1	North Atlantic multidecadal variability enhancing decadal extratropical
2	extremes in boreal late summer in the early 21 st century
3	Jie Zhang*, Zhiheng Chen, Haishan Chen, Qianrong Ma, Asaminew Teshome
4	Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) /Joint
5	International Research Laboratory of Climate and Environment Change (ILCEC)/
6	Collaborative Innovation Center on Forecast and Evaluation of Meteorological
7	Disasters (CIC-FEMD), Nanjing University of Information Science & Technology,
8	Nanjing, 210044, China
9	
10	Corresponding author: Jie Zhang*, gs-zhangjie@163.com
11	
12	
13	
14	
15	
16	

Early Online Release: This preliminary version has been accepted for publication in *Journal of Climate*, may be fully cited, and has been assigned DOI 10.1175/JCLI-D-19-0536.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

1

17 Abstract

18	In the beginning of the 21 st century, weather and climate extremes occurred more and
19	more in extratropical summer, linking to the magnified amplitudes of quasi-stationary
20	waves and external forcing. The study analyzes the relations between multidecadal
21	extratropical extremes in boreal late summer and the North Atlantic (NA, 40°W-0°E,
22	35°N-65°N) multidecadal variability (NAMV) in the mid-high latitude. The results
23	show that multidecadal extratropical extremes link with the intensified NAMV and
24	the related "+-+" zonal mode of sea surface temperature (SST). 1) The SST mode
25	favors the eastward shift of the negative-phase NA oscillation (NNAO), with a
26	latitudinal pattern of cyclone anomalies over western Europe coast and anticyclones
27	over Greenland, NNAO is helpful to baroclinic energy transfer and a longitudinal
28	wavelike pattern. 2) The SST mode and the eddy-driven jet of NNAO is conducive to
29	a southeast extension of the NA jet that closely conjuncts to the Afro Asian jet,
30	thereby enhancing the jet waveguide and barotropic energy transfer for the
31	maintenance of a low-frequency wave. 3) The effect of the intensified NAMV on
32	warming Europe contributes to the longitudinal temperature gradient like 'cooling

33	ocean and warming land' pattern, which enhances the meridional wind and wave
34	amplitude of the low-frequency wave. Based on the causes, the intensified NAMV
35	and the "+-+" SST mode favors the enhancement of the low-frequency wave and
36	quasi-resonant probability, which magnifies the amplitude of the quasi-stationary
37	wave and enhances extratropical extremes on the decadal timescale.
38	Introduction
39	Since the beginning of the 21 st century, there have been significant increases in
40	extratropical summertime extremes in the Northern Hemisphere (Coumou and
41	Rahmstorf 2012; Huang et al. 2016a; 2017). The extratropical heatwave extremes
42	with serious impacts include summer heatwaves in North America (2011, 2014, and
43	2016) and European continents (2003, 2019), as well as in Russia and Japan in 2010
44	(Stott et al. 2004; Hong et al. 2011; Johnson et al. 2018). The extratropical
45	drought/flood extremes with serious impacts occurred in Europe in 2016/2017
46	(García-Herrera 2019) and in China in 2009/2010, 2012, and 2016 (Zhang et al. 2019).
47	Are these extremes impacted by global warming or internal variability of the
48	earth-atmosphere interaction system? The causes should be discussed separately,

49	because of the increasing risks of economic loss and the damage of ecological
50	environment (Palmer and Räisänen 2002; Zhang et al. 2015; Huang et al. 2016b;
51	2019), it is critical to explore the extreme mechanism for the prediction, evaluation
52	and disaster prevention.
53	From the perspective of circulation anomalies, the magnified quasi-stationary
54	waves frequently occur (Petoukhov et al. 2013; Coumou et al. 2014; Petoukhov et al.
55	2016), along with weakening and northward shifts of the jets and double jet formation
56	for the waveguides (Francis and Vavrus 2011; Coumou et al. 2014; 2015).
57	Furthermore, the jet anomalies of the northern hemisphere, characterized by large
58	variability in jet position, strength, amplitude and width, modulate the extratropical
59	weather extremes (Screen and Simmonds 2014) and act as one of the potential
60	mechanisms of recent extratropical weather extremes. Jet anomalies link to
61	anthropogenic warming, aerosol and natural variability (Baines and Folland 2007;
62	Francis, and Vavrus 2011; Zhang et al. 2015). The westerly jets include the polar jet
63	and subtropical jet, and the subtropical jet section includes the mid-latitude North
64	Atlantic (NA) jet (Trouet et al. 2018), the North Pacific jet (Strong and Davis 2008;

65	Belmecheri et al. 2017) and the Afro Asian jet (Branstator 2002), however, all of
66	them show inconsistent variability at interannual to decadal timescales. Therefore,
67	considering their different impacts, the jet effect on summer extremes should be
68	discussed separately.
69	The NA jet has been identified to result in extratropical extremes such as
70	heatwaves and droughts in Europe (Trouet et al. 2018), and NA jet variability is often
71	characterized by using circulation indices such as the NA Oscillation (NAO) and the
72	east Atlantic pattern (Woollings and Blackburn 2012). Moreover, extratropical
73	extremes also link to NAO, consisting of a north-south dipole between Greenland and
74	the mid-latitude NA (Sillmann and Croci-Maspoli 2009). Besides, the
75	Atlantic-Eurasian pattern manifests decadal variability and is termed the Eurasian
76	multidecadal teleconnection (Li and Ruan 2018), which is a key component of NAO
77	effect on Asian climate anomaly (Li et al. 2019).
78	Given that the variability of extratropical extreme exhibits a wide range of
79	timescales, it is an essential step in weather and climate predictions and risk
80	estimation to understand the characteristics and drivers of extreme and related

81	circulation variability. Previous studies show that NAO is closely related to the
82	mid-high-latitude NA sea surface temperature (SST, Shaman et al. 2009; Trouet et al.
83	2018); Atlantic-Eurasian pattern is pivotal atmospheric bridge between the NA-SST
84	and Eurasian precipitation (Sun et al. 2015). In addition, the NA-SST pattern is
85	closely associated with recent rapid increase of warm extremes in summertime
86	(Johnson et al. 2018). Therefore, the NA-SST pattern is a considerable forcing in
87	modulating extreme variations.
88	The NA-SST shows remarkable multidecadal variability, (NAMV, Delworth and
89	Mann, 2000), manifested by the SST oscillation of uniform warm and cold patterns,
90	and the dominant mode of NA-SST in the NA Ocean (0°-80°N) is multidecadal
91	oscillation (Schlesinger and Ramankutty 1994; Kerr 2000). There is a consensus that
92	the NAMV is primarily driven by fluctuations in the strength of the Atlantic
93	meridional overturning circulation (AMOC, Black et al. 2014), anthropogenic forcing,
94	internal dynamics and air-sea interaction (Ottera et al. 2010; Chang et al. 2011),
95	although no consensus mechanism of AMOC effect on NAMV (Booth et al. 2012;
96	Clement et al. 2015; Drews and Greatbatch 2016; O'Reilly et al. 2016; Zhang et al.

Accepted for publication in *Journal of Climate*. DOI10.1175/JCLI-D-19-0536.1.

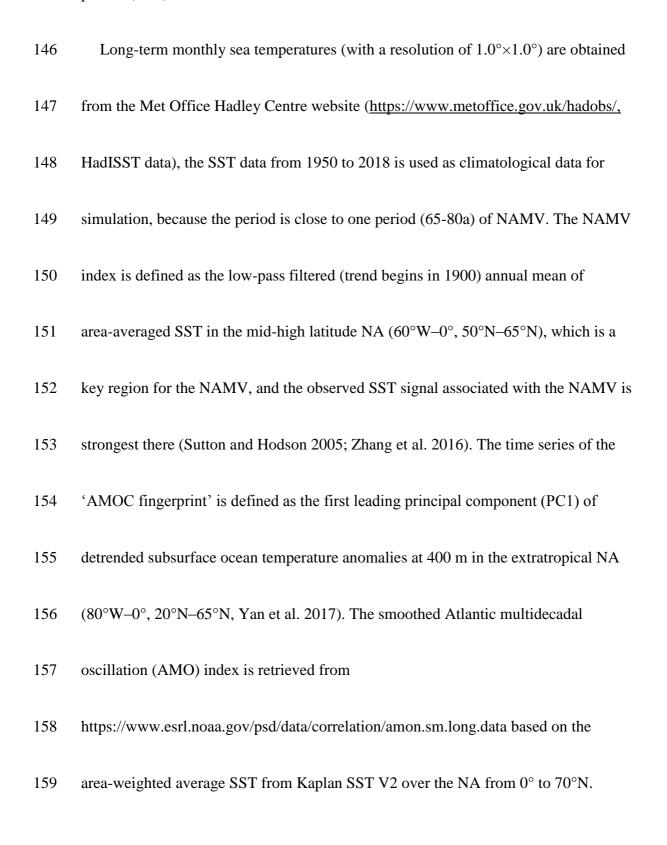
6

97	2016; Zhang, 2017). However, AMOC variations are suggested to induce the
98	multidecadal NA-SST because of associated heat transport fluctuations (Goldenberg
99	et al. 2001; O'Reilly et al. 2016). In turn, the multidecadal NA-SST also influences
100	the AMOC, due to meridional advection by northward currents (Delworth et al. 2016;
101	Li et al. 2017). Through dynamic processes, the NAO leads the NA-SST variability
102	by 15-20 years. Besides, atmospheric circulation affects the thermodynamic forcing,
103	heat advection and surface turbulent heat flux anomalies of the NA Ocean (Eden and
104	Jung 2001), thereby modulates the AMOC and the multidecadal NA-SST (Li et al.
105	2017).
106	For the perspective of NA-SST effects on the decadal Eurasian climate, NAMV
107	drives the variability in European climate at decadal timescales (Kushnir 1994;
108	Schlesinger and Ramankutty 1994; Delworth and Mann 2000; Knight et al. 2006;

109 2009; Guan et al. 2019), and the warm phase NAMV (referred to as NAMV+) is

responsible for north-wet and south-dry anomalies in Europe during the 1990s and 110

1950s (Robson et al. 2012; Sutton and Hodson 2005; Sutton and Dong 2012). NA acts 111


112 as a significant source of natural climate variability over the NA basin and adjacent

7

113	continents (Ruprich-Robert et al. 2017), the increasing AMOC modulates the
114	long-term loss of Arctic sea ice and northern hemisphere warming, especially in the
115	late 1990s and early 2000s (Delworth et al. 2016). In addition, Atlantic multidecadal
116	oscillation influences extratropical summertime rainfall in northwest Europe (Knight
117	et al. 2006) with the NNAO (Sutton and Hodson 2005). Homoplastically, the
118	multidecadal NA-SST also leads the NAO by approximately 15 years (Li et al. 2017),
119	indicating the interaction and coupling effects of both NA-SST and NAO (Steinman
120	et al. 2015; Jaime et al. 2017). NA-SST effects have been investigated by a coupled
121	mode of NA tripole-NAO-AMOC (Li et al. 2017), identifying the multi-timescale
122	effect of NAMV on Eurasian climate (Li et al. 2019).
123	From the perspective of NA-SST effect on extratropical extremes on the decadal
124	timescale, NAMV+ closely corresponds to continued rise of extreme occurrences over
125	Europe in the past 15-20 years (Seneviratne et al. 2014). Besides, the wave-energy
126	anomaly related to extratropical extremes has been identified occurring over the NA
127	(Screen and Simmonds 2013; Zhang et al. 2019). However, the NAMV effect on the
128	summer extratropical extremes in other Eurasian regions is insufficient.

129	To further reveal frequent extremes over Eurasian continent on the decadal
130	timescale, this study explores the effect of NA-SST on the extratropical circulation
131	and quasi-stationary waves at the decadal timescale, to facilitate extremes prediction.
132	Data and Methods
133	a. Data sources
134	Long-term monthly surface temperature and pressure-level atmospheric parameters
135	are obtained from ERA-Interim for the period of 1979 to 2018 with a resolution of
136	$1.5^{\circ} \times 1.5$ and accessed from http://apps.ecmwf.int/datasets/. Pressure-level
137	atmospheric data is used for calculating wave activity flux; 200-hPa zonal wind U is
138	used for reflecting jet distribution; 500-hPa and 300-hPa meridional wind V is used
139	for exhibiting low frequency and amplitude of wave. To exhibit anomalies of
140	extratropical circulation on the longer timescale beyond synoptic scale,
141	quasi-stationary wave anomaly and the low-frequency waves are analyzed. The
142	low-frequency wave index is defined as the average of the first two PCs of 500-hPa V
143	wind in July and August (JA, 60°W–150°E, 20°N–60°N, Zhang et al. 2019), which

144 explains 38.2% of the variance and reflects the variation of the mid-latitude Silk Road145 pattern (SRP).

- 160 Moreover, the NAO index is retrieved from
- 161 https://crudata.uea.ac.uk/cru/data/nao/nao.dat, and is defined as the difference of 162 pressure between Iceland and Gibraltar. The time period of both indices from 1979 to 163 2018 is used. 164 A self-calibrating Palmer drought severity index (sc-PDSI, Dai 2011) is a meteorological drought index with a $2.5^{\circ} \times 2.5^{\circ}$ resolution, and it provides a good 165 reflection of soil moisture deficit or surplus, therefore it is widely used for 166 167 drought/flood evaluation throughout the world. PDSI is obtained from the Climate 168 Data Guide website (https://climatedataguide. 169 ucar.edu/climate-data/palmer-drought-severity-index-pdsi). Severe drought is PDSI 170 <=-3, severe flood is PDSI >=3; Extreme drought is PDSI <=-4, extreme flood is 171 PDSI >=4. The extreme drought/flood is defined as the absolute PDSI larger than 3 in 172 the study.

173 **b. Statistical analyses**

- 174 Given that there are zonal 6-8 wavenumbers in the mid-latitudes and zonal 4-6
- 175 wavenumbers in the high-latitudes, the JA amplitude is calculated using harmonic

11

176	analysis and V wind (Screen and Simmonds 2013), JA amplitude is the summed
177	amplitude for wavenumber m=6,7,8 at 300 hPa, as averaged over the 37.5°N-57.5°N
178	latitudinal range; it reflects the amplitude variation of the low-frequency waves.
179	Land-sea temperature contrast (LSTC) is defined as the surface temperature
180	difference between European land (10°E-60°E, 35°N-65°N) and the mid-latitude NA
181	(40°W-0°E, 35°N-65°N). We used empirical orthogonal function (EOF) analysis to
182	display the spatial and temporal patterns of 200-hPa U wind, SST and 500-hPa V
183	wind. The running means of the data are applied to obtain low-pass filtering of the
184	variables. The statistical significance of the linear regression coefficient, anomaly
185	field and the correlation between two series are assessed via a two-tailed Student's
186	t-test and Monte Carlo test; Mann-Kendall mutation test is used. The correlations are
187	from original series, with effective freedom of 40 (1979-2018).
188	The wave activity flux defined by Takaya and Nakamura (2001, defined as TNF) is
189	applied to examine energy propagation of low-frequency wave and to reveal where
190	anomalous wave energy is emitted, absorbed and transferred.
101	

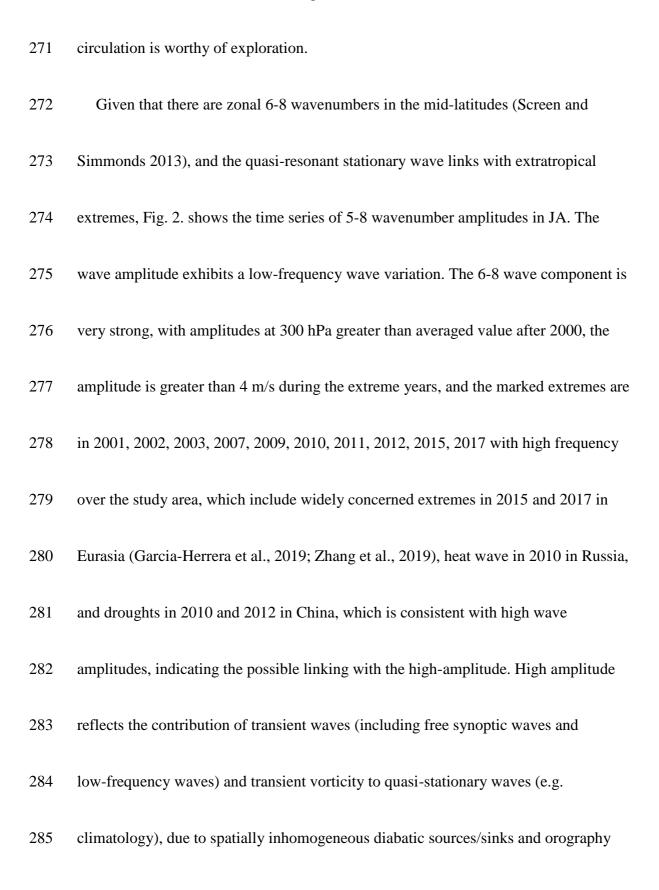
c. Models

192	The linear baroclinic model (LBM) is employed to simulate atmospheric
193	responses to an idealized forcing of diabatic heating and vorticity forcing over Europe.
194	The LBM has a triangular truncation of 21 waves and a vertical resolution of 20 levels
195	(Watanabe and Kimoto, 2000). The background state in the experiment is the JA
196	climatology of 1979-2018 from the ECMWF/interim reanalysis. The forcing center of
197	diabatic heating is over central Europe (50°N, 20°E), and vorticity forcing is over
198	western Europe (50°N,10°E), with a horizontal scale of $12^{\circ} \times 6^{\circ}$, the vertical forcing
199	is located at 700 hPa with 6 K/day and 10e-8 s ⁻² , and the integration time of the model
200	is set to 30 days, and the data during the 15-30 th days with steady state could be used
201	for analyzing circulation characters.
202	The Community Earth System Model (CESM1.0, Hurrell et al. 2013) developed by
203	the National Center for Atmospheric Research (NCAR) consists of interactively
204	coupled models for the atmosphere (CAM), ocean (POP), land (CLM) and sea-ice
205	(CICE). The model components are available at
206	http://www.cesm.ucar.edu/models/cesm1.0/. The model is used to investigate the role
207	of observed basin-scale SST patterns on amplitudes, summertime circulation and

model (IDM) : nnloyed to simul 102 ть a 1i . L roolinio to otmosphoric

13

208	extremes. This analysis focuses on the influences of the NA-SST pattern. The SST
209	boundaries are set to a 10° buffer of the southern boundaries over which the SST
210	restoration, described below, ramps up from zero. The atmospheric component is the
211	Community Atmospheric Model version 5.1 (CAM5.1) with the finite volume
212	dynamic framework with a horizontal resolution of $1.9^{\circ} \times 2.5^{\circ}$ and 30 vertical layers of
213	the σ -p vertical coordinates. In this study, several physical processes, including
214	radiation processes, cloud effects, convection, boundary layer effects etc. are
215	represented in the model. Given that the PC1 exhibits a multi-decadal variation of
216	SST, which shows significant correlation with NAMV index. In addition, as one sea
217	surface pattern, EOF1 is influenced by sea-air interaction and vertical heat exchange
218	between sea surface and deep sea, which will change SST pattern and heat
219	distribution. Therefore, as for the sensitivity experiment of the SST forcing, double of
220	the SST/EOF1 is taken as a hypothetical SSTA, and is superposed with the original
221	climatological SST as the initial SST. Given that sea surface wind could modulates
222	SST/EOF1 mode, the hypothetical SSTA is added to the SST for all months in
223	summer since the second simulation year, so as to keep SST/EOF1 mode on the


224	decadal timescales. The annual SST from the sensitivity experiment is contrasted with
225	real SST field in recent two decades, it is within 0.4° C variation, SST deviation on
226	average between warm and cold phases, therefore, the forcing SST in the sensitivity
227	experiment represents warm anomaly after 2000 and NAMV mode. A control
228	simulation uses climatological SST from 1950 to 2018, which closes to SST during
229	one period (65-80a) of NAMV, and its initial circulation fields use 40-yr
230	climatological data (1979-2018). Both of sensitivity and control simulation run for
231	20a, with time increment of one day and monthly output data. The control SRP is the
232	first leading EOF mode of 20-yr V wind under the climatological SST. The sensibility
233	SRP is the first leading EOF mode of 20-yr V wind from the sensibility experiment.
234	But as for difference between sensitivity and control experiments, the last 10-yr data
235	are used.
236	Results
027	a Increasing low frequency were contributions to the mid latitude stations
237	a. Increasing low-frequency wave contributions to the mid-latitude stationary

- 238 wave amplitudes and extratropical extremes

239	To elaborate extratropical extremes, the study selects six regions over Eurasian
240	continent, those are western Europe (0-20°E, 40°N-55°N), eastern Europe (35°E-55°E,
241	45°N-60°N), central Asia (70°E-90°E, 40°N-55°N), East Asia (110°E-125°E,
242	35°N-55°N), central Russia (70°E-100°E, 60°N-70°N) and eastern Russia
243	(120°E-150°E, 60°N-70°N). Fig.1 shows time series of extreme flood and drought
244	frequency within 300 grids in JA, extreme droughts increase in western Europe,
245	eastern Europe, East Asia, central Russia, and high frequency between 1970 and 2000
246	in eastern Russia; extreme floods increase in central Russia, eastern Russia and
247	central Asia. Moreover, the total flood/drought trends indicate that an increase in
248	western Europe, East Asia, central Russia and eastern Russia. Additionally, the trend
249	and extreme frequency after 1990s shows increasing of extremes. The period analysis
250	shows that those series of extremes have 14~21-yr period on the decadal timescale
251	(figure omitted), the significant correlations of 21-yr smooth data indicates decadal
252	variation of extremes, and it is enhancing stage after 1990s.
253	As for central Asia, although there is no significant increasing trend of the total
254	droughts and floods, however, it is a significant increasing trend of floods, which is

255	related to deepening wave trough around the Balkhash Lake, linking with
256	enhancement in the quasi-stationary wave, and being favorable for precipitation and
257	flood (Bothe et al. 2012); In addition, a branch of water vapor transport in central
258	Asia is from Indian Ocean and Arabian Sea, therefore, the related subtropical
259	circulations are also important for extremes (Huang et al. 2015), which results in
260	complex variation of extremes in central Asia. As for eastern Europe, high frequency
261	extremes mainly appear in 1972-1984 and 1996-2015, exhibiting a decadal variation.
262	After 2000, there is an increasing trend of droughts, it is similar with the suggestion
263	of Martin et al. (2018).
263 264	of Martin et al. (2018). Fig.1 also marks selected extremes in six regions, with higher than mean
264	Fig.1 also marks selected extremes in six regions, with higher than mean
264 265	Fig.1 also marks selected extremes in six regions, with higher than mean frequency after 2000, significant extremes occurred in 2004, 2005, 2007, 2010, 2011
264 265 266	Fig.1 also marks selected extremes in six regions, with higher than mean frequency after 2000, significant extremes occurred in 2004, 2005, 2007, 2010, 2011 and 2012 in western Europe; 2002, 2004, 2005, 2009, 2010 and 2014 in eastern

and 2014 in eastern Russia. Such large variabilities remind us that the extreme-related

18

286	(Screen and Simmonds 2014). Increasing amplitudes favor increasing probability of
287	high-frequency extremes, especially in the recent two decades. It is reasonable that
288	quasi-resonance between free synoptic waves and quasi-stationary waves may lead to
289	weather extremes, such as heat wave and flood, because many quasi-resonances
290	occurs on the synoptic timescale, such as block high and cutting low (Hakkinen et al.
291	2011). However, how does quasi-resonance influence extremes on longer timescale
292	such as extreme droughts? Extreme droughts are affected by persistent anomalies of
293	atmospheric circulation, and it is a kind of climate extremes related to low-frequency
294	variety of quasi-stationary waves. Thus, it is significant to explore climate extremes
295	through quasi-stationary waves.
296	Such high-frequency in amplified wave amplitude after 2001 reveals that the
297	decadal enhancement of quasi-stationary waves, which is possibly related to decadal
298	forcing. The wave amplitude shows significant correlations with NAMV and AMOC
299	at 90% confidence level (Fig.2a), which reflects the possible linkage with
300	multidecadal NA-SST. Previous studies have suggested that low-frequency waves
301	arise and magnify the amplitudes of the quasi-stationary waves (Coumous and

302	Rahmstorf 2012; Coumous et al. 2014; Petoukhov et al. 2013; 2016), the related
303	potential sources of which are the NA and Europe (Zhang et al. 2019). The
304	low-frequency wave index is defined as the first two PCs of JA meridional wind in
305	the mid-latitudes, which is used to reflect the intensity of SRP (Fig. 2b); the SRP
306	intensity shows an enhancement after the 2001 and increasing intensity of the
307	low-frequency waves. There are significant correlations of the low-frequency wave
308	index with AMO and AMOC, indicating the possible linkage with the multidecadal
309	NA-SST anomaly, and the significant correlation with wave amplitude shows the
310	quasi-resonance effect of the low-frequency waves, and thereby magnify wave
311	amplitude.
312	Fig. 3. shows mutation test of NA-SST related parameters, SRP and wave
313	amplitude(A). The weak abrupt points of decadal changes of AMO/NAMV and
314	AMOC begin in 1997, but the significant abrupt points are in 2000, 2003 and 2004,
315	respectively. The abrupt points of SRP and wave amplitude occur in 2001-2004,
316	which come after the abrupt points of NAMV/AMO and AMOC, indicating that
317	decadal change of SRP and wave amplitude correspond to NA-SST pattern, with an

20

318	adjusting stage of 2001-2004. How do the low frequency waves change with
319	multidecadal NA SST? It is vital for evaluation and prediction of extratropical
320	extremes.
321	b. Circulation anomalies and their relations with low-frequency waves and wave
322	amplitude
323	To further identify the circulation anomalies after mutation stage and the enhanced
324	quasi-stationary waves, Fig. 4a shows the difference of circulation-related factors in
325	JA between 2001-2018 and 1979-2018. 200-hPa U deviations exhibit two positive
326	anomaly centers (Fig. 4a); one is over the east coast of the mid-latitude NA, which
327	casually occurs on the east and south flank of the NA jet exit and indicates southeast
328	extension of the NA jet after 2001. The wave activity flux (defined as TNF) after
329	2001 also indicates a major divergent energy over the mid-latitude NA, and the wave
330	activity flux is trapped into the Afro Asian jet (Fig. 4a). A north-south shift in the NA
331	jet in summer is identified to link with floods in western Europe (Dong et al. 2013),
332	record-breaking high temperatures in northeastern Europe (Mahlstein et al. 2012;
333	Stadtherr et al. 2016), and heatwaves (Founda and Giannakopoulos 2009; Koutsias et

334	al. 2012). On the other hand, a southeast shift in NA jet favors barotropic energy
335	transfer to kinetic energy; and identically, southeast shift in NA jet is helpful to wave
336	activity flux and energy disperse toward the Afro Asian jet, which acts as waveguide
337	for the formation and enhancement of the low-frequency waves. And then the sinking
338	energy could lead to circulation anomalies and extremes (Zhang et al. 2019). It also
339	identifies the potential relationship between the NA jet anomaly and European
340	extremes. Trouet et al. (2018) suggested an unprecedented increase in NA jet variance
341	since the 1960s, therefore, its effect on extreme variation on the multi-timescale
342	should be explored.
342 343	should be explored. Fig. 4b shows deviation of surface temperature and 500-hPa geopotential height.
343	Fig. 4b shows deviation of surface temperature and 500-hPa geopotential height.
343 344	Fig. 4b shows deviation of surface temperature and 500-hPa geopotential height. Two temperature centers with significantly positive deviation are in the European
343 344 345	Fig. 4b shows deviation of surface temperature and 500-hPa geopotential height. Two temperature centers with significantly positive deviation are in the European continent and Greenland to the west of the NA; one center with negative deviation is
343344345346	Fig. 4b shows deviation of surface temperature and 500-hPa geopotential height. Two temperature centers with significantly positive deviation are in the European continent and Greenland to the west of the NA; one center with negative deviation is in the mid-latitude NA. Surface temperature is influenced by atmospheric circulations,

334 al 2012) On the other hand, a southeast shift in NA jet favors harotronic energy

350	section of NA-SST pattern on the multidecadal timescale, therefore, longitudinal
351	temperature gradient relates to multidecadal NA-SST. In addition, positive/negative
352	temperature centers correspond to anticyclone/cyclone anomalies described by
353	geopotential height deviation, which corresponds to wave ridges/troughs by
354	comparing with wave position, and reveals strengthening of the climatological wave
355	ridges and wave troughs after 2001, as well as enhancement of quasi-stationary waves
356	(Zhang et al. 2019). The latitudinal pattern of the geopotential height anomaly
357	indicates an eastward shift of the NNAO pattern, due to a low-pressure anomaly over
358	the west coast of North Europe.
358 359	the west coast of North Europe. We perform an EOF analysis for 200-hPa U wind to feature zonal wind and the
359	We perform an EOF analysis for 200-hPa U wind to feature zonal wind and the
359 360	We perform an EOF analysis for 200-hPa U wind to feature zonal wind and the NA jet anomaly. The first leading mode explains 33.3% of the total variance, and the
359 360 361	We perform an EOF analysis for 200-hPa U wind to feature zonal wind and the NA jet anomaly. The first leading mode explains 33.3% of the total variance, and the mode exhibits a "-+-" latitudinal pattern (Fig. 5a), with positive values at the
359360361362	We perform an EOF analysis for 200-hPa U wind to feature zonal wind and the NA jet anomaly. The first leading mode explains 33.3% of the total variance, and the mode exhibits a "-+-" latitudinal pattern (Fig. 5a), with positive values at the southeast of the NA jet exit and northern Europe. From the previous point of view, we

366	anomaly possibly increases barotropic energy transfer to kinetic energy, thereby
367	enhances the low-frequency waves (Zhang et al. 2019). The first leading U/PC1
368	shows a multidecadal variation (Fig. 5b), which is closely related to wave amplitude
369	(Fig. 5b), with a correlation coefficient of 0.28 at 90% confidence level, and has a
370	significant correlation of 0.35 with the SRP at 95% confidence level. The results
371	reveal that the southeast extension of NA jet in the 21st century well corresponds to
372	magnified wave amplitude and intensity. Fig. 5b also exhibits a NNAO in the 21st
373	century, with the abrupt point of decadal change in 2004, having a significant
374	correlation coefficient of -0.54 with U/PC1 at 95% confidence level, and having a
375	significant correlation of -0.29 with wave amplitude at a 90% confidence level. The
376	relation between NA jet and NNAO emphasizes that NA jet position and speed
377	variability is associated with the NNAO eddy-driven jet and the East Atlantic pattern
378	(Woollings and Blackburn 2012; Hall et al. 2015). The abrupt point of U/PC1 is 2009,
379	it is different from circulation and NA-SST mutation, which means that there are
380	other effect factors that should be discussed.

381 c. LSTC and the relation with low-frequency wave and wave amplitude

24

382	To feature the 'cooling ocean and warming land' pattern and its effect on the
383	extratropical extremes, the study defines an LSTC indice (see method section). Fig. 6a
384	shows a standardized LSTC indice in July and August (JA); both indices show
385	significant increase trends, indicating increases in LSTC and longitudinal temperature
386	contrast between the European continent and the NA, which may strengthen
387	meridional wind and wave amplitudes according to thermal wind principle and a
388	linearized nonstationary, nondivergent, barotropic vorticity equation (Hoskins and
389	Karoly, 1981). Fig. 6b displays the time series of JA LSTC, which indicates a
390	multidecadal variation with the abrupt point in 2004, and it has a correlation
391	coefficient of 0.29 with the wave amplitude at 90% confidence level, and a significant
392	correlation coefficient of 0.58 with the low-frequency wave indice at 95% confidence
393	level. A significant increase in LSTC in the 21 st century is helpful to the enhancement
394	of meridional circulation, reflects enhancing in the low-frequency wave that imposed
395	on the quasi-stationary wave, and further be helpful to the magnified amplitude of the
396	quasi-stationary wave.

397	To exhibit the effect of LSTC on atmosphere circulations, Fig. 6c shows the
398	regression of the 500-hPa temperature (dT, shaded) and the geopotential height
399	(contours) to the JA-LSTC indice. The significant anomaly centers of temperature
400	exhibit wave patterns in the mid-latitude and high-latitude, with the negative centers
401	over the North Atlantic and the positive centers over European continent, which
402	correspond to the negative/positive centers of the geopotential height anomaly and the
403	wave trough/ridge of the quasi-stationary wave, and the anomalous wave pattern due
404	to LSTC possibly magnifies the amplitude of the quasi-stationary wave.
405	We also perform a correlation of the LSTC indice with the wave amplitude of the
406	5-8 wavenumbers (figure omitted) and find a significant correlations coefficient of
407	0.44 with the 7-wavenumber in August, and a correlation coefficient of 0.32 with the
408	8-wavenumber in July at 90% confidence level. These results further identify increase
409	in the LSTC contributing to the magnified amplitude of the quasi-stationary wave.
410	d. Circulation anomalies and LSTC effects on the wave energy
411	To further identify the impact of the aforementioned three factors (southeast shift
412	in NA-jet, NNAO, increasing LSTC) on the wave amplitude and intensity, the wave

413	activity fluxes (TNFs) are regressed. The divergence wave activity flux is clear
414	between the NA jet exit and the entrance of Afro Asian jet, but the effect various for
415	each region due to different factors (Fig. 7). The significant regression TNFs to
416	U/PC1 are mainly distributed between 20°W and 20°E along the NA jet, reflecting
417	high divergence energy from NA jet exit and enhancement of wave disperse between
418	two jets, which is helpful to reinforcing of the low frequency wave. The significant
419	regression of TNF to -NAO covers a large range of jet belt between 60° W and 30° E
420	along the NA jet and the Afro Asian jet, NNAO related vorticity favors baroclinic
421	energy transfer (Zhang et al. 2019) because a cyclone anomaly related to NNAO just
422	occurs over northwestern Europe, in front of the trough of the quasi-stationary wave,
423	which leads to enhancement of convergence and ascending motion in the
424	lower-middle troposphere, and thereby contributes to zonal configuration of
425	warm-ascending and cool-descending that is helpful to baroclinic energy transfer. The
426	significant regression of TNF to LSTC is mainly distributed between 40°W and 10°E
427	along the NA jet, with a convergence TNF appearing over 10°W and the wave trough,
428	which favors deepening of the wave trough and meridional wind. Increasing LSTC

413 activity fluxes (TNFs) e regressed The dive activity flux is cle

27

429	exhibited by the non-uniform longitudinal temperature gradient leads to meridional
430	wind and wave enhancement according to the linearized nonstationary, nondivergent,
431	barotropic vorticity equation (Hoskins and Karoly 1981) and thermal wind principle.
432	All these TNF distributions reveal that different contribution of the three factors to
433	wave energy and the low-frequency wave, and their effect mechanisms are worthy of
434	further discussion.
435	To explore the jet and NNAO anomaly effect on energy conversion, we estimate
436	energy conversion including the local barotropic energy conversion CK (Hoskins et al.
437	1983; Simmons et al. 1983) and local baroclinic energy conversion CP (Kosaka and
438	Nakamura 2006).
	. 2 2

439
$$CK = \frac{v'^2 - u'^2}{2} \left(\frac{\partial \bar{u}}{\partial x} - \frac{\partial \bar{v}}{\partial y} \right) - v'u' \left(\frac{\partial \bar{u}}{\partial y} - \frac{\partial \bar{v}}{\partial x} \right)$$
(1)

440
$$CP = \frac{f}{\sigma} v'T' \frac{\partial \overline{u}}{\partial p} - \frac{f}{\sigma} u'T' \frac{\partial \overline{v}}{\partial p}$$
(2)

where u' and v' are anomaly zonal and meridional wind velocity; \bar{u} and \bar{v} are the 441 mean zonal and meridional wind velocity, respectively; T' is the anomaly 442

temperature; f is the Coriolis parameter; $\sigma = \frac{R\bar{T}}{C_{pp}} - \frac{d\bar{T}}{dp}$ with temperature (T); and 443 the specific heat at a constant pressure (C_p) , p is pressure. 444

445 Fig.8 shows the 300-hPa barotropic energy (Fig.8a, CK) and 700-hPa baroclinic

energy (Fig.8b, CP) after 2001, as well as the correlation between CK and jet anomaly 446

28

447	(U/PC1, Fig.8c), and between CP and -NAO indice from 1979 to 2018 (Fig.8d). The
448	reason to analyze 300-hPa CK is that it is close related to NA-jet anomaly, which is
449	clear over upper troposphere; the reason to analyze 700-hPa CP is that lower-level
450	baroclinicity is helpful to atmospheric stability and ascending motion, and it also
451	corresponds to the effect of east extension of NNAO.
452	The positive CK at the NA jet exit to the entrance of the Afro Asian jet indicates
453	the barotropic energy conversion. The positive correlation between CK and U/PC1 at
454	the NA jet exit shows that increasing U wind and southeast extension of NA jet favors
455	barotropic energy conversion from background state to seasonal kinetic energy.
456	Along the west coast of northwest Europe, positive baroclinic energy observed
457	after 2001, which reflects increasing baroclinic condition, corresponding to cyclone
458	anomaly and eastward shift in NNAO. The correlation between CP and -NAO shows
459	positive correlation over Europe, indicating increase of baroclinic energy conversion
460	to seasonal kinetic energy, corresponding to NNAO. The reason is that east extension
461	of NNAO appears over the west coast of northwest Europe, in front of stationary
462	wave trough with baroclinicity, which is favorable for ascending motion, such

463	baroclinicity configuration with zonal warm-ascending and cold-descending favors
464	baroclinic energy conversion to kinetic energy. The kinetic energy enhances wave
465	activity motion and wave energy dispersing along jet waveguide, it is the same as
466	regression of wave activity motion to –NAO in Fig.7b.
467	The results reveal that southeast extension of NA jet and NNAO favor increasing
468	barotropic and baroclinic energy conversion to kinetic energy, which is helpful to
469	enhancement of wave activity motion and the low frequency waves.
470	e. Effects of SST pattern on the circulation and LSTC anomaly
471	Strengthened NA jet have been suggested to link with variances in the central NA
472	and NA basins (Black et al. 2014; Liu et al. 2017; Trouet et al. 2018), as well as
473	warming in Europe (Sun, 2014), because of zonal non-uniform heating and the
474	thermal wind principle, except for dynamic processes of the eddy vorticity flux. We
475	investigate the linkages of the NA-SST with NA jet, NAO and LSTC, and the first
476	SST leading mode explains 40.2% of the total variance (Fig. 9a); the mode exhibits a
477	"+-+" latitudinal pattern, with weakly negative anomaly in the mid-latitude NA (40°N
478	-60°N) at the southeast of the NA jet exit, and with the positive anomaly across other

479	regions of the NA (20°N -80°N). Fig. 9b indicates that the NA-SST /PC1 correlates
480	with the U/PC1, NAO and LSTC, with significant correlation coefficients of 0.32,
481	-0.57 and 0.33 at 95% confidence level, respectively, and this indicates that the
482	NAMV pattern with '+-+' zonal pattern is possibly related to the eastward shift in the
483	NNAO, due to a low pressure anomaly over south of Iceland; and there is a zonal SST
484	mode of the mid-cooling and south-warming on the south flank of NA jet exit, which
485	is helpful for southward shift in NA-jet, based on thermal wind principle. According
486	to Fig. 7 and Fig. 8, anomalies of NNAO and southward shift in NA-jet closely relate
487	to barotropic/baroclinic energy transfer to kinetic energy which thereby excites and
488	enhances the low-frequency waves. The NAMV SST pattern with '+-+' zonal pattern
489	possibly contributes to increase in LSTC in 2000s, because of cooling mid-latitude
490	NA and NAMV effect on warming central Europe (Sutton et al. 2005; 2012).
491	Fig. 9b shows low-pass filtered AMO, AMOC and NAMV index during the entire
492	period of 1979–2018. The SST/ PC1 pattern is well correlated with the original
493	NAMV index (Sutton and Hodson, 2005), AMO and AMOC, with correlation
494	coefficients of 0.8, 0.82 and 0.66, respectively. AMO could explain some interdecadal

31

Accepted for publication in Journal of Climate. DOI10.1175/JCLI-D-19-0536.1.

495	components of summer hot days and heatwaves in subtropical regions for 1979–2016
496	(Kushnir 1994; Zhang et al. 2018). However, explanations for AMO and extratropical
497	extremes are lacking. The significant correlation of NAMV with the SST/PC1 pattern
498	reveals that SST/ EOF1 pattern could reflect multidecadal variation of the mid-high
499	latitude NA-SST, through circulation anomalies such as eastward extension of NNAO,
500	southeast shift in NA-jet, increasing LSTC and so on, SST/EOF1 pattern links to the
501	extremes-related amplitude of waves (Fig. 2).
502	AMOC anomalies at the mid-high latitudes have been observed to lead the
503	fingerprint by ~4 years with respect to the mid-lower latitude fingerprint as a proxy
504	for AMOC variations (Smeed et al. 2014) due to the slow propagation of heat
505	transport (Zhang and Zhang 2015). The correlation of leading AMOC index with the
506	SST/PC1 pattern shows a significant correlation. Previous study has shown that the
507	AMOC stores approximately one-half of global excess heat during an accelerating
508	phase from the mid-1990s to the early 2000s, which contributes to the
509	global-warming slowdown in the beginning of the 21st century (Chen and Tung 2018).
510	It is expected that an intensified AMOC lasts at least for approximately two decades,

511	which will further result in low-level oceanic heat uptake manifesting as a period of
512	rapid global surface warming, as well as favoring persistence of the NAMV SST
513	pattern.
514	Fig. 9c-d shows regressions of 200-hPa U, 500-hPa geopotential height and surface
515	temperature to the NA-SST/PC1. The U anomaly related to the SST pattern exhibits a
516	'-+-' zonal pattern over NA and Europe with a positive anomaly at the exit of NA jet
517	to northern Europe and a negative anomaly over southern Europe and northern NA jet,
518	which exhibits the southeast extension of the NA jet exit and the northward extension
519	of the entrance of Afro Asian jet. The regression of the geopotential height anomaly
520	likes the eastward shift in the NNAO pattern (Fig. 9d), which is consistent with recent
521	decadal anomalies of NAO (Ulbrich and Christoph 1999). On the one hand, such
522	pattern identifies a cyclone anomaly over western Europe, on the other hand, the
523	cyclone leads to the eddy-driven jet effect on the southeast extension of the NA jet
524	exit. The regression of surface temperature (Fig. 9d) exhibits a negative anomaly in
525	the mid-latitude NA and a positive anomaly in eastern Europe, which is manifested as
526	a 'cooling ocean and warming land' pattern in the mid-latitude, shows a positive

527	anomaly of LSTC during the early 21st century. The regression maps also reveal a
528	low-frequency wave pattern (figure omitted), which is close to the quasi-stationary
529	wave with similar wavenumber.
530	Fig. 9 indicates that the NAMV SST pattern could represent multidecadal change
531	of NA-SST, and it is possibly favorable for multidecadal variability of southeast
532	extension of the NA jet, the eastward shift in the NNAO and the increasing in LSTC.
533	Conversely, previous research has shown that multidecadal variations of NAO can
534	induce multidecadal variations in the AMOC and poleward ocean heat transport in the
535	Atlantic (Smeed et al. 2014), which dominates long-term high-latitude SST and the
536	Arctic, superimposed on long-term anthropogenic forcing. In addition, poleward
537	shifts in the NA jet in the future correspond to increased anthropogenic forcing (Iqbal
538	et al. 2017). Those reveal that multidecadal variability of the mid-high latitude
539	circulations are the result of air-sea interaction, ocean dynamics and thermodynamics,
540	superimposed on long-term anthropogenic forcing, except for the remote forcing of
541	tropical SST pattern (Okumura, et al. 2001; Zhang et al. 2019). These multidecadal

542 circulation anomalies in the mid-high latitude act as the background of frequent

543 extratropical extremes on the multidecadal timescale.

544	f. Simulation of increase in the LSTC and NNAO related vorticity anomaly
545	To identify the magnifying wave amplitude due to a non-uniform temperature
546	distribution and the increasing LSTC, this study conducts one experiment related to
547	the longitudinal non-uniform temperature. A forcing of diabatic heating is performed
548	over Europe (center: 50°N, 20°E) at 700 hPa. In addition, to identify the contribution
549	of eastward shift in NNAO, corresponding to the cyclone anomaly over western
550	Europe, another experiment is positive vorticity forcing (center: 50°N, 10°E)
551	conducted at 700 hPa (schemes are shown in model section).
552	The simulation results show that diabatic heating and positive vorticity forcing are
553	similar in the mid-latitude. Both of them are favorable for two significant wave
554	patterns exhibited by geopotential height over the mid-latitude and high latitude (Fig.
555	10a-b). The anticyclone and cyclone anomalies correspond to the wave ridge and
556	trough of the quasi-stationary wave, which indicates that the LSTC related diabatic
557	heating and the NNAO related vorticity forcing could excite the low frequency waves,

35

with the same phase and wavenumbers as the quasi-stationary wave, which favors forresonant probability.

560	From the jet perspective, the Afro Asian jet exhibits shrinking and a decreasing of
561	20 m/s zonal winds from central Asia to southern Mediterranean Sea and northern
562	Africa under the vorticity forcing. But an increase of 20 m/s zonal winds over Europe
563	and the east coast of the North Atlantic under the LSTC related diabatic forcing.
564	These findings indicate a northward shifting in the entrance of the Afro Asian jet.
565	Besides, there are significant eastward extension of 20m/s U wind, which indicates an
566	eastward extension of the NA jet exit due to NNAO eddy-driven jet. Moreover, the jet
567	anomaly is conducive to an increase in energy transfer from the background to kinetic
568	energy and energy disperse trapped into the Afro Asian jet, and the jet waveguide
569	favors warming over Europe (Branstator 2002; Wang et al. 2014). On the other hand,
570	NNAO is favorable for a low frequency wave exhibited by a geopotential height
571	anomaly, such as blockings (He et al. 2018). The simulation results agree with above
572	diagnostic analysis, which further identify that the LSTC related diabatic heating and

36

573 NNAO related vorticity anomalies may excite the low frequency wave along two jets

and magnify amplitude of the quasi-stationary wave.

575 g. Simulation of the NA-SST pattern effect on extremes

576	To further quantify the magnification of wave magnitude, intensity and relations
577	with the intensified NAMV related SST mode, SST forcing in the sensitivity
578	experiment has been conducted by combining double of the first leading SST mode
579	with climatological SST and annual simulated SST in summer (the description is in
580	model section). The key circulation anomalies such as jet anomaly, NAO pattern and
581	LSTC, are analyzed. 200-hPa U wind from sensitivity experiment shows a positive
582	anomaly at the NA jet exit and north of the entrance of the Afro Asian jet (Fig. 11a),
583	which indicates a southeast extension of the NA jet. Such anomalies could well
584	conjunct the NA jet with the Afro Asian jet, thereby enhance the jet waveguide
585	between two jets. From the energy perspective, the U wind deviation could change the
586	interaction between background and seasonal energy transfer (Hoskins and Karoly
587	1981), and further results in increasing seasonal kinetic energy. The wave activity
588	flux at the 200-hPa level (Fig. 11a) further certifies the divergence energy in the

37

589	positive U region and the NA jet exit. Moreover, wave energy disperses along the
590	Afro Asian jet and the subpolar jet, which favors enhancement of the low frequency
591	waves.
592	The anticyclone/cyclone anomalies that correspond to the SST/ PC1 pattern are
593	exhibited by the geopotential height anomalies (Fig. 11b), which exhibit an eastward
594	shift of NNAO-like pattern described by the latitudinal pattern of cyclone anomalies
595	over northwestern Europe and anticyclones over Greenland. NAO-like eddies also
596	contribute to an extension of high-frequency eddies that drive the jet (Vries et al.
597	2013). The meridional pattern of cyclone anomalies over northwestern Europe and
598	western Siberia and anticyclones over eastern Europe and eastern Siberia indicate a
599	wave train, the cyclone/anticyclone anomalies correspond to wave troughs/ridges of
600	the quasi-stationary waves, and favor increasing amplitudes of the quasi-stationary
601	waves. The surface temperature anomalies corresponding to the SST/PC1 pattern,
602	show a meridional wavelike pattern (Fig. 11c) with a negative anomaly over the
603	mid-latitude NA to western Europe and East Asia and positive anomalies over central
604	Europe to central Asia. The pattern reveals that NAMV could contribute to the

605	'cooling ocean and warming land' pattern, in addition to the Europe warming under
606	global warming (Dong and Sutton 2013). The pattern favors enhancement of
607	meridional circulation and increasing amplitude of the quasi-stationary wave. Besides,
608	the anticyclone anomaly around the Ural mountain favors the enhancement and
609	eastward of Ural blocking high (Matsueda, and Endo 2017), which explains some
610	extremes over Eurasia (García-Herrera et al. 2019).
611	To emphasize the difference between the control SRP and the sensitivity SRP, the
612	first V-wind leading modes (20°N-60°N, 30°W-150°E) in JA from control and
613	sensitivity simulation are performed. The centers of V-wind mode are
614	connected(Fig.12a), which represents the climatological SRP, NAMV-related SRP
615	pattern and SRP pathways. From the perspective of SRP pathways, there is a
616	northward shift of the sensitivity SRP wave over the Eurasian continent, by
617	comparing with control SRP, which reveals the magnified wave amplitude that
618	enhances north wind and the anticyclone anomaly over North China and enhances
619	extreme droughts (Zhang et al. 2019). The positive-negative centers of V-wind mode
620	reflect SRP phase. By comparing the SRP phases, it is found that there is east shift in

621	SRP centers between 40° N - 50° N and the high latitude (50° N - 70° N) on the east of
622	60°E, with less than quarter period, which reveals eastward shift of climate anomaly
623	corresponding to the eastward NNAO and the southeast extension of the NA jet.
624	Moreover, eastward shift in the wave pattern could explain the eastward Ural
625	blocking high (Matsueda, and Endo 2017; García-Herrera et al. 2019). However, west
626	shifts of SRP centers occur over NA and north Europe between 50°N -70°N.
627	Therefore, the phenomenon shows a complex relation between the physical process of
628	SRP shift and NNAO and eastward extension of NA jet, which needs further
629	discussion.
629 630	discussion. To further identify the contributions of the intensified NAMV related SST mode to
630	To further identify the contributions of the intensified NAMV related SST mode to
630 631	To further identify the contributions of the intensified NAMV related SST mode to the wave amplitude and extratropical extremes, the time series of wave amplitude
630 631 632	To further identify the contributions of the intensified NAMV related SST mode to the wave amplitude and extratropical extremes, the time series of wave amplitude from the 20-yr control simulation and sensitivity simulation are calculated. The
630631632633	To further identify the contributions of the intensified NAMV related SST mode to the wave amplitude and extratropical extremes, the time series of wave amplitude from the 20-yr control simulation and sensitivity simulation are calculated. The circulation-parameters in the first year are replaced with the mean value of 20-yr

637	control is showed (Fig. 12b). To feature SRP intensity, the standardized V/PC1 series
638	from sensitivity and control are showed in Fig. 12b, which represent wave intensity.
639	The results show that the wave intensity under the control simulation is close to the
640	mean value of control simulation, however, most of them are higher in the sensitivity
641	experiment than the control, and the wave amplitude from sensitivity experiment is
642	also higher than control experiment, especially after the ninth years, revealing
643	increase in wave intensity and wave amplitude, due to increasing in intensified
644	NAMV. The simulated result is in accordance with the above diagnostic analysis.
645	Summary and Discussion
645 646	Summary and Discussion The magnification of wave magnitude is identified to closely relate to extratropical
646	The magnification of wave magnitude is identified to closely relate to extratropical
646 647	The magnification of wave magnitude is identified to closely relate to extratropical extremes. The causes of decadal-scale increase in extremes in the 21 st century is still
646 647 648	The magnification of wave magnitude is identified to closely relate to extratropical extremes. The causes of decadal-scale increase in extremes in the 21 st century is still uncertainty, although many materials have discussed the extremes under global
646 647 648 649	The magnification of wave magnitude is identified to closely relate to extratropical extremes. The causes of decadal-scale increase in extremes in the 21 st century is still uncertainty, although many materials have discussed the extremes under global warming (Palmer et al 2002; Francis and Vavrus, 2012; Huang et al. 2017; Johnson et

653	the linkage of NAMV and the anomalies of quasi-stationary wave with respect to the
654	following three aspects: 1) Intensified NAMV with zonal '+-+' SST mode favors
655	southeast extension of the NA jet, according to thermal wind principle; 2) Intensified
656	NAMV with zonal '+-+' pattern and positive anomaly temperature over the mid-high
657	latitude is helpful to zonal pressure anomaly, which possibly favors the eastward shift
658	in the NNAO pattern, and thereby strengthens eddy disturbance over western Europe
659	and enhances the eddy driven jet, contributing to southeast extension of the NA jet; 3)
660	Intensified NAMV with cool mid-latitude SST and NAMV effect on warming Europe
661	contributes to the mid-latitude 'cooling ocean and warming land' pattern, which
662	increases meridional circulation and meridional wind, according to V-wind thermal
663	wind principle and barotropic vorticity equation (Hoskins and Karoly 1981).
664	The magnification of wave magnitude is identified to link to the decadal anomaly
665	of the southeast extension of the NA jet, increasing LSTC, the eastward shift in
666	NNAO, and so on. The schematic diagram (Fig. 13) shows the mechanism of the
667	NA-SST pattern effect on the low-frequency waves and the magnification amplitude
668	of the quasi-stationary wave. Three physical processes are marked. a) Southeast

669	extension of NA jet anomaly favors barotropic energy transfer to seasonal kinetic
670	energy and waveguide between NA jet and Afro Asian jet, which enhances jet stream
671	waviness (Francis and Vavrus 2012) by altering in jet width, position and intensity.
672	b) Eastward shift in NNAO is helpful to baroclinic energy conversion to seasonal
673	kinetic energy, as well as eddy driven jet; both processes lead to increasing in energy
674	transfer and disperse, which excites or enhances the low frequency wave. c)
675	Increasing in LSTC leads to enhancement of meridional wind, which enhances
676	amplitude of the low frequency wave. The reinforcing low frequency waves increases
677	quasi-resonance probability and amplifies amplitude of the quasi-stationary wave
678	(Dong et al. 2013), which thereby favors extratropical extremes with high frequency
679	in summer.
680	Similar to the NA jet anomaly, the latitudinal position anomaly of the North
681	Pacific jet (Shaman et al. 2009; Belmecheri et al. 2017) is also changed. However, the
682	linkage of the North Pacific jet anomaly with extratropical extremes and the
683	relationships between the NA jet and the North Pacific jet receive less attention.
684	Except for NAMV pattern, NNAO can also lead to cooling of the mid-latitude

669 extension of NA jet anomaly favors barotropic energy transfer to seasonal kinetic

43

685	NA-SST (Delworth et al. 2016), which also favors increasing in LSTC, and further
686	explains the low-frequency wave anomalies. The study just discusses NA-SST effect
687	on the extremes on the multidecadal scale, however, it is significant to further discuss
688	other internal variabilities of earth-atmospheric system and anthropogenic warming.
689	Because of lagging behind NAMV mutation of the decadal change of the above three
690	factors and wave parameters (amplitude and intensity), it is inferred a coupling effect
691	of NAMV and other forcing should be further explored.
692	Acknowledgments
693	This research was jointly supported by the National Key R&D Program of China
694	(Grant No. 2016YFA0600702; 2018YFC1507101), the National Natural Science
695	Foundation of China (Grant No. 41630426, 41975083) and Distinguished Young
696	Scientists (Grant No. 41625019).
697	References

699 the late 1960s. J. Clim., **20**, 2721–44.

700	Belmecheri, S., F. Babst, A. R. Hudson, J. Betancourt, and V. Trouet, 2017: Northern
701	Hemisphere jet stream position indices as diagnostic tools for climate and
702	ecosystem dynamics. Earth Interact, 21, 1–23.
703	Black, B. A. et al., 2014: Six centuries of variability and extremes in a coupled
704	marineterrestrial ecosystem. Science, 345, 1498–1502.
705	Booth, B. B. B., N. J. Dunstone, P. R. Halloran, R. Andrews, and N. Bellouin, 2012:
706	Aerosols implicated as a prime driver of twentieth-century North Atlantic
707	climate variability. <i>Nature</i> , 484 , 228–232.
708	Bothe, O., K. Fraedrich, X. Zhu, 2012: Precipitation climate of Central Asia and the
709	large-scale atmospheric circulation. Theoretical & Applied Climatology,
710	108 (3-4): 345–354.
711	Branstator, G. 2002: Circumglobal teleconnections, the jet stream waveguide, and the
712	North Atlantic Oscillation. J. Clim., 15,1893–1910.
713	Chang, C. Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011:
714	Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J.
715	<i>Clim.</i> , 24 , 2540–2555, doi:10.1175/2010JCLI4065.1.

716	Chen, X. and K. K. Tung, 2018: Global surface warming enhanced by weak Atlantic
717	overturning circulation. Nature, 559, 387–391.
718	Clement, A. et al., 2015: The Atlantic multidecadal oscillation without a role for
719	ocean circulation. Science, 350 , 320–324.
720	Coumou, D. and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Clim.
721	<i>Chang</i> , 2 (7),491–496.
722	Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014:
723	Quasi-resonant circulation regimes and hemispheric synchronization of extreme
724	weather in boreal summer. Proc Natl Acad Sci., 111(34), 12331.
725	Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer
726	circulation in the Northern Hemisphere mid-latitudes. Science, 348(6232), 324–
727	327.
728	Dai, A., 2011: Characteristics and trends in various forms of the Palmer drought
729	severity index during 1900–2008. J. Geophys. Res., 116, D12115,
730	doi:10.1029/2010JD015541.

46

731	Delworth, T. L. and M. E. Mann, 2000: Observed and simulated multidecadal
732	variability in the Northern Hemisphere. Clim. Dyn., 16(9), 661–676.
733	Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The
734	North Atlantic Oscillation as a driver of rapid climate change in the Northern
735	Hemisphere. Nature Geoscience, 9, 509–512.
736	Dong, B. W., R. T. Sutton, T. Woollings, and K. Hodges, 2013: Variability of the NA
737	summer storm track: mechanisms and impacts on European climate. Env. Res.
738	<i>Lett.</i> , 8 , 034037.
739	Drews, A. and R. J. Greatbatch, 2016: Atlantic Multidecadal Variability in a model
740	with an improved North Atlantic Current. Geophys. Res. Lett., 43, 8199-8206.
741	Eden, C. and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response
742	to the North Atlantic Oscillation (1865-1997). J. Clim., 14, 676-691.
743	Francis, J. A. and S. J. Vavrus, 2012: Evidence linking Arctic amplification to
744	extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801.
745	Francis J.A. and S.J. Vavrus, 2015: Evidence for a wavier jet stream in response to
746	rapid Arctic warming. Environ Res Lett., 10(1), 014005.

747	Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell,
748	2009: The Summer North Atlantic oscillation: past, present, and future. J. Clim.,
749	22 ,1082–1103. doi:10.1175/2008JCLI2459.1.
750	Founda, D. and C. Giannakopoulos, 2009: The exceptionally hot summer of 2007 in
751	Athens, Greece - a typical summer in the future climate? Glob. Planet. Change,
752	67 , 227–236.
753	García-Herrera, R., J. Garrido-Perez, D. Barriopedro, C. Ordóñez, S. Vicente- Serrano,
754	R. Nieto, L. Gimeno, R. Sorí, and P. Yiou, 2019: The European 2016/2017
755	drought. J. Clim., doi:10.1175/JCLI-D-18-0331.1.
756	Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The
757	recent increase in Atlantic hurricane activity: Causes and implications, Science,
758	293 , 474–479.
759	Guan, X., J. Ma, J. Huang, R. Huang, L. Zhang and Z. Ma, 2019: Impact of oceans on
760	climate change in drylands. Science China Earth Sciences, 62, 891–908. DOI:
761	org/10.1007/s11430-018-9317-8.

762	Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and
763	Atlantic multi-decadal ocean variability. Science, 334, 655–660,
764	doi:10.1126/science.1205683.
765	Hall, R., R. Erdelyi, E. Hanna, J. M. Jones, and A. A. Scaife, 2015: Drivers of North
766	Atlantic Polar Front jet stream variability. I. J. Climatol., 35, 1697–1720.
767	He, Y., J. Huang, D. Li, et al. 2018: Comparison of the effect of land-sea thermal
768	contrast on interdecadal variations in winter and summer blockings. Clim. Dyn.,
769	51 ,1275–1294.
770	Hong, C., H. Hsu, N. Lin, and H. Chiu, 2011: Roles of European blocking and
771	tropical-extratropical interaction in the 2010 Pakistan flooding. Geophys Res.
772	<i>Lett.</i> , 38 (13), L13806.
773	Hoskins, B. J. and D.J. Karoly, 1981: The steady linear response of a spherical
774	atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38(6), 1179–1196.
775	Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, 2016a: Accelerated dryland
776	expansion under climate change. <i>Nature Clim. Change</i> , 6 (2), 166–172.

777	Huang, J., M. Ji, Y. Xie, S. Wang, Y. He and J. Ran, 2016b: Global semi-arid climate
778	change over last 60 years. Clim. Dyn., 46, 1131–1150.
779	DOI:10.1007/s00382-015-2636-8.
780	Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang, 2017: Drylands face potential threat
781	under 2°C global warming target. Nature Clim. Change, doi:
782	10.1038/NCLIMATE3275.
783	Huang, J., J. Ma, X. Guan, Y. Li, and Y. He, 2019: Progress in semi-arid climate
784	change studies in China. Adv. Atmos. Sci., 36, 922-937. DOI:
785	10.1007/s00376-018-8200-9.
786	Huang, W., S. Feng, J. Chen and F. Chen, 2015: Physical Mechanisms of Summer
787	Precipitation Variations in the Tarim Basin in Northwestern China. J. Clim.,
788	28 (9), 3579–3591.
789	Hurrell, J. W., M. M. Holland, and P. R. Gent, 2013: The Community Earth System
790	Model: a framework for collaborative research. Bull. Am. Meteorol. Soc., 94,
791	1339–1360.

50

792	Iqbal, W., W. N. Leung, and A. Hannachi, 2017: Analysis of the variability of the
793	North Atlantic eddy-driven jet stream in CMIP5. Clim. Dyn.,
794	https://doi.org/10.1007/ s00382-017-3917-1.
795	Jaime, Madrigal-González, Ballesteros-Cánovas, A. Juan, A. Herrero, P. Ruiz-Benito,
796	M. Stoffel, and M. E. Lucas-Borja, 2017: Forest productivity in southwestern
797	europe is controlled by coupled north atlantic and atlantic multidecadal
798	oscillations. Nature Comm., 8(1), 2222.
799	Johnson, N. C., S. P. Xie, Y. Kosaka, and X. Li, 2018: Increasing occurrence of cold
800	and warm extremes during the recent global warming slowdown. Nat. Comm.,
801	9 (1), 1724.
802	Kerr, R., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288,
803	1984–1985, doi:10.1126/science.288.5473.1984.
804	Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic
805	multidecadal oscillation. Geophys Res. Lett., 33(17),
806	DOI:10.1029/2006GL026242.

807	Koutsias, N., M. Arianoutsou, A. S. Kallimanis, G. Mallinis, J. M. Halley, and P.
808	Dimopoulos, 2012: Where did the fires burn in Peloponnisos, Greece the
809	summer of 2007? Evidence for a synergy of fuel and weather. Agr. For.
810	<i>Meteorol.</i> , 156 , 41–53.
811	Kushnir, Y., 1994. Interdecadal variations in North Atlantic sea surface temperature
812	and associated atmospheric conditions. J. Clim., 7, 141–157.
813	Li, H., H. Chen, H. Wang, J. Sun, J. Ma, 2018: Can Barents Sea ice decline in spring
814	enhance summer hot drought events over northeastern China? J. Clim., 31 (12),
815	4705–4725.
816	Li, J., C. Sun, and F. Jin, 2017: A Decadal-scale Air-sea Interaction Theory for North
817	Atlantic Multidecadal Variability: the NAT-NAO-AMOC-AMO Coupled Mode
818	and Its Remote Influences. Geophysical Research Abstracts, 19, 2017–5987.
819	Li, J. P., and C. Q. Ruan, 2018: The North Atlantic-Eurasian teleconnection in
820	summer and its effects on Eurasian climates. Envir. Res. Lett., 13, 024007,
821	https://doi.org/ 10.1088/1748-9326/aa9d33.

822	Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the
823	Northern Hemisphere mid-high latitudes on East Asian climate: A review. Adv.
824	Atmos. Sci., 36 (9), 902–921.
825	Liu, Y., K. M. Cobb., H. Song, et al., 2017: Recent enhancement of central Pacific El
826	Nino variability relative to last eight centuries. Nat. Comm., 8, 15386.
827	Mahlstein, I., O. Martius, C. Chevalier, and D. Ginsbourger, 2012: Changes in the
828	odds of extreme events in the Atlantic basin depending on the position of the
829	extratropical jet. Geophys. Res. Lett., 39, L22805.
830	Martin, H., R. Oldrich, M. Yannis, Máca Petr, S. Luis, K. Jan, and K. Rohini, 2018:
831	Revisiting the recent European droughts from a long-term perspective. Sci.
832	<i>Rep.</i> , 8 (1), 9499–9503.
833	Matsueda, M. and H. Endo, 2017: The robustness of future changes in Northern
834	Hemisphere blocking: a large ensemble projection with multiple sea surface
835	temperature patterns. Geophys. Res. Lett., 44, 5158-66.

836	Okumura, Y., S. P. Xie, A. Numaguti, and Y. Tanimoto, 2001: Tropical atlantic
837	air-sea interaction and its influence on the NAO. Geophys. Res. Lett., 28(8),
838	1507–1510.
839	O'Reilly, C. H., M. Huber, T. Woollings, and L. Zanna, 2016: The signature of low
840	frequency oceanic forcing in the Atlantic Multidecadal Oscillation. Geophys.
841	<i>Res. Lett.</i> , 43 , 2810–2818.
842	Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a
843	metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688–694,
844	doi:10.1038/ngeo955.
845	Palmer, T. N. and J. Räisänen, 2002: Quantifying the risk of extreme seasonal
846	precipitation events in a changing climate. <i>Nature</i> , 415 , 512–514.
847	Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant
848	amplification of planetary waves and recent Northern Hemisphere weather
849	extremes. Proc Natl Acad Sci., 110 (14), 5336–5377.
850	Petoukhov, V., S. Petri, S. Rahmstorf, D. Coumou, K. Kornhuber, and H. J.
851	Schellnhuber, 2016: Role of quasiresonant planetary wave dynamics in recent

852	boreal spring-to-autumn extreme events. Proc Natl Acad Sci., 113 (25), 6862-
853	6867.
854	Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. Palmer, 2012: The causes of the
855	rapid warming of the North Atlantic Ocean in the mid 1990s. J. Clim., 25, 4116–
856	4134.
857	Ruprich-Robert, Y., F. Msadek Castruccio, S. Yeager, T. Delworth, G. Danabasoglu,
858	2017: Assessing the climate impacts of the observed Atlantic multidecadal
859	variability using the GFDL CM2.1 and NCAR CESM1 global coupled models.
860	J Clim., 30 ,2785–2810.
861	Sutton, R. T. and B. Dong, 2012: Atlantic Ocean influence on a shift in European
862	climate in the 1990s. Nat. Geosci., 5,788–792.
863	Schlesinger, M. E. and N. Ramankutty, 1994: An oscillation in the global climate
864	system of period 65-70 years. Nature, 367,723-726.
865	Schlesinger, M. E. and N. Ramankutty, 1994: An oscillation in the global climate
866	system of period 65–70 years. Nature, 367, 723–726.

867	Screen, J. A. and I. Simmonds, 2013: Exploring links between Arctic amplification
868	and mid-latitude weather. Geophys Res. Lett., 40, 959-64.
869	Screen, J. A. and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour
870	particular regional weather extremes. Nat. Clim. Change, 4, 704–709.
871	Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in
872	the increase of hot temperature extremes. Nat. Clim. Change, 4, 161–163.
873	Shaman, J., S. K. Esbensen, and E. D. Maloney, 2009: The Dynamics of the ENSO-
874	Atlantic Hurricane Teleconnection: ENSO-Related Changes to the North
875	African–Asian Jet Affect Atlantic Basin Tropical Cyclogenesis. J. Clim., 22(9),
876	2458–2482.
877	Sillmann, J. and M. Croci-Maspoli, 2009: Present and future atmospheric blocking
878	and its impact on European mean and extreme climate. Geophys. Res.
879	<i>Lett.</i> , 36 (10), 92–103.
880	Smeed, D. A., G. McCarthy, S. A. Cunningham, E. Frajka-Williams, D. Rayner, W. E.
881	Johns, C. S. Meinen, M. O. Baringer, B. I. Moat, A. Duchez, and H. L. Bryden,

883 2004-2012. Ocean Sci., **10**, 29–38.

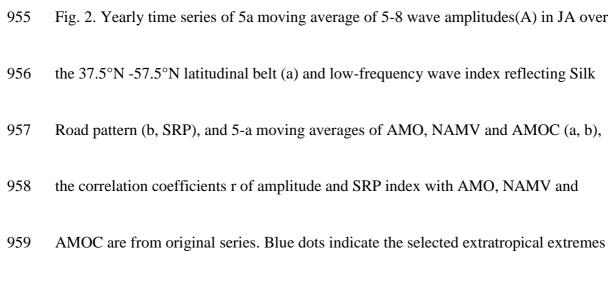
884	Steinman, B., M. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal
885	oscillations and Northern Hemisphere temperatures. Science, 347, 988–989.
886	Stadtherr, L., D. Coumou, V. Petoukhov, S. Petri, and S. Rahmstorf, 2016: Record
887	Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv., 2,
888	e1501428.
889	Strong, C. and R. E. Davis, 2008. Variability in the position and strength of winter jet
890	stream cores related to northern hemisphere teleconnections. J. Clim., 21, 584-
891	592.
892	Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European
893	heatwave of 2003. Nature, 432(7017), 610-614.
894	Sun, J. 2014. Record-breaking SST over mid-North Atlantic and extreme high
895	temperature over the Jianghuai–Jiangnan region of China in 2013. Chinese
896	Science Bulletin, 59 (27), 3465–3470.

897	Sun, C., J. P. Li, and S. Zhao, 2015: Remote influence of Atlantic multidecadal
898	variability on Siberian warm season precipitation. Sci. Rep., 5, 16853,
899	https://doi.org/10.1038/ srep16853.
900	Sutton, R. T. and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American
901	and European summer climate. Science, 309 , 115–118.
902	Sutton, R. T. and B. Dong, 2012: Atlantic Ocean influence on a shift in European
903	climate in the 1990s. Nat. Geosci., 5, 788–792, doi:10.1038/ngeo1595.
904	Trouet, V., F. Babst, and M. Meko, 2018: Recent enhanced high-summer north
905	atlantic jet variability emerges from three-century context. <i>Nature Comm.</i> , $9(1)$,
906	DOI: 10.1038/s41467-017-02699-3.
907	Takaya, K. and H. Nakamura, 2001: A Formulation of a Phase-Independent
908	Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a
909	Zonally Varying Basic Flow. J. Atmos. Sci., 58(6), 608–627.
910	Ulbrich, U. and M. Christoph, 1999: A shift in the NAO and increasing storm track
911	activity over Europe due to anthropogenic greenhouse Gas. Clim. Dyn., 15(7),
912	551–559.

913	Vries, H. D., T. Woollings, J. Anstey, R. J. Haarsma, and W. Hazeleger, 2013:
914	Atmospheric blocking and its relation to jet changes in a future climate. <i>Clim</i> .
915	<i>Dyn.</i> , 41 (9–10), 2643–2654.
916	Wang, S., J. Huang, Y. He, and Y. Guan, 2014: Combined effects of the Pacific
917	decadal oscillation and El Niño-southern oscillation on global land dry-wet
918	changes. Sci. Rep., 4,6651.
919	Watanabe, M. and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the north
920	atlantic: a positive feedback. Quart. J. R. Meteor. Soc., 126(570), 3343-3369.
921	Woollings, T. and M. Blackburn, 2012: The North Atlantic Jet stream under climate
922	change and its relation to the NAO and EA patterns. J. Clim., 25, 886–902.
923	Yan, X., R. Zhang, and T. R. Knutson, 2017: The role of Atlantic overturning
924	circulation in the recent decline of Atlantic major hurricane frequency. Nat.
925	<i>Comm.</i> , 8 , 1695.
926	Zhang, J. and R. Zhang, 2015: On the evolution of Atlantic meridional overturning
927	circulation (AMOC) fingerprint and implications for decadal predictability in
928	the NA. Geophys. Res. Lett., 42, 5419–5426.

929	Zhang, J., L. Li, Z. Wu and X. Li, 2015: Prolonged dry spells in recent decades over
930	north-central china and their association with a northward shift in planetary
931	waves. Int. J. Climatol., 35(15), 4829–4842.
932	Zhang, J., Z. Yang, and L. Wu, 2018: Skillful prediction of hot temperature extremes
933	over the source region of ancient silk road. Sci. Rep., 8(1), 6677.
934	Zhang, J., H. Chen, and Q. Zhang, 2019: Extreme drought in the recent two decades
935	in northern China resulting from Eurasian warming. Clim. Dyn., 52, 2885–2902.
936	Zhang, R., R. Sutton, G. Danabasoglu, and K. Delworth, 2016: Comment on "The
937	Atlantic Multidecadal Oscillation without a role for ocean circulation". Science,
938	352 , 1527.
939	Zhang, R. 2017: On the persistence and coherence of subpolar sea surface
940	temperature and salinity anomalies associated with AMOC multidecadal
941	variability. Geophys. Res. Lett., 44, 7865–7875.
942	Zhang, W., Z. Wang, M. F. Stuecker, A. Turner, F. F. Jin, and X. Geng, 2019: Impact of
943	ENSO longitudinal position on teleconnections to the NAO. Clim. Dyn., 52, 257–
944	274.

946 Figure captions


947 Fig.1. The frequency of extreme flood (blue bar, PDSI>=3) and extreme drought

948	(yellow bar, PDSI<=-3) in JA and the trend (red line) and 21-yr moving average filter

- 949 (blue line) of total flood and drought frequency in 300 grids in western Europe (a),
- 950 eastern Europe (b), central Asia (c), East Asia (d), central Russian (e) and eastern
- 951 Russia (f). Blue dots mark the extremes with frequency after 2000 higher than mean
- value (dot line). r is tendency correlation, r_d is correlation of 21-yr moving average

953 filter, * and ** mark 90% and 95% confidence levels from Monte Carlo test.

954

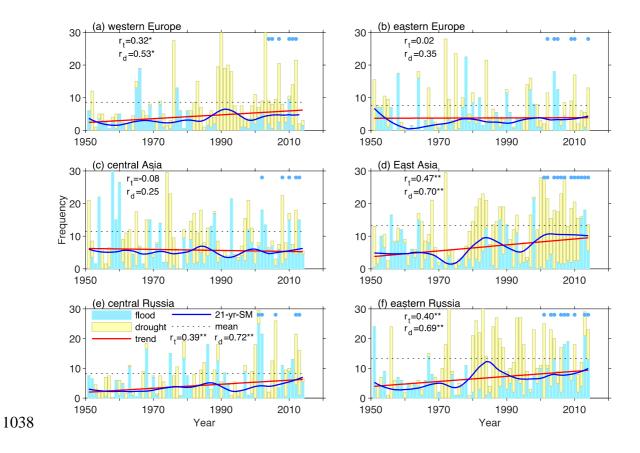
960 over Eurasian continent in JA, * and ** are the same as Fig.1.

61

962	Fig. 3. Mutation test of AMO (the first row), NAMV (the second row), AMOC (the
963	third row), SRP (the fourth row) and A (the fifth row), UF and UB (red and blue thick
964	lines) are variation series of positive and inverse sequence calculation, thin dot lines
965	are 95% confidence level, black dash lines are abrupt points, red dash lines are 95%
966	significant level of abrupt points.
967	
968	Fig. 4. Difference of 200-hPa zonal wind (a, dU, shaded, unit: ms ⁻¹) and wave activity
969	flux (a, TNF, unit: m^2s^{-2}), 500-hPa geopotential height with an interval of 5 gpm (b,
970	contours, $\pm dZ$, unit: gpm) and surface temperature in JA (b, dTs, shaded, unit: °C)
971	between 2001-2018 and climatology (1979-2018). The figure also shows the
972	climatological geopotential height, the contours of 5560-5680 gpm with an interval of
973	60 gpm (b, Z5560-5680, green lines), climatological jets with U=15, 20, 25, 30 ms ⁻¹
974	(a, U15-30, black lines), and jet with U=20 ms ⁻¹ after 2001 (a, U20-2000s, red line).
975	Climatological jet lines are the same as below. Dots are t-test at 90% confidence
976	level.

978	Fig. 5. The first leading EOF mode of 200-hPa U wind in JA (a, shaded) and
979	climatological jets (a, black lines), the 5a moving average of U/PC1, NAO,
980	amplitude(A) and SRP (b); and the correlation coefficients between them.
981	Climatological jets are the same as Fig.4. *, ** and blue dots are the same as Fig.2.
982	
983	Fig. 6. LSTC index and the trend in July and August (a), the 5a moving average of JA
984	LSTC, amplitude and SRP, and the correlation between them (b), and the regression
985	of the 500-hPa temperature anomaly (c, dT, shaded) and geopotential height anomaly
986	(c, dZ, black and gray contours representing positive and negative anomalies, with an
987	interval of 5 gpm) to JA LSTC index. The averaged geopotential height contours
988	before and after 2001 are the same as Fig. 4. * and ** are the same as Fig.2. Dots are
989	95% confidence level from Monte Carlo test.
990	
991	Fig. 7. Regression maps of the 200-hPa wave activity flux (TNF, arrow, unit: m^2s^{-2}) to

992 U/PC1 (a), -NAO (b), and LSTC (c) at the 90% confidence level. Climatological jets


993	(black lines) and the climatological geopotential height contours of 5560-5680 gpm
994	(green lines) are the same as Fig.4. The TNF without 90% confidence level is masked.
995	
996	Fig. 8. Barotropic energy at 300hPa after 2001(a, CK, shaded, unit: m ² s ⁻²) and
997	baroclinic energy at 700hPa after 2001 (b, CP, shaded, unit: m^2s^{-2}) and the
998	correlations between CK and U/PC1(c) and the correlations between CP and -NAO
999	(d), black dots indicate 95% confidence level from Monte Carlo test.
1000	
1001	Fig. 9. The first EOF mode of NA-SST in JA (a) and PC1(b), the time series of
1002	NAMV, AMO and AMOC (b), and the regression maps of the 200-hPa U wind (c,
1003	unit: ms ⁻¹), geopotential height (d, lines, unit: gpm) and surface temperature (d,
1004	shaded, unit: $^{\circ}$ C) to the SST/PC1. Red lines in (d) are positive, and blue lines are
1005	negative. Climatological jets (black lines) in (a and c) are the same as Fig. 4a; black
1006	dots are the same as Fig.6.

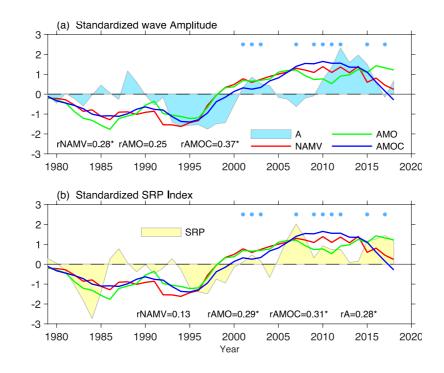
1008	Fig. 10. Simulation geopotential height (shaded, gpm) and wind velocity (UV, arrows)
1009	at 500-hPa (a) and 200-hPa (b) with diabatic heating forcing over Europe (center:
1010	50°N, 20°E) at 700 hPa, and geopotential height (shaded, gpm) and wind velocity
1011	(UV, arrows) at 500-hPa (c) and 200-hPa (d) with vorticity forcing. Climatological
1012	(U-clim=20, green lines) and simulated (U-sens=20, pink lines) 20-ms ⁻¹ U winds at
1013	200 hPa are shown in (b, d), climatological (green lines) and simulated geopotential
1014	height (5560, 5620 and 5680 gpm, pink lines) at 500 hPa are shown in (a, c).
1015	
1016	Fig. 11. Simulated anomalies of positive SST-mode (SenCtrl, Sensitivity minus

- 1017 Control) of 200-hPa U (a, shaded, unit: ms^{-1}) and TNF (a, vector, unit: m^2s^{-2}),
- 1018 500-hPa geopotential height (b, shaded, unit: gpm) and UV wind velocity (b, velocity,
- 1019 unit: ms^{-1}) and 700-hPa air temperature (c, unit: $^{\circ}C$) from CESM. Climatological
- 1020 geopotential height (blue lines, b-c) and jet (thin black lines) are the same as Fig.4,
- 1021 but for the control simulation. Dots are the same as Fig.4.

1023	Fig. 12. Contrast of V-wind EOF mode representing sensitivity SRP (a, Sen. color
1024	shaded) and climatological SRP (a, lines) and the central pathway (red/ blue is Sen.
1025	and Ctrl SPR, respectively), simulated amplitude difference (b, A Diff., green line,
1026	standardized) between 20-yr sensitivity and control simulation, and SRP
1027	low-frequency wave intensities (V/PC1) from the 20-yr control simulation (b, Ctrl
1028	Diff. blue bar) and sensitivity simulation (b, Sen. Diff. yellow bar). P-Clim and
1029	N-Clim in (a) are the positive and negative V-wind distribution.
1030	
1031	Fig. 13. Schematic diagram summarizing three physical processes of the intensified
1032	NAMV effect on low-frequency waves (LFW) and magnification of the amplitude of
1033	quasi-stationary waves (QSW). JS: NA jet, KE: seasonal kinetic energy, energy

- 1034 conversion from jet to KE reflects barotropic energy; B: baroclinic energy conversion
- 1035 to seasonal KE; LSTC: temperature contrast between the land and sea described by
- 1036 $\frac{\partial T'}{\partial \lambda}$, the longitudinal temperature gradient; V', meridional wind anomaly.
- 1037

1039 Fig.1. The frequency of extreme flood (blue bar, PDSI>=3) and extreme drought


1040 (yellow bar, PDSI<=-3) in JA, the trend (red line) and 21-yr moving average filter

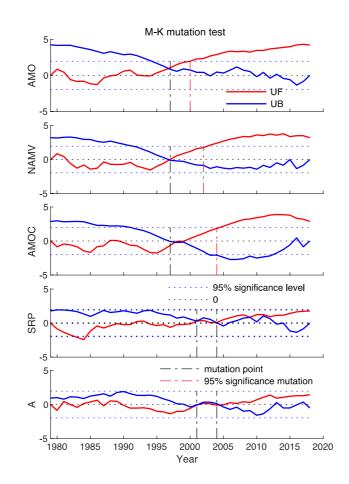
1041 (blue line) of total flood and drought frequency in 300 grids in western Europe (a),

1042 eastern Europe (b), central Asia (c), East Asia (d), central Russian (e) and eastern

1043 Russia (f). Blue dots mark the extremes with frequency after 2000 higher than mean

- 1044 value (dot line). r is tendency correlation, r_d is correlation of 21-yr moving average
- 1045 filter, * and ** mark 90% and 95% confidence levels from Monte Carlo test.
- 1046

1048 Fig. 2. Yearly time series of 5a moving average of 5-8 wave amplitudes(A) in JA over

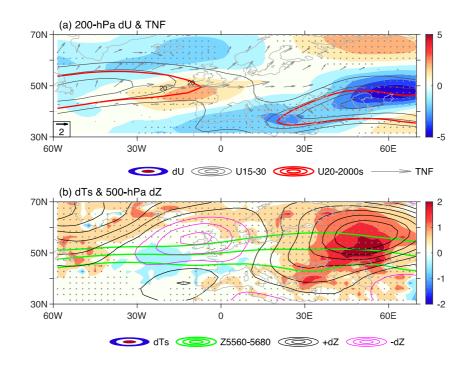

1049 the 37.5°N -57.5°N latitudinal belt (a) and low-frequency wave index reflecting Silk

1050 Road pattern (b, SRP), and 5-a moving averages of AMO, NAMV and AMOC (a, b),

1051 the correlation coefficients r of amplitude and SRP index with AMO, NAMV and

1052 AMOC are from original series. Blue dots indicate the selected extratropical extremes

1053 over Eurasian continent in JA, * and ** are the same as Fig.1.


1055 Fig. 3. Mutation test of AMO (the first row), NAMV (the second row), AMOC (the

1056 third row), SRP (the fourth row) and A (the fifth row), UF and UB (red and blue thick

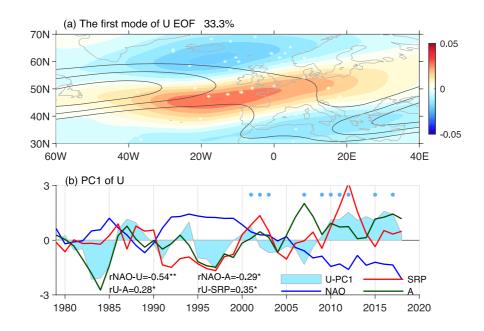
1057 lines) are variation series of positive and inverse sequence calculation, thin dot lines

are 95% confidence level, black dash lines are abrupt points, red dash lines are 95%

1059 significant level of abrupt points.

1062 Fig. 4. Difference of 200-hPa zonal wind (a, dU, shaded, unit: ms⁻¹) and wave activity

1063 flux (a, TNF, unit: m^2s^{-2}), 500-hPa geopotential height with an interval of 5 gpm (b,


1064 contours, $\pm dZ$, unit: gpm) and surface temperature in JA (b, dTs, shaded, unit: $^{\circ}C$)

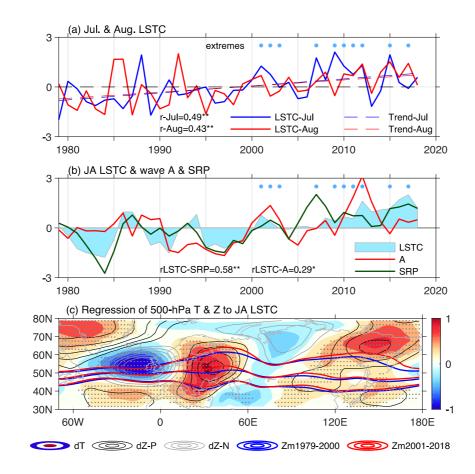
1065 between 2001-2018 and climatology (1979-2018). The figure also shows the

1066 climatological geopotential height, the contours of 5560-5680 gpm with an interval of

1067 60 gpm (b, Z5560-5680, green lines), climatological jets with U=15, 20, 25, 30 ms⁻¹

- 1068 (a, U15-30, black lines), and jet with $U=20 \text{ ms}^{-1}$ after 2001 (a, U20-2000s, red line).
- 1069 Climatological jet lines are the same as below. Dots are t-test at 90% confidence
- 1070 level.
- 1071

1073 Fig. 5. The first leading EOF mode of 200-hPa U wind in JA (a, shaded) and


1074 climatological jets (a, black lines), the 5a moving average of U/PC1, NAO,

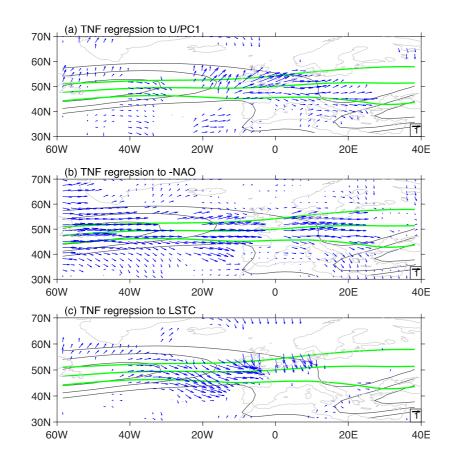
1075 amplitude(A) and SRP (b); and the correlation coefficients between them.

1076 Climatological jets are the same as Fig.4. *, ** and blue dots are the same as Fig.2.

1077

1072

1080 Fig. 6. LSTC index and the trend in July and August (a), the 5a moving average of JA

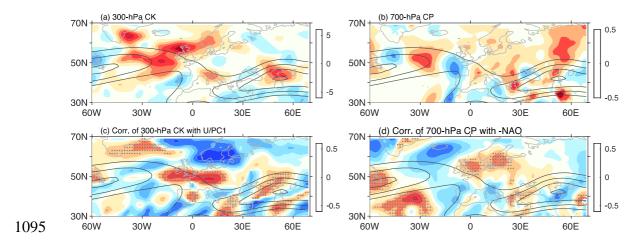

1081 LSTC, amplitude and SRP, and the correlation between them (b), and the regression

1082 of the 500-hPa temperature anomaly (c, dT, shaded) and geopotential height anomaly

1083 (c, dZ, black and gray contours representing positive and negative anomalies, with an

1084 interval of 5 gpm) to JA LSTC index. The averaged geopotential height contours

- 1085 before and after 2001 are the same as Fig. 4. * and ** are the same as Fig.2. Dots are
- 1086 95% confidence level from Monte Carlo test.
- 1087

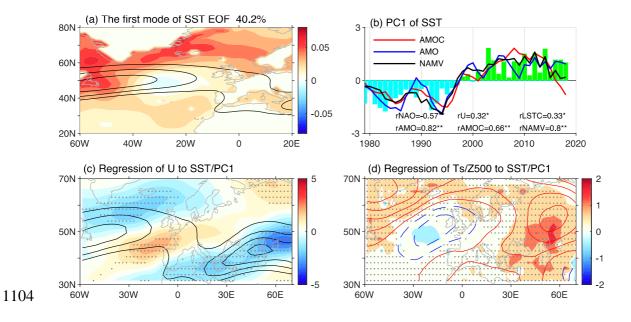

1089 Fig. 7. Regression maps of the 200-hPa wave activity flux (TNF, arrow, unit: m^2s^{-2}) to

1090 U/PC1 (a), -NAO (b), and LSTC (c) at the 90% confidence level. Climatological jets

1091 (black lines) and the climatological geopotential height contours of 5560-5680 gpm

1092 (green lines) are the same as Fig.4. The TNF without 90% confidence level is masked.

1093



1096 Fig. 8. Barotropic energy at 300hPa after 2001(a, CK, shaded, unit: m^2s^{-2}) and

- 1097 baroclinic energy at 700hPa after 2001 (b, CP, shaded, unit: m^2s^{-2}) and the
- 1098 correlations between CK and U/PC1(c) and the correlations between CP and –NAO
- 1099 (d), black dots indicate 95% confidence level from Monte Carlo test.

1101

1102

1105 Fig. 9. The first EOF mode of NA-SST in JA (a) and PC1(b), the time series of

1106 NAMV, AMO and AMOC (b), and the regression maps of the 200-hPa U wind (c,

1107 unit: ms⁻¹), geopotential height (d, lines, unit: gpm) and surface temperature (d,

- 1108 shaded, unit: $^{\circ}$ C) to the SST/PC1. Red lines in (d) are positive, and blue lines are
- 1109 negative. Climatological jets (black lines) in (a and c) are the same as Fig. 4a; black
- 1110 dots are the same as Fig.6.

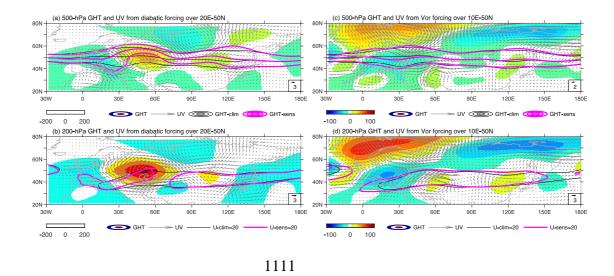
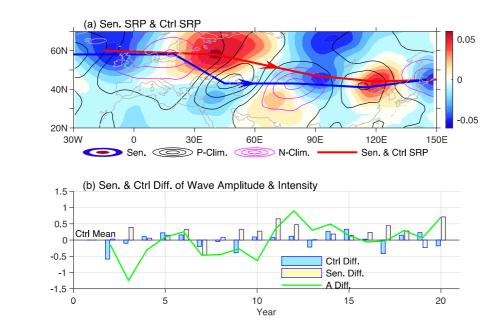


Fig. 10. Simulation geopotential height (shaded, gpm) and wind velocity (UV, arrows)
at 500-hPa (a) and 200-hPa (b) with diabatic heating forcing over Europe (center:
50°N, 20°E) at 700 hPa, and geopotential height (shaded, gpm) and wind velocity
(UV, arrows) at 500-hPa (c) and 200-hPa (d) with vorticity forcing. Climatological
(U-clim=20, green lines) and simulated (U-sens=20, pink lines) 20-ms⁻¹ U winds at
200 hPa are shown in (b, d), climatological (green lines) and simulated geopotential
height (5560, 5620 and 5680 gpm, pink lines) at 500 hPa are shown in (a, c).

1120


1122 Fig. 11. Simulated anomalies of positive SST-mode (Sen.-Ctrl, Sensitivity minus

1123 Control) of 200-hPa U (a, shaded, unit: ms⁻¹) and TNF (a, vector, unit: m²s⁻²),

1124 500-hPa geopotential height (b, shaded, unit: gpm) and UV wind velocity (b, velocity,

1125 unit: ms⁻¹) and 700-hPa air temperature (c, unit: °C) from CESM. Climatological

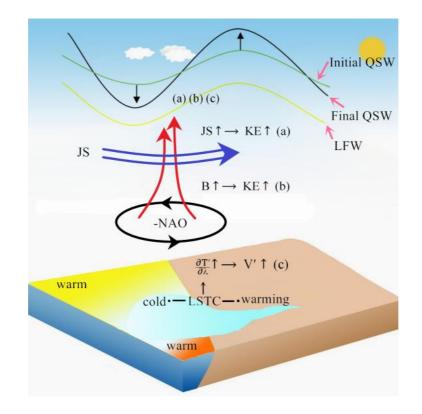
- 1126 geopotential height (blue lines, b-c) and jet (thin black lines) are the same as Fig.4,
- 1127 but for the control simulation. Dots are the same as Fig.4.

1130 Fig. 12. Contrast of V-wind EOF mode representing sensitivity SRP (a, Sen. color

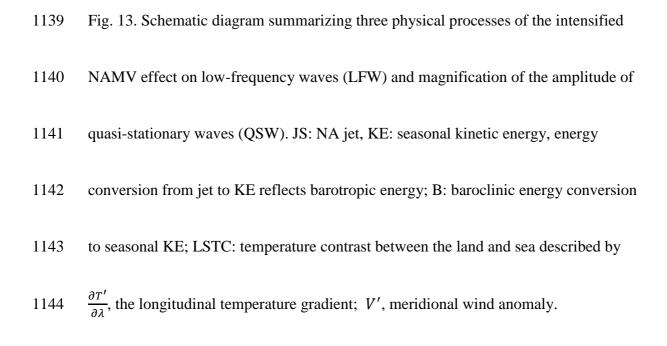
1131 shaded) and climatological SRP (a, lines) and the central pathway (red/ blue is Sen.

1132 and Ctrl SPR, respectively), simulated amplitude difference (b, A Diff., green line,

1133 standardized) between 20-yr sensitivity and control simulation, and SRP


1134 low-frequency wave intensities (V/PC1) from the 20-yr control simulation (b, Ctrl

1135 Diff. blue bar) and sensitivity simulation (b, Sen. Diff. yellow bar). P-Clim and


1136 N-Clim in (a) are the positive and negative V-wind distribution.

1137

1129

