in which at least one HW
event with HWMId >0, HWMId > 6, HWMId >9, and
HWMId > 12 occurred, respectively. Following Fig. 3, we
defined the events with 0 < HWMId<6, 6 <HWMId<9, 9
<HWMId<12, and HWMId > 12 as the mild, moderate,
severe, and extreme HWs, respectively, in this study. This
selection for the classification of HWs is in accord with
Russo et al. (2014) and can be further justified by the empir-
ical cumulative distribution function (CDF) of the magnitudes
of all HWs in China during 1961-2015. As shown in Fig. 4,
the cumulative probabilities corresponding to the HWMId
magnitudes of 6, 9, and 12 are in turn 0.56, 0.83, and 0.92,
representing the conditions of half, most, and almost all of the
HW events. Namely, the occurrence of mild, moderate, se-
vere, and extreme HW events corresponds to a probability of
56%, 27%, 9%, and 8%, respectively.

Fig. 2 Daily mean T}, (black 70 ' ‘ T ml 34.0
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with HW events as identified by 60 — olatve max 32.0
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Fig. 3 Percentage of stations
(ordinate) where at least one HW
event is detected over a fixed
threshold (abscissa)
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2.4 Statistical methods

In this study, Sen’s slope method (Sen 1968), as a robust non-
parameter method, is used to calculate trends. The signifi-
cance of trends is determined by the modified Mann—
Kendall (MM-K) test. This test can solve the problem of series
auto-correlation that exists in the traditional nonparametric
Mann—Kendall (M-K) test (Hamed and Rao 1998). Because
both of the MM-K and Sen’s slope methods are nonparametric
and less sensitive to extreme values, these methods are well
suited for estimating the slope of climate extreme metrics and
testing their trend significance (Zhang et al. 2012; Panda et al.
2017; Lin et al. 2018). The Wilcoxon rank sum test (Wilcoxon
1945), which is also a nonparametric method, is applied to
assess the significance of differences between two sub-pe-
riods. Besides, the Cramér—von Mises (CvM) test, which
can test the difference between two independent, identically
distributed time series and detect the mutation point of univar-
iate time series (Holmes et al. 2013; Mazdiyasni and

-
6

-
9

- -
12 32

Magnitude levels (HWMId value)

AghaKouchak 2015; Sharma and Mujumdar 2017), is further
employed for mutation point analysis.

3 Results

Figure 5 displays the spatial distribution of the HW frequency
and magnitude averaged over the course of 1961-2015. It can
be clearly observed that the stations with the HW frequency
higher than 2 events per year are mainly located in Jianghuai
(JH), South China (SC), and western Northwest China
(WNC). The number of HWs in NEC is generally less than
1.5 events per year, indicating relatively less frequency of
HWs there (Fig. 5a). The mean HW magnitude is relatively
smaller in the regions with high HW frequency, especially in
the central part of southeastern China. In contrast, the HW
magnitude is relatively larger in the regions with low HW
frequency, for instance, in Yunnan Province located in

Fig. 4 Empirical cumulative 1.0
distribution function (CDF) of
HW events during 1961-2015.
The abscissa denotes HW magni- 0.8
tude and the ordinate indicates = ’
cumulative probability ﬁ
0 0.61
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(a) Frequency(Events/year) (b) HWMId Magnitude
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Fig. 5 Spatial distribution of (a) HW frequency and (b) HWMId magnitude averaged over 1961-2015

Southwest China (SWC) and Qinghai Province located in  indicates that the spatial patterns of severe and extreme HWs
eastern Northwest China (ENC) (Fig. 5b). are spatially more homogenous than those of mild and mod-

The climatological distribution of the frequency of differ-  erate HWs. Especially, the middle reaches of the Yangtze
ent categories of HWs across China is shown in Fig. 6. It  River valley, which experience more mild and moderate
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Fig. 6 Spatial distribution of the frequencies of (a) mild, (b) moderate, (¢) severe, and (d) extreme HWs averaged over 1961-2015
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Fig.7 Temporal variations (bar) and linear trends (dashed line) of anomalies in the total frequencies of (a) mild, (b) moderate, (¢) severe, and (d) extreme
HWs during 1961-2015 over all the stations. ** denotes the trends significant at the 0.01 confidence level

HWs, are affected by fewer severe and extreme HWs, as com-
pared to the lower reaches of the Yangtze River valley. Being
the sub-regions with the highest occurrence of HWs, SC en-
counters mild, moderate, severe, and extreme HWs with the
frequencies of 1.28, 0.59, 0.21, and 0.20 events per year on
average, respectively; the counterparts for JH are 1.14, 0.44,
0.15, and 0.14 events per year, respectively. In WNC, the
frequencies of mild and moderate HWs are respectively 0.91
and 0.47 events per year, while the frequencies of severe and
extreme HWs are close to those in other sub-regions (except
JH and SC) and even less than those in North China (NC). On
the national average, the frequencies are 0.81, 0.40, 0.14, and
0.11 events per year for mild, moderate, severe, and extreme
HWs, respectively.

The general features that the HW magnitude is smaller
(larger) in the regions with high (low) HW frequency and
the spatial distribution of severe and extreme HWs is more
homogenous are related to the consideration of double thresh-
olds, especially the absolute threshold in our definition for the
identification of HW events, which lies at the lower threshold
for the climatological warm regions but at the higher threshold
for the climatological cold regions. Compared with the previ-
ous studies, our finding generally agrees with the result based

@ Springer

on the HW definition by the fixed threshold that the high
frequency of HWs is mainly located in eastern China and
northwestern China (e.g., Ding et al. 2010; Wang et al.
2017a). However, due to the set of double thresholds in our
definition, a more distinct spatial variation is shown and the
frequencies in NEC and ENW are comparatively higher.
Figure 7 shows the temporal variations of the frequencies
of mild, moderate, severe, and extreme HWs over China from
1961 to 2015. An overall increasing trend is explicitly ob-
served for all the four categories. During 1961-2015, the in-
creasing rates related to the mild, moderate, severe, and ex-
treme HWs are 7.5, 4.3, 1.4, and 1.8 events per year, respec-
tively. They are all significant at the 0.01 confidence level.
In addition to the trend, an interdecadal change in the late
1990s for the four categories of HWs can also be noticed from
Fig. 7, which have previously been in a negative phase before
that time and then progressed into a positive one. The CvM
test for mutation point demonstrates that the maximum differ-
ences appear in 1997 (Fig. 8). Their differences for the periods
after and before 1997 are also significant at the 0.05 confi-
dence level as calculated from the Wilcoxon rank sum test.
The increasing trend of HWs and similar decadal shift in
the 1990s have been previously reported in some studies (e.g.,
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Qi and Wang 2012; Ding and Ke 2015; Lu and Chen 2016;
Zhou et al. 2016; You et al. 2017). However, different from
the previous studies focusing on a single aspect of HWs, our
study provides the changes of HWs with different severities,
through the classification of HWs based on the HWMId mag-
nitude which takes into account both duration and intensity of
HWs.

Table 1 further summarizes the frequencies of the
four categories of HWs during different time periods.
The percentages of stations affected by each type of

HWs were also estimated to evaluate their influential
extent. As presented in the table, all the four categories
of HWs occur more frequently in the 1960s and then
decline in both the 1970s and the 1980s. After the
1990s, their frequencies and influential extents increase
significantly and reach the highest point after the begin-
ning of the twenty-first century. Relative to the period
of 1961-1996, both the frequency and the extent of the
four categories of HWs increase remarkably during the
period 1997-2015 and almost double for the moderate,

Table 1 Extent (%) and

frequency (shown in the HWs 1961— 1971- 1981— 1990— 2001— 1961- 1997-

parentheses) of different 1970 1980 1990 2000 2015 1996 2015

categories of HWs in China for

different time periods Mild 452 (504)  39.1 (410) 43.6(475) 48.8(568) 56.4(787) 423 (457) 573 (785)
Moderate  27.8 (248)  23.3(202) 21.4(185) 30.2(284) 403 (410) 242 (211)  40.0 (407)
Severe 12.5 (99) 7.9 (59) 8.2 (63) 13.0 (104) 17.4 (144) 9.6 (74) 17.4 (144)
Extreme 9.5(74) 5.9 (45) 4.8 (37) 11.6 91) 15.0 (129) 6.8 (52) 15.6 (133)

The frequency is counted as the number of events over all the stations
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Fig. 9 Difference of the

Frequency change(Events/year)
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severe, and extreme HWs. The Wilcoxon rank sum test
indicates that these increases are significant at the 0.05
confidence level.

To investigate the spatial difference of the interdecadal
change in the frequencies of the four categories of HWs,
their anomalies between 1997 and 2015 and 1961-1996
are plotted (Fig. 9). With respect to the period 1961-1996,
the frequency of mild HWs increases over most of China.
As the severity of HWs increases, the number of stations
with significant changes is decreased. This is particularly
evident in SC and JH. As shown in Table 2, in these two
sub-regions, 73% and 55% of stations show significant in-
creases in mild HWs while only 39% and 13% of stations
show significant increases in extreme HWs, respectively. In
contrast, the extreme HWs increase significantly in ENC
and NC (Fig. 9d). For these two sub-regions, the significant
increases in extreme HWs are detected over 74% and 57%
of stations, respectively (Table 2).

1.2

1l 277 1 1 1 =
120°E 135°E 75°E 90°E 105°E 120°E 135°E

1.6 0.2 0.4 0.6 0.8

We also explored the intraseasonal variations of HWs in
China with different severities. Considering some HW pro-
cesses may cut across either the beginning or the end of a
month, the total number of hot days for the period of 1961—
2015 involved in each type of HWs in a given month was
estimated. As shown in Fig. 10, the number of hot days affil-
iated in mild HW events varies from 24.7 to 32.5 days/station
in hot season, implying that the mild HWs occur with high
frequency in all the five months. For moderate, severe, and
extreme HWs, the large number of hot days mainly appears in
June to August and reaches the peak in July. Moreover, the hot
days within the extreme HWs in July and August are even
higher than that for the severe HWs. The intraseasonal varia-
tion of the extent, which was defined as the percentage of the
stations covered by HWs to the total stations, is generally
consistent with the result for hot days.

Figure 11 shows the trend of the total number and the
extent of hot days for different categories of HWs in each

Table 2  Percentage (%) of stations with significant changes between 1997 and 2015 and 1961-1996 for different categories of HWs over the sub-
regions of China and their respective frequencies (shown in the parentheses) during 1961-1996 and 1997-2015

HWs NEC NC JH sC SWC WNW ENW
Mild 34 (30/52) 47 (49/82) 55 (162/270) 73 (103/193) 24 (38/62) 34 (48/72) 48 (24/51)

Moderate 31 (20/40) 37 (29/55) 38 (61/107) 60 (43/98) 22 (20/36) 37 (24/38) 42 (14/33)
Severe 24 (7/14) 31 (9/23) 19 (24/34) 30 (16/35) 14 (7/14) 26 (6/12) 35 (4/13)

Extreme 29 (3/10) 57 (3/19) 13 (23/27) 39 (13/37) 23 (5/16) 39 (3/8) 74 (2/15)

The frequency is counted as the number of events over all the stations of the sub-regions
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Fig. 10 Monthly hot days Mild Moderate
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month of hot season. Note that the total number of hot days for
each month of a year was counted as the sum of hot days over
all the stations. Seen from this figure, we can also notice the
pronounced intraseasonal differences in trend change for each
category of HWs. For the mild HWs, the increasing trends are
comparable among each month. However, for the moderate,
severe, and extreme HWs, the number of hot days increases
sharply in the months when relatively more HWs occur. The
total hot days over all the stations increase the most in July
with the increasing trends of 5.5, 3.6, and 5.2 days per year for
moderate, severe, and extreme HWs, respectively.

4 Summary and discussion

In this study, based on the observed daily 7.« during 1961—
2015 at 701 stations in China, we developed a new method to
identify the HWs in China by the combination of absolute and
relative thresholds. Our results show a better representation
for the HWs in China by using the combination of absolute
and relative thresholds as compared to that only using the
relative threshold or the absolute threshold.

On the above basis, we further calculated the HW magni-
tude by using the HWMId method. The HWMId sums the

1

Sep May June July Aug Sep

excess of Tpax beyond a certain normalized threshold in a
given period, and merges the duration and the intensity of
HWs into a quantitative value. It thus enables the comparison
of HWs with different length and peak magnitudes that occur
in different regions and different time periods (Russo et al.
2014, 2015). According to their magnitudes and based on
the station percentages as well as cumulative probabilities of
all HWs occurring in China during 1961-2015, we set up a
criteria to classify the HWs into four categories, i.e., mild,
moderate, severe, and extreme HWs. The spatiotemporal fea-
tures of the four categories of the HWs in the past 55 years
were then examined in order to provide more detailed and
comprehensive information for the adaptation to climate ex-
tremes. The major findings obtained from this study are sum-
marized as follows:

1. Climatologically, the high HW frequencies mainly occur
in JH, SC, and WNC. The frequencies of severe and ex-
treme HWs are spatially more homogenous than those of
mild and moderate HWs. On the national average, the
frequencies for mild, moderate, severe, and extreme
HWs are 0.81, 0.40, 0.14, and 0.11 events per year, re-
spectively. In addition, the moderate, severe, and extreme
HWs show evident intraseasonal variations, with high
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frequencies appearing during June to August and reaching
the peak in July. Nevertheless, the frequency of mild HWs
is compared from May to September.

2. Since the 1960s, the frequencies of mild, moderate, se-
vere, and extreme HWSs over China have increased signif-
icantly, with the rates of 7.5, 4.3, 1.4, and 1.8 events per
year, respectively. The increases are the greatest in July
for moderate, severe, and extreme HWs while comparable
during May to September for mild HWs.

3. There exists an evident interdecadal difference in mild,
moderate, severe, and extreme HWSs before and after the
late 1990s. Relative to the former sub-period, the frequen-
cy of'the four categories of HWs increases significantly in
the latter sub-period and almost doubles for moderate,
severe, and extreme HWs. Spatially, the occurrence of
extreme HWs during the latter period has increased most
in ENC and NC, while the frequency of mild HWs in-
creases most in JC and SC.

It should be noted that this study just focused on the ob-
served changes of the HWs in China with different severities.
The physical causes for their changes are not addressed. Some
studies have highlighted that changes in sea surface tempera-
ture, soil moisture, snow cover, solar irradiance, and green-
house gases play important roles in the change of HWs
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(Fischer et al. 2007; Wu et al. 2012; Sun et al. 2014; Chen
and Zhou 2018; Wang et al. 2017a; Sparrow et al. 2018; Chen
etal. 2019a, b). The urbanization has also been documented to
exert a significant effect. It may advance the timing of the
onset of HWs, and help the HWs become more frequent, more
intense, and longer lasting (Luo and Lau 2017; Lin et al.
2018). And the urban heat island is also related to the HW
magnitude (Herbel et al. 2018). However, the detailed physi-
cal mechanisms responsible for the behaviors of different cat-
egories of HWs in different regions may be rather complicat-
ed, which deserves further in-depth investigation in the future
studies in order to get a full picture for the understanding of
the change in HWs.
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