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Abstract
Non-homogeneous hidden Markov model (NHMM) is applied in modeling of daily rainfall occurrences across 16 synoptic
stations in Kenya. The time series of the data sets was during the October–December (OND “short rains”) season from 1979 to
2005. The tool assumes that the diurnal rainfall events at a network of observing stations are influenced by unobserved states, that
is, “weather states.” These states’ evolution is modeled based on a first-order Markov criterion with state-to-state transition
probabilities conditioned on some atmospheric variable indices. The five states are selected using the Bayes information criterion
(BIC). To downscale daily rainfall occurrences across 16 stations, a NHMM employed global circulation model (GCM) projec-
tion outputs for daily precipitation and sea surface temperatures during the study period. The interannual variability of the mean
GCM simulated precipitation and mean historical stations rainfall depicts a weak correlation though significant at 90% confi-
dence level. Thus, it implies that GCM-NHMM simulations do not simulate the rainfall occurrences well. The consecutive wet
spell length between the historical rainfall datasets and GCM-NHMM simulated precipitation for 90-day frequencies shows a
strong positive correlation significant at 95% confidence level. The findings from this study reveal that the modeling tool is
suitable for statistical downscaling of daily rainfall occurrences at multisite stations network. The statistical inference from the
model is applicable for drought/flood preparedness, water resource management, and inputs into crop models.

1 Introduction

Climate change poses a significant threat across the globe. The
changing climate has led to an intensification of extreme
events (Aerenson et al. 2018). Extreme events are associated
with loss of lives and vast destruction of property, especially in
developing countries. Drought, for instance, is a threat to the
agribusiness sector which relies heavily on rainfall. Excessive
rainfall, on the other hand, is a challenge too because it leads
to flooding, runoff, and general infrastructure destruction. For
instance, the drought experienced in January 2014, in Kenya,
affected close to 1.6 million of their population (IFRC 2015).

The situation was felt in the marginal agricultural and pastoral
livelihood regions like the Northern, North Eastern, North
Western, South Eastern, and some Coastal areas. The south-
east and northwest pastoral regions continued to suffer from
food insecurity even during the October to December rains,
since La Niña resulted to below-average rains (Funk et al.
2018). To reduce the community’s vulnerability to the effects
of such extreme events, proper preparedness mechanisms are
paramount. Such measures include prior planning of neces-
sary resources for such impending disasters. To realize this,
modeling of climatic variables like rainfall, which is essential
to rain fed agriculture, needs to be undertaken and the predic-
tions of its likelihood of occurrences quantified (Chen et al.
2013).

To understand the probabilistic structure of precipitation,
stochastic models have previously been applied in many stud-
ies. Such models have been used to simulate inputs for agri-
cultural crop models, runoff, water resource management, hy-
drology models, and other fields (Vrugt et al. 2008; Steduto
et al. 2009; Maraun et al. 2010). However, previously, the said
method did not take into consideration the atmospheric as-
pects that influence precipitation formation, perhaps due to
scanty atmospheric data sets. Thus, such simulations failed
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to model precipitation adequately. Hence, Gabriel and
Neumann (1962) modeled wet and dry daily rainfall instances
at a rainfall station in Israel using a homogeneous Markov
chain transition matrix. To show seasonal variations, the
Markov chain was extended by transforming the transition
probabilities using a Fourier series (Stern and Coe 1984).
Mechanistic models were also developed by scholars such as
Le Cam (1961) who used cluster point criteria to discuss cy-
clonic rain storm as having “bands.” Other researchers, in-
cluding Waymire and Gupta (1981), studied the point ap-
proach method.

Even though these models were used, they failed to incor-
porate atmospheric parameters. In the recent past, advances in
quality data collection and modernization of meteorology
have led to a better understanding of Global circulation
models (GCMs). Although these models perform better than
the stochastic tools, their spatial resolutions are coarse. This
implies that simulating a local area with complex terrain and
with a smaller spatial scale than grid box using GCM leads to
a poor representation of climate (Schubert 1998; McAvaney
et al. 2001).

In order to optimize the quality of present atmospheric data
to address the challenges above, downscaling is necessary.
The statistical downscaling techniques are widely used since
it can be applied easily to different GCMs, regions, scales, and
are inexpensive (Timbal et al. 2003; Wilby et al. 2004; Wood
et al. 2004). Statistical downscaling entails development of the
quantitative relationship between a small/local space weather
parameters (predictands) with the large-space meteorological
variables (predictors), by applying analog methods (circula-
tion typing), regression methods, or soft computing tech-
niques like neural networks (Cannon and Whitfield 2002).
Non-homogeneous hidden Markov model (NHMM) allows
simulation of rainfall at individual station as well as compar-
ison with historical (observed) rainfall records. To estimate
future smaller scale climatology, less than 30 km, the
NHMM model employs future GCM projections to run the
statistical model.

Statistical downscaling has limitation in that it is inappro-
priate for use with sparse data and where relationships be-
tween predictands and predictors show variations. The com-
mon statistical downscaling scheme uses predictand as a func-
tion of the predictor. Nonetheless, other relations have been
applied. This approach has been used in various studies both
in the tropics and mid-latitudes. For instance, Kang and Kim
(2010) using a number of dynamical and statistical models
assessed Madden–Julian oscillation (MJO) predictability for
boreal winter. To investigate sub-seasonal to interdecadal var-
iability of the Australian monsoon, Robertson et al. (2005)
used HMM statistical tool over North Queensland. Applying
a hidden Markov model tool, Yoo et al. (2010) studied the
Asian summer monsoon’s variability in interannual and
intraseasonal timescales. Similarly, Guo et al. (2018) used

HMM tool to analyze the flood-season rainfall pattern as well
as its temporal changes over East China.

To design a statistical downscaling model, four methods
were inferred. Firstly, choosing a statistical downscaling
method and selection of GCM is done. Then it is preceded
by determining a relevant predictor variable in order to base an
understanding of local and regional driving factors as well as
the appropriate GCMmodel. To reduce GCMpredictors mean
and variance biases about observations, data standardization is
done on regional climate at a locality using GCMs. The large
space atmospheric variable may, for example, represent large-
scale circulation flow patterns over a vast region like the tro-
pics while the small scale may represent monthly or daily
precipitation from weather observing station. Some studies
have utilized products fromGCMs to infer various atmospher-
ic parameters. An example is Zeng et al. (2014) that used
simulat ions from phase three of Climate Model
Intercomparison Project (CMIP3) to analyze summer precip-
itation changes in North China and over Yangtze River valley.
In a recent study, Ongoma et al. (2018) used CMIP5 simula-
tions to project rainfall and temperature over East Africa. The
findings of the study may be used for future planning despite
the fact that GCMs do not performwell in reproducing rainfall
over the region (Ongoma et al. 2019; Rowell 2019).

A NHMM is a tool for statistical downscaling, which have
been used widely in Australia and South America (Zucchini
and Guttorp 1991; Hughes and Guttorp 1994; Hughes et al.
1999; Bellone et al. 2000; Charles et al. 2004; Robertson et al.
2004a). However, in Africa, the NHMM has not been applied
extensively for such purposes. Through a number of hidden
states, NHMM tool relates daily precipitation data in a net-
work of rain gauge stations to global atmospheric patterns.
These regimes’ evolution is then simulated following a first-
orderMarkov state-to-state transition events set on atmospher-
ic predictor indices. This tool is useful in conceptualizing sta-
tistics of day to day rainfall events at station level regarding
large scale atmospheric patterns, as well as generating in situ
daily rainfall sequence occurrences in a given region for crop
models simulation inputs, for water, natural resources man-
agement, and environmental protection.

Despite irrigation practices in the region, rain fed agri-
culture stands in as key economic driver of the agricultur-
al economy in Kenya. Hence, precipitation is paramount.
Thus, more accurate weather forecasting and prediction
are necessary for water resource management, food secu-
rity, and environmental protection in the region for sus-
tainable development. Thus, projecting precipitation oc-
currences during the October–December (OND “short
rains”) season will be of help in planning especially for
the Arid and Semi Arid Land (ASAL) regions where short
rains is the main season. The current study aims at down-
scaling rainfall using NHMMs, examining short rain
events of daily rainfall observed at a network of stations
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in Kenya, and inferring its variability to large-scale atmo-
spheric systems.

2 Study area, data, and methods

2.1 Study area

The study area is confined within longitude 33° E to 43° E and
latitude 5° S to 5° N (Fig. 1). The field of study covers about
582,650 km2 and is characterized by highly variable topo-
graphic features.

The climate of Kenya is a typical equatorial. The short rains
pattern is driven by the East African monsoon that brings air
with warm and moist conditions. The annual mean monthly
temperature ranges between 19 and 24 °C in July (coldest) and
March (warmest), respectively (Ongoma et al. 2017). Kenya
experiences two major rainfall seasons: “long rains” from
March to May (MAM) and “short rains” during October to

December (OND) (Ongoma and Chen 2017; Mumo et al.
2018). Annually, mean rainfall is about 2000 mm (Ongoma
and Chen 2017).

2.2 Data

2.2.1 Observed data

Observed rainfall datasets were provided by the Kenya
Meteorological Department (KMD). Out of the 33 synoptic
stations distributed across the country, 16 stations’ data for the
period 1979–2005 for OND season were used. The 16 mete-
orological stations were chosen because of their data continu-
ity, homogeneity, and quality. Thus, every 27 years (1979–
2005), we had a time series of 92 days. A few missing data
(less than 3%) in a station were in-filled by averaging adjacent
homogeneous stations during the same period. The study con-
sidered the reliable time series based on the standard normal
homogeneity test in XLSTAT (Addinsoft 2016).
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Fig. 1 Map of the study area
indicating the spatial distributions
of synoptic stations in Kenya. The
atmospheric data grid is extended
over the entire study domain
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2.2.2 Reanalysis data/atmospheric data

The reanalysis products used in our study are the interim
European Centre for Medium-Range Weather Forecasts, Re-
Analysis data (Dee et al. 2011) and the National Centers for
Environmental Prediction-National Center for Atmospheric
Research (NCEP/NCAR) Reanalysis I (Kalnay et al. 1996)
from 1979 to 2005 in all the cases.

ERA-Interim reanalysis data Large-scale atmospheric vari-
ables were derived from the European Centre for Medium
Range Weather Forecast (ECMWF) ERA Interim reanalysis
data on a 1° × 1° horizontal resolution for the same study
period as the observation data to be used for model validation.
The variables used include outgoing longwave radiation
(OLR), zonal andmeridional wind speeds (u and v) at pressure
levels (200 and 850 hPa). The predictor domain extended
from longitude 10° E to 80° E and latitude 20° S to 20° N to
cover the entire research field.

NOAA_ERSST_V4 dataGlobal sea surface temperatures for the
same study period (1979–2005; OND) were derived. The ver-
sion 4 of Extended Reconstructed Sea Surface Temperature
(ERSSTv4; Huang et al., 2014) data sets were provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from
their website at http://www.esrl.noaa.gov/psd/.

2.2.3 Global climate model simulations/model data

Ensemble simulation for ECHAM6 Atmospheric Model
Intercomparison Project (AMIP) precipitation for the entire
study period and domain was used during the analysis.
Unlike ECHAM5, the ECHAM6 model is run at a higher
vertical resolution which constitutes the upper stratosphere-
troposphere with improved precision. The ECHAM6 is forced
with the observed historical SSTs.

2.3 Methods

The modeling tool—hidden Markov model (HMM)
(Robertson et al. 2004a) enables for modeling daily rainfall
amounts as well as the occurrences on many rainfall stations
networks. The machine models the observed rainfall by put-
ting in place minute number of hidden rainfall states. The
underlined regimes make it possible for the exposition of ob-
served rainfall changes regarding discrete rainfall patterns.
Nonetheless, the states (k) in question are not directly visible
to the observer hence referred to as “hidden.”HMM follows a
Markov chain whereby an active “today” state relies solely on
the active state “yesterday” basing on transition probabilities.
The HMM allows for the simulation of rainfall at individual
station in the investigative zones and comparing it with his-
torical (observed) rainfall records for the entire period. From

the analyses, important statistical features like wet or dry spell
lengths and rainfall probabilities can be evaluated. Thus, the
model can be used for generation of large rainfall data sets for
input into a water resource simulation, crop management
model, and statistical analysis and so forth.

Applying Hughes and Guttorp (1994), hidden Markov
model contains two conditional statements. To begin with,
we assume more than one rainfall observations Rt during time
t are unconstrained of the rest factors in the model till time ;
contingent on weather state St at time t is expressed as pre-
sented in Eq. 1:

P RtjS1:t;R1:t−1ð Þ ¼ P Rtj Stð Þ ð1Þ

The second presumption is that the hidden state process S1 :
T follows the first-order Markov process.

P StjS1:t−1ð Þ ¼ P StjSt−1ð Þ ð2Þ

Also, we assume that the first-order Markov process is time
homogeneous; that is, the k × k probability transition matrix is
not altered with a shift in time as in Eq. 2.

States S1, …,ST correspond to latent weather states while
output vectors R1, …,RT are daily precipitation occurrences
for the network (Fig. 2).

To make P(Rt| St) easier, we assume that the observed rain-
fall in every station during time t is expressed as given in Eq. 3:

P Rt ¼ rjSt ¼ sð Þ ¼ ∏
M

m¼1
P Rm

t ¼ rjSt ¼ S
� � ¼ ∏

M

m¼1
psmr ð3Þ

where r ∈ {0, 1}, each psmr ∈ [0, 1] and psm0 + psm1 = 1
To connect multisite rainfall occurrence with GCMs de-

tails, a NHMM (Hughes and Guttorp 1994) is developed by
introducing input parameters to HMM. Under NHMM, the
state transition matrix is not stationary. The NHMM tool
breaks the temporal and spatial diurnal rainfall via discrete
weather states over a gauge station network. In the whole
gauge stations, every state forms a set of rainfall distributions
and probabilities. Following the same approach as in HMM,
we let Xt be N-dimensional column vector of predictors for
day t, obtained from meteorological variables. By X1 : T, we
denote the sequence X1, …, XT. Basing on the homogeneous
HMM, we substitute Eq. 2 with Eq. 4:

P StjS1:t−1;X 1:T
� � ¼ P StjSt−1;XT

� � ð4Þ

The unobserved state on day t is dependent on the value of
unobserved rainfall regime St − 1, on day t − 1 as well as the
predictor column vector Xt for day t. Since Xt varies in time, this
leads in transition probabilities connecting states that change due
to changes in X, hence an inhomogeneous HMM model. The
function of Xt is as in the graphical model (Fig. 3). Here, arrows
represent model parameters that are estimated from rainfall data
sets.
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States S1, …,ST correspond to weather states while output
vectors R1, …,RT are daily rainfall occurrences for the net-
work; X1, …,XT are vectors of atmospheric variables.

Multinomial logistic regression is applied in Eq. 5 to model
the hidden state transitions:

P
�
St ¼ i St−1 ¼ j;Xt¼xj Þ ¼ exp σji þ ρ

0
iX

� �
∑K

k¼1exp σjk þ ρ0
kX

� � ð5Þ

The first specific hidden state in the sequence S1, is denoted
as in Eq. 6:

P
�
St ¼ i St−1 ¼ j;Xt¼xj Þ ¼ exp λi þ ρ

0
iX

� �
∑K

k¼1exp λk þ ρ0
kX

� � ð6Þ

The λs and σs comprise real valued parameters whereas ρs
are real-valued parameter vectors in N-dimension, where the
prime indicates vector transpose. The baseline transition ma-
trix was multiplied by atmospheric predictors like the param-
eterization derived in previous studies (Hughes and Guttorp
1994; Hughes et al. 1999)

P
�
St ¼ i St−1 ¼ j;Xtj Þα ¼ P

�
St ¼ i St−1 ¼ jj ÞP X tjSt−1; ¼ j; St ¼ i

� �

¼ γji exp −
1

2
Xt−μji

� �0
V−1 Xt−μji

� �� �

Α ¼ exp lnγji−
1

2
μ

0
jiV

−1μji

� 	
þ μ0

jiV
−1Xt

� �
ð7Þ

The parameter μji is mean of the atmospheric variable
linked with transitions from state j to i at day t − 1 to dayt.
Simplifying and equatingP(Xt|St, St − 1,) to P(Xt| St,), then

μji =μi, Eq. 6 will be equal to Eq. 5. To elaborate this, we

set ρi = V−on1μji andλi ¼ lnγji− 1
2

� �
μ

0
jiV

−1μji. In order to

have statistical identifiability, the transition parameters, σj1,
ρi, and λ1 are set to zero. The maximum likelihood technique
is used to learn the parameters that best fit the conditional
probability of the observed data sets.

L Θð Þ ¼ P R1:T jX1:TΘð Þ

¼ ∑
S1:T

P S1jX1;

� �
∏
T

t¼2
P StjSt−1;Xtð Þ ∏

T

t¼1
P Rt jStð Þ ð8Þ

The non-homogeneous characteristic allows transition
probabilities to change from state to state thus governing ex-
ternal feed (GCM details) which impact the evolution of rain-
fall features. In our study, ECHAM6AMIP daily precipitation
for OND season has been used in downscaling expected daily
rainfall occurrences across stations under investigation
(Robertson et al. 2004a, 2009; Verbist et al. 2010; Pineda
and Willems 2016). Therefore, to check on OND expected
rainfall events in Kenya, we employed GCM-NHMM to con-
duct probabilistic modeling. This study used principal compo-
nent analysis (PCA) and the first leading PCs that accounted
for more than 10% of ECHAM6 uncoupled precipitation were
selected. To take care of sub-seasonal variability and capture
the seasonal cycle of precipitation, GCM variance was fil-
tered. After that, we trained the NHMM in cross-validated
mode, as described under HMM using the historical station
rainfall alongside with the two daily principal components as
the inputs, to generate 50 daily rainfall simulations. The 50
simulations were then averaged seasonally at 16 stations.
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Fig. 3 A graphical model of a
NHMM

Fig. 2 A graphical model of
HMM
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3 Results and discussion

3.1 Estimation of model parameters

Having chosen the 5-state model, its parameters were estimat-
ed over the entire rainfall record. Daily rainfall observations
sourced from 16 meteorological stations for OND season for
period 1979–2005 are considered in this analysis. The longi-
tudinal, as well as latitudinal stations’ information, is utilized
during the fitting process. Applying Robertson et al. (2004a),
cross-validation was done to ascertain the quality regarding
log-likelihood of the fitted number of states. We learn the
expected maximization (EM) algorithm by restarting it 20
times from zero initial seeds and utilized the one consisting
of highest log likelihood. The out of sample value fork = 1 to 9
was normalized (scaled) and plotted as in Fig. 4. The model
used was an independent delta exponential distribution at ze-
ro. From the normalized values, both the Bayes information
criterion (BIC) and exponential function converges/flatten at
(near) state 6. However, state 6 did not improve the model
performance; hence we settled for k = 5 in our study.
Normalization of the state was accomplished using the follow-
ing approach; for k states HMM model, the BIC scores was
defined as given in Eq. 9

BICk ¼ 2L Θ*
k

� �
−plogT ð9Þ

where Θ*
k represents the maximum likelihood parameter vec-

tor and is derived by expected maximization upon training k
states model; L Θ*

k

� �
is the model’s likelihood evaluated atΘ*

k

as shown in Eq. 8; p is the linear parameter’s number used in
each k state model whereas T is the sum of the days used in
training the model. For more complex model, the term −plogT
is used to subject a “penalty.” From Kass and Raftery (1995),

BIC can be perceived as an example approximation to the real
Bayes factor for model sampling though the computation is
complex.

As highlighted by Hughes and Guttorp (1994), BIC can
provide meaningful information whereby models are backed
up by the data though the theoretical aspect of selecting a
NHMMs and HMMs model is partially substantiated by
Hughes et al. (1999). To derive normalized BIC scores that
are of more less the same scale like a standardized log- likeli-

hoods, we substituted BICk in equation 9 with BICk
2N where N

represents total of binary predictions made, that is, N = 27 ×
92 × 16.

The self-transitions (shown in bold face) are quite large
showing that the states are persistent, with states 1, 5, and 2–
4 being the most and least persistent states respectively
(Table 1). There are some rare direct transitions between states
1 and 2, 2 and 4, with states 3 acting as an intermediary. A
clear transition direction is lacking through the states. The
cells with less than 0.10 probabilities are italicized.

3.2 Representation of HMM state

Having selected a 5-state model, its parameters were estimated
from whole 2484 daily rainfall record. The EM algorithm was
restarted 50 times, choosing the log likelihood with the
highest run. The resultant rainfall parameters regarding
amount and probabilities are shown in Fig. 5. In state 1, rain-
fall is enhanced in the western, central, and coastal regions.
Stations in Northwestern, eastern and northeastern regions
received depressed rainfall, mostly characterized by light rains
(drizzle). State 1 probabilities amount are high along the rift
valley stations. Under state 2, rainfall distribution and proba-
bilities show some spatial resemblance. However, the coastal
and western regions rains are suppressed. The wettest state, 4,
exhibits an almost similar spatial distribution of rainfall occur-
rence and amount with least values recorded on the northeast-
ern regions. State 2 is the driest state characterized by rainfall
events in all stations. However, a comparison between its av-
erage amounts and probabilities is lower to state 5, in some
stations. The fifth state is perfectly homogeneous in terms of

Table 1 HMM states transition probability matrix

Transition probabilities between HMM hidden states

To state

From state 1 2 3 4 5

1 0.73 0.01 0.13 0.06 0.07

2 0.02 0.82 0.08 0.01 0.07

3 0.09 0.10 0.74 0.03 0.04

4 0.11 0.02 0.09 0.70 0.08

5 0.06 0.04 0.04 0.03 0.83
Fig. 4 AHMM Scaled log likelihood
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probability and amounts; however, its probabilities are lower
than state 3. States 3 and 5 rainfall probabilities show some
tendencies of correlation with rainfall intensity; states 1, 2, and
4 do not show such correlations. The state transition matrix is
shown in Table 1. The table depicts persistence that highlights
the Markov characteristic of HMM. The respective wet and
dry states 3 and 4 are most persistent.

3.3 The estimated state sequence

The probable 5-state sequence over 27 fall (OND) period was
estimated by using the Viterbi algorithm, a dynamic program-
ming algorithm (Forney 1973). The estimated sequence makes
it possible for an interpretation of observed rainfall record re-
garding these states and atmospheric features that are linked to
an individual state. Figure 6 shows the estimated state sequence

for 27 seasons. It depicts a marked variability in both sub-
seasonal and interannual variations. The mean interannual var-
iability is shown in Fig. 8. The dry state 4 dominated the 1980s
whereas the wet state is well distributed. State 1 has a similar
seasonality with state 3, but its frequency is less than state 3.
States 2 and 5 dominated depicting a similar seasonal frequency
though less than states 3 and 1 but more than state 4.xx

We analyzed the average seasonality of the rainfall state
occurrence. The outcomes in Fig. 7 indicate the characteristic
trends of the five states. State frequency 1 as well as 3 de-
creases from early October to mid-November and then grad-
ually peaks in prevalence till late December. States 2 and 5
increase from the beginning of the season and maximize
around mid-November followed by significance decline to
late December. State 4 showed a less similar characteristic like
in states 2 and 5. However, it consisted of bimodal peaks
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during late October and mid-November. Additionally, it
showed stagnancy in seasonal state frequency during the sec-
ond to third week in October and its frequency, both during the
peak and trough were slightly lower than the other states (Fig.
8). The states 1 to 5 minimum-maximum ratios from the 27
years’ 10 days moving average are 0.44, 0.49, 0.85, 0.33, and
0.45, respectively. Within the study season, the state frequen-
cy varying factor is between 1and 3 and is a direct implication
of the non-uniformity in the HMM. The interannual variability
for the state sequence was accomplished by cumulating the
days during the OND as in the estimated sequence in Fig. 6.

There is evidence of the major interannual variations occur-
rences, in states 1 and 3, which is consistent with their rainfall
and the composites. State 3 occurrence frequencies peaked dur-
ing 1986 and around 2002, while states 2, 4, and 5 show little
interannual changes. El Niño (La Niña years) tend to be linked
with more (less) of state 1 as compared to state 3.

3.4 Prevailing synoptic conditions

To check the dynamics of synoptic conditions, composite
analysis was employed. Our work slightly differed from pre-
vious studies in that the indices used for classifying the El
Niño or La Niña events are based on monthly rainfall events
for each year for all the states. We considered the top 15% (5
seasons) of the most prevalent standard deviations from the
mean to discern the El Niño or La Niña phenomena
(Robertson et al. 2004b). The approach was deemed suitable
since it captures the El Niño-Southern Oscillation (ENSO)
events. Upon forming a composite and respective ENSO
event chosen, these phenomena years are normalized in all
the states.

The composite analysis was done on ERA interim anal-
ysis wind (zonal and meridional) at 200 hPa (Fig. 9) and
850 hPa pressure levels as well as OLR. This was done to
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analyze meteorological features linked to the five rainfall
states. The wind and OLR anomalies within the tropics
for the two pressure levels and the individual rainfall
states were plotted during the study/OND season. The
mean seasonal anomalies (deviations from the mean) for
the three variables were standardized prior to plotting.

The wind at 200 hPa level is paramount weather indicators
since they denote regions of convergence and confluence of
westerly winds and it determines how the circulation pattern
between the surface and upper level are interconnected.
Convergence below with divergence above leads to a convec-
tional activity that maintains the frontogenesis activities. Most

Fig. 6 The estimated HMM state sequence. Colors are running from green (wettest) to dark blue (driest). The numbers of days for particular state 1 to 5
are 367, 541, 606, 577, and 393 respectively

Fig. 8 Interannual state frequency variability in HMM. The interannual
variability of state occurrence based on days assigned to the individual
stateFig. 7 Seasonal state frequency cycle
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winds at upper level depicted a westerly flow characteristic
especially in state 3 (Fig. 9). However, in states 1 and espe-
cially state 4 (Fig. 9), the winds are more diffluent. To further
probe the synoptic associations, wind composite anomalies at
850 hPa and outgoing longwave radiation were analyzed.
State 1 (Fig. 10) shows that the region had a suppressed
OLR with weak in directional winds; a small area around

the Lake Victoria on the western region experienced an en-
hanced OLR.

In the wettest state 4 (Fig. 10), the whole country had in-
creased OLR which imply that the convective activities were
favored and hence the formation of cumulonimbus clouds rain
storms. Besides, state 4 experienced strong maritime easterly
winds from the Indian Ocean that aided in the frontogenesis.

Fig. 9 Composites anomalies concerning the OND climatological mean.
Climatological average, for days assigned to every state. The arrows
indicate 200 hPa winds. Arrow scale is given below each panel (m/s).

The NHMM composite days used are 371, 544, 611, 582, and 376 for
states 1, 2, 3, 4, and 5 sequentially
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Under state 2 (Fig. 10), the driest state, a less similar condition
was noted as in state 4 (Fig. 10). Nonetheless, the winds
were very strong, and the convective systems that
formed moved further northwards. In state 5 (Fig. 10),
negative OLR was recorded in the entire study region.
However, convection activity was hampered by the dry
continental north easterlies, thus the reduced rainfall
events.

3.5 Interannual variability-influence of ENSO

We further did the composite using the seasonalmean SST for an
interannual state frequency during the most prevalent years (top
15%) (Fig. 11). The shading shows significance at 90% confi-
dence level. ENSO effects are seen in most states. An ENSO
SSTanomaly signature is present for years during which states 2
or 4 are highly prevalent, but statistical significance is high only

Fig. 10 Composites anomalies concerning October–December climato-
logical mean, over state 1, 2, 3, 4, and 5 assigned days. Arrows indicate
850-hPa winds while shading denotes OLR (W/m2). Arrow scale is given

under each panel (m/s). As shown in Fig. 9, the NHMM composite days
used are 371, 544, 611, 582, and 376, respectively
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in state 4 (IndianNiño). During state 4, the positive phase of IOD
event, the region of study experiences enhanced precipitation.
The opposite holds for state 2 during the negative phase of the
Indian Niño event (Fig. 11). State 4 rainfalls are also influenced
by El Niño effects whereas in state 2, it is associated with La
Niña effects. All the states are associated with Atlantic and
Pacific SST anomalies characteristics. States 3 is not linked with
appreciable SST anomalies.

3.6 Sub-seasonal and interannual properties
of NHMM

To determine wet day length, wet days with more than 1 mm
of rainfall were used as the baseline threshold, so any day

recording 1 mm of rainfall was considered as a wet spell
day. A maximum consecutive wet day length was calcu-
lated for the entire season (90 days) to determine the
characteristics between the observed and the simulated
rainy days. From the analysis, the simulated consecutive
spell length peaked till a maximum of 14 consecutive
spell length, flattened, then rose up to maximum spell
duration of 32 days (Fig. 12). The observed maintained
an s-curve and flattened at the maximum spell duration of
58 days. A correlation between the two indicates that both
the simulated and the observed have a strong positive
correlation of 0.82.

The simulated 90-day period was obtained through averag-
ing NHMM simulated daily rainfall across the 16 stations.

Fig. 11 Anomalous composites of SST for years (OND) during the most
prevalent HMM states, for the upper 15% of the interannual distribution
of state frequency. The number of seasons in every composite is

bracketed. Shading shows 90% statistical significance according to a
two-sided Student t test. The negative contours are dashed, whereas zero
contours are left out, contour interval is 0.2 °C
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Similarly, a mean of observed daily rainfall from all the sta-
tions was derived.

GCM inputs, 50 NHMM runs of daily rainfall occurrence
for every station were made. Then, we obtained the average
number of rainy days over 16 stations per season. The linear
correlation between the simulated and observed rain days was
0.33 significant at a p value of 0.1 (Fig. 13). This implies that
NHMM simulations do not recover the mean station quantity
as well as the predictive input factor value of the rainfall in this
season.

The extremes and the quartiles of simulated distribution
were also plotted (Fig. 14). Close to 95% of the years in the
observed curve lies within the simulated inter-quartile range,
supporting the idea that the variance of the simulated distribu-
tion is consistent. During the study years, the 50-member

simulated distribution bracketed nearly whole observed ones
except one implying it is consistent under the NHMM. This
means that under stringent cross-validation, an NHMM is able
to generate time series of station’s observed mean rainfall
occurrence.

4 Conclusion

This study utilized HMMs and NHMMmodel climatological
variations of OND rainfall in Kenya. Historical daily data sets
from 16 synoptic stations, reanalysis data, together with the
global climate models were employed to accomplish this
study. Five states model based on BIC were selected and used
for model fitting. States 4 and 2 were the wettest and driest,
respectively.

The seasonality and variability exhibited by the estimated
state sequence composites like SSTand OLR indicates that the
weather states, 1, 2, 3, and 5 are linked with large-scale fea-
tures like the Monsoon, large displacement of Inter Tropical
Convergence Zone (ITCZ), Indian Ocean Dipole, ENSO, and
North Atlantic Oscillation teleconnections. The dry state 2 is
likely to be associated with the inactive Madden-Julian
Oscillations phase and or La Niña. Downscaling of daily rain-
fall occurrences at 16 stations incorporated an NHMM and
GCM of daily precipitation with sea surface temperatures dur-
ing the same study period.

The interannual variability of mean GCM simulated pre-
cipitation and average historical stations rainfall shows a weak
correlation though significant at 90% confidence interval.
Thus, it implies that GCM-NHMM simulations do not recover
the rainfall occurrences well. The consecutive wet spell length
between the historical rainfall data sets and GCM-NHMM

Fig. 13 Interannual variability of candidate GCM predictor variables.
Interannual variability of the candidate GCM predictor variables with
the observed daily rainfall occurrence, averaged over the 16 stations
(circles), the standard error is represented by error bars

Fig. 14 Interannual variability of NHMM simulated rainfall occurrence
versus the observed (solid) averaged over the 16 stations. The average of
50 NHMM simulations (dotted). The per season’s rain days number was
summed over the entire 16 stations then divided by 16. The error bars
show/indicates the whole range of 50 simulations, whereas the inner ticks
represent the inter-quartile range

Fig. 12 A maximum consecutive wet spell between the simulated and
observed rainfall
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simulated precipitation for 90-day frequencies shows a strong
positive correlation (0.82) significant at a 95% confidence
level. Despite the weak association between the GCM-
NHMM downscaled rainfalls, the objectives were met.

For sustainable agro-economical, water management and
sustenance of human livelihoods, precipitation plays a critical
role. Since rainfall maintains the hydrological cycle, proper
monitoring and forecasting are inevitable. The non-
homogeneous model is a relatively good statistical tool to
downscale daily rainfall occurrences. However, some results
depict a weak relation between the observed and simulated
analyses.

This work recommends filtering of the predictor input var-
iables before the analysis to remove seasonality and trends
that may interfere with the results. The performance of other
GCM simulations should be tested too since different GCMs
perform well in various regions.
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