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Abstract—In the advanced manufacturing industry, planar
switched reluctance motors (PSRMs) have proved to be a promis-
ing candidate due to their advantages of high precision, low
cost, low heat loss, and ease of manufacture. However, their
inverse force function, which provides vital phase current com-
mand for precise motion, is highly nonlinear and hard to be
accurately modeled. This paper proposes a novel inverse force
function using sparse least squares support vector machines (LS-
SVMs) to achieve nonlinear modeling for precise motion of a
PSRM. The required training and testing sets of sparse LS-
SVMs are first obtained from experimental measurement. A
sparse LS-SVMs regression is further developed using training
set to accurately model the inverse force function. Accordingly,
the function is tested via the testing set to assess its feasibility.
Finally, the proposed approach is applied to the PSRM system
with dSPACE controller for trajectory tracking, and its effective-
ness and superior performance are verified through experimental
results.

Index Terms—Inverse force function, least squares support
vector machines (LS-SVMs), nonlinear modeling, phase current
estimation, planar switched reluctance motors (PSRMs).

I. INTRODUCTION

R ECENTLY, with the rapid progress in advanced manu-
facturing industry, the direct drive planar motors attract

increasing attention since they feature simple structure, high
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reliability, low friction, and no backlash compared with the
conventional planar motors with cumbersome mechanical
transmission mechanism [1]–[7]. The direct drive planar
switched reluctance motors (PSRMs) derived from linear
switched reluctance motors (LSRMs) are an attractive can-
didate in high-precision two-dimensional (2-D) positioning
device, owing to their advantages of high precision, low cost,
low heat loss, ease of manufacture, and strong adaptability of
harsh environment [7], [8].

In the control strategy of PSRMs, there is inverse force func-
tion which is inverse function of thrust force. The inverse force
function provides phase current command to current driver for
achieving planar motion in terms of the inputs of the position
from linear encoder and thrust force command from position
controller [7], [8]. Therefore, accurate modeling of the inverse
force function plays a key role in providing precise phase
current command for precise motion of PSRMs. However,
the inverse force function is highly nonlinear and hard to be
accurately modeled due to the inherently complex magnetic
characteristic of PSRMs.

The inverse force function of LSRMs is directly applied to
that of PSRMs so far. There are primarily two methods used
to model the inverse force function. The first method is to
deduce the inverse force function from a thrust force func-
tion based on the linear magnetic field under low-phase current
level, and it is frequently employed in literatures [9]–[12].
Nevertheless, applying this method is hugely limited, since it
fails to provide precise phase current command in the case of
nonlinear magnetic field in which PSRMs frequently operate.
Moreover, appropriate and valid control algorithm has to be
designed to achieve more precise motion by using this method.
Consequently, not only the complexity of the control system
would be increased but also the application of high-precision
motion of PSRMs would be limited. The second method uti-
lizes a lookup table to model the inverse force function [7],
[13]. A current–force–position lookup table is constructed from
static experimental data, and an interpolation method is adopted
to calculate the phase current command based on the lookup
table. However, using this method, not only high memory
capacity is required for processor employed in control but also
low-precision phase current command is obtained with mea-
ger experimental data. Hence, in order to provide precise phase
current command for precise motion of PSRMs, the inverse
force function to deal with accurate nonlinear modeling is
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in high demand, and it is one of the problems to be solved
urgently.

As for switched reluctance motors, artificial neural networks
(ANNs) have been successfully employed to nonlinear mod-
eling of flux linkage with respect to phase current and rotor
position [14], [15], owing to their ability to model the nonlinear
characteristics. However, the systematic approach concerning
how to decide the number of hidden layers and neurons has
not been fully proposed. Meanwhile, ANNs also exhibit short-
comings of overfitting, requiring large sample, and sinking into
local optima. Alternatively, it has been demonstrated that sup-
port vector machines (SVMs) provide an effective approach
to avoid the aforementioned problems of ANNs, which are
a new machine learning method for classification and regres-
sion based on statistical learning theory and structural risk
minimization principle [16]–[20]. SVMs have been effectively
applied in function estimation [21]–[23], fault diagnose [24],
[25], data mining [26], [27], and speech recognition [28], [29].
Furthermore, least squares SVMs (LS-SVMs) possess faster
arithmetic speed compared to SVMs [30]. Since the sparseness
is lost in LS-SVMs compared with SVMs, sparse LS-SVMs
have been proposed to impose the sparseness of LS-SVMs [31].
As aforementioned analysis, sparse LS-SVMs are a powerful
tool for nonlinear modeling.

For high-precision planar motion of PSRMs, it is noticeable
that sparse LS-SVMs are a good choice to nonlinear modeling
of the inverse force function, since they are capable of solv-
ing nonlinearity, overfitting, small sample, local optima, low
arithmetic speed, and requirement of high memory capacity
for processor. Thus, a novel nonlinear inverse force function
of a PSRM using sparse LS-SVMs is proposed in this paper.
The training and testing of the function are further performed,
and the involved experiments are carried out to validate the
effectiveness of the proposed approach.

II. SYSTEM DESCRIPTION

A. Structure

PSRMs are variable reluctance motors based on the mini-
mum reluctance principle, which have doubly salient and are
energized by dc current. PSRMs can be considered as two
LSRMs with orthogonal magnetic circuits.

The experimental setup of the PSRM system is presented in
Fig. 1(a) in which the PSRM developed in our laboratory is
shown. The specifications of the PSRM are listed in Table I. The
PSRM consists of stator sets, X and Y moving platforms, X- and
Y-axes linear encoders, X- and Y-axes linear guides, stator base,
etc. For achieving planar motion, two pairs of linear guide are
applied to support linear motions in X- and Y-axes. Fig. 1(b)
shows the structures of one stator block, combination of four
stator blocks, one mover, and X moving platform. The stator
block is constituted by a set of laminated silicon steels, the sta-
tor sets constructed from combination of four stator blocks are
mesh structure, and one mover with six teeth is composed of a
set of laminated silicon steels. The Y moving platform consists
of the moving slider and the X moving platform, and the X mov-
ing platform consists of two sets of three identical movers with

Fig. 1. (a) Experimental setup of the PSRM system. (b) Structures of stator
block, combination of four stator blocks, mover, and X moving platform.

TABLE I
SPECIFICATIONS OF THE PSRM

three-phase winding. The two sets of movers are perpendicular
to each other, and each set of movers is responsible for the
motion in each axis. Phase XA, XB, and XC and phase YA, YB,
and YC are three-phase winding in X- and Y-axes, respectively.
Due to the perpendicular arrangement of two sets, the two sets
of three-phase winding are decoupled magnetically.
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Fig. 2. Induced voltages. (a) Phase XA. (b) Phase XB. (c) Phase XC.
(d) Phase YA. (e) Phase YC.

Fig. 3. Flux linkage versus phase current versus position from experimental
data.

B. Modeling

Fig. 2 manifests the induced voltages of remaining phase
windings when phase YB of the PSRM is energized by a
sinusoidal voltage with 3-V amplitude and 50-Hz frequency.
From Fig. 2, it is clear that the two sets of movers are virtu-
ally decoupled magnetically since these induced voltages are
almost zero. As a result, electromagnetic forces of two axes are
independently generated with little mutual influence. For phase
YB of the PSRM, the flux linkage versus phase current versus
position in a pole pitch from experimental data is demonstrated
in Fig. 3. Fig. 3 demonstrates the nonlinear and complex mag-
netic field of the PSRM. Thus, the PSRM is a highly nonlinear
system, and it is hard to formulate the accurate model of the
PSRM.

For phase k of l-axis, the voltage balance equation is given by

ulk = Rlkilk +
∂λlk(ilk, xl)

∂t

= Rlkilk +
∂λlk(ilk, xl)

∂xl

∂xl

∂t
+

∂λlk(ilk, xl)

∂ilk

∂ilk
∂t

= Rlkilk + ilk
∂Llk(ilk, xl)

∂xl

∂xl

∂t
+ Llk(ilk, xl)

∂ilk
∂t

l = X,Y, k = A,B,C

(1)

where xl is the position of l-axis, ulk, ilk, Rlk, λlk, and Llk

are the phase voltage, the phase current, the phase resistance,
the flux linkage, and the inductance of phase k in l-axis,
respectively.

For l-axis, the mechanical movement equation is given as

fl = ml
d2xl

dt2
+ bl

dxl

dt
+ flp + flu (2)

where ml, bl, flp, flu, and fl are the mass of moving platform,
the damping coefficient, the external load force, the friction,
and the electromagnetic thrust force of l-axis, respectively.

For the case of constant excitation of phase k in l-axis, the
incremental mechanical energy ∂Wlk is equal to the rate of
change of co-energy ∂W ′

lk, where Wlk is the mechanical energy
and W ′

lk is the co-energy which is nothing but the complement
of the field energy [32]. Hence

∂Wlk = ∂W ′
lk (3)

where

W ′
lk =

∫
λlk(ilk, xl)dilk =

∫
Llk(ilk, xl)ilkdilk. (4)

Therefore, the electromagnetic thrust force of l-axis in terms
of the mechanical energy is expressed as

fl =

C∑
k=A

flk =

C∑
k=A

∂Wlk

∂xl
=

C∑
k=A

∂W ′
lk

∂xl

∣∣∣∣∣
ilk=τlk

=
C∑

k=A

∂
∫ τlk
0

λlkdilk

∂xl
(5)

where flk and τlk are the electromagnetic thrust force and the
constant phase current of phase k in l-axis, respectively.

For the linear magnetic field under low-phase current level,
the electromagnetic thrust force can be approximately derived
as [32]

fl =
C∑

k=A

1

2

dLlk

dxl
i2lk. (6)

Additionally, the inverse force function is an inverse func-
tion of thrust force. In terms of (5), for phase k in l-axis of the
PSRM, the nonlinear inverse force function is a function of the
position of l-axis and thrust force of phase k in l-axis, which
outputs the phase current of phase k in l-axis.
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Fig. 4. Block diagram of the PSRM control system.

C. Control Strategy

The block diagram of the PSRM control system is shown in
Fig. 4. Since 2-D motions of the PSRM are virtually decou-
pled, two standalone controllers are applied to linear motions
of two axes, respectively. For the linear motion of X-axis, the
real position xreal is detected and transformed into the posi-
tion signal xr by a linear encoder. The position signal xr is
compared with the reference position signal xref , and their cor-
responding position error ex is processed through a position
controller to produce the thrust force command fX . The thrust
force commands of each phase fXA, fXB , and fXC are pro-
duced by force distribution function (FDF) [11] according to
the thrust force command fX and the position signal xr. With
the position signal xr and the thrust force commands of each
phase fXA, fXB , and fXC , the three-phase current command
iXA, iXB , and iXC are obtained via inverse force functions.
The three-phase current command iXA, iXB , and iXC and
three-phase current i′XA, i

′
XB , and i

′
XC are processed through

current drivers to provide phase currents to the PSRM for
achieving linear motion in X-axis.

III. NONLINEAR MODELING OF THE INVERSE FORCE

FUNCTION BY SPARSE LS-SVMS

To obtain precise phase current commands of the PSRM, a
nonlinear modeling of inverse force function under nonlinear
magnetic field is proposed in this section. The inverse force
function of phase k in l-axis is given as

ilk = g(s) = g(xl, flk) (7)

where s = {xl, flk} and ilk are the input and output of the
inverse force function, respectively.

In terms of (6), the inverse force function of phase k in l-axis
under linear magnetic field is represented as

ilk = g(s) = g(xl, flk)

=

√
2flk

(
dLlk

dxl

)−1

, l = X,Y, k = A,B,C. (8)

Since the PSRM operates in nonlinear magnetic field in most
cases, the inverse force function is difficult to be accurately
modeled to deal with the nonlinear magnetic characteristic
according to (5). Based on sparse LS-SVMs, a regression func-
tion is adopted to model the inverse force function of phase
k in l-axis with the training set obtained from experimental
measurement under nonlinear magnetic field.

A. LS-SVMs Regression

LS-SVMs regression has the feature of establishing nonlin-
ear system by mapping the input data into a high-dimensional
feature space and then solving the regression problem of linear
equations. The unknown regression function is expressed by

y∗ = f(x) = (w, ϕ(x)) + b (9)

with the given training set {xj , yj}hj=1, where xj ∈ Rn is the
input data from training set, yj ∈ R is the output data from
training set, h is the number of training set, y∗ ∈ R is the output
of the function, ϕ(.) : Rn → Rd is a nonlinear map from the
input vector to a higher dimensional feature space with dimen-
sion d, and w ∈ Rn and b ∈ R are the parameters that control
the function. w is defined as the weight vector and it denotes
a direction perpendicular to the hyperplane which is an affine
subspace of dimension n− 1, and b represents the bias with
respect to the origin.
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The mapping function ϕ(x) is seldom explicitly known. In
order to avoid the explicit computation of ϕ(x) in the high-
dimensional feature space, a kernel function is introduced to
map the input vector implicitly into a feature space and to train
a linear machine in such a space, potentially side-stepping the
computational problems inherent in evaluating the feature map
[16]. The kernel function is formulated as

K(xj , x) = ϕT (xj)ϕ(x), j ∈ h. (10)

The commonly used kernel functions are radial basis func-
tion (RBF), inhomogeneous polynomial kernel, and homoge-
neous polynomial kernel. The RBF is chosen for the kernel
function of the LS-SVMs, which is expressed as

K(xj , x) = exp

(
−‖xj − x‖2

σ2

)
, j ∈ h (11)

where σ > 0 is the parameter that is closely associated with
the generalization performance of LS-SVMs, and ‖ · ‖ is the
Euclidean distance.

To obtain the parameters w and b, LS-SVMs regression is
transformed into the optimization problem expressed as

min
w,b,e

J(w, e) =
1

2
wT w +

1

2
C

h∑
j=1

e2j

s.t. yj = (w, ϕ(xj)) + b+ ej , j = 1, 2, . . . , h

(12)

where J(w, e) is a loss function, ej is the error between y∗j and
yj , and C > 0 is the penalty factor that determines a tradeoff
between model complexity and empirical risk.

For solving the optimization problem, the Lagrangian func-
tion of (12) is given by

L(w, b, e,α) =
1

2
wT w +

1

2
C

h∑
j=1

e2j

−
h∑

j=1

αj((w, ϕ(xj)) + b+ ej − yj) (13)

where the coefficient αj ∈ R is the Lagrange multiplier. The
Lagrange multiplier reflects the sparseness of SVMs, since the
zero Lagrange multiplier makes no contribution to the solution
of SVMs.

The Karush–Kuhn–Tuker (KKT) conditions for optimality of
(13) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂w
= 0 → w =

h∑
j=1

αjϕ(xj)

∂L

∂b
= 0 →

h∑
j=1

αj = 0

∂L

∂e
= 0 → αj = Cej

∂L

∂α
= 0 → (w, ϕ(xj)) + b+ ej − yj = 0.

(14)

Equation (14) can be rewritten as the solution to the linear
equations formulated as[

0 dT

d Q + C−1I

] [
b
η

]
=

[
0
β

]
(15)

Fig. 5. Flowchart of the algorithm for sparse LS-SVMs.

where dT = [1, 1, . . . , 1] ∈ Rh, ηT = [α1, α2, . . . , αh] ∈ Rh,
βT = [y1, y2, . . . , yh] ∈ Rh, I = diag(1, 1, . . . , 1) ∈ Rh×h is
an identity matrix, and Q ∈ Rh×h is expressed as

Qrj = K(xr, xj) = ϕT (xr)ϕ(xj), r, j ∈ h. (16)

To establish the regression function, parameters C and σ
must be determined. With the training set {xj , yj}hj=1, param-
eters C and σ are calculated by the tenfold cross-validation
method which is the most commonly used cross-validation
method. Cross-validation method is an intuitive technique for
estimating the accuracy of theories learned by machine learn-
ing algorithm, which is frequently applied to modeling and
can be a useful method for choosing tuning parameters of
regression [33].

With the calculated parameters C and σ, b and αj are
obtained by solving (15). Then, the LS-SVMs regression func-
tion is deduced and represented as

y∗ =

h∑
j=1

αjϕ
T (xj)ϕ(x) + b =

h∑
j=1

αjK(xj , x) + b. (17)

B. Sparse LS-SVMs

The standard SVMs achieve the sparseness because they
have a number of zero Lagrange multipliers. However, the
sparseness is lost in LS-SVMs due to their all nonzero
Lagrange multipliers. Sparse LS-SVMs are proposed to impose
sparseness of LS-SVMs. For sparse LS-SVMs, LS-SVMs are
retrained with the remaining data points, while the least impor-
tant data points of training set are omitted. The flowchart of the
algorithm for sparse LS-SVMs is manifested in Fig. 5 [31].

Using the training set, parameters C and σ, and the solution
of (15), a sparse LS-SVMs is trained based on the algorithm
described in Fig. 5. Then, the sparse LS-SVMs are built after
training.

C. Training and Testing of the Inverse Force Function

For the phase YB of the PSRM, experimental measurement
of thrust force versus phase current from 0 to 10 A versus posi-
tion in a pole pitch is performed to obtain the sample set of the
sparse LS-SVMs. The acquired experimental data with 500 data
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Fig. 6. Phase current versus thrust force versus position. (a) Experimental data points. (b) Data points from the inverse force function.

Fig. 7. Estimated phase current and real phase current. (a) Training output. (b) Testing output.

points are adopted as the sample set, which describes the non-
linear characteristic of thrust force, phase current, and position
in a pole pitch. The experimental data of thrust force and posi-
tion are employed as the input data of the sparse LS-SVMs,
while the experimental data of phase current are utilized as
the output data. For the sample set, the 350 data points ran-
domly selected are used as the training set to build the sparse
LS-SVMs for the inverse force function, and the remaining 150
data points are applied as the testing set to assess the gen-
eralization performance of the sparse LS-SVMs. The highly
nonlinear relationship of the experimental data points is shown
in Fig. 6(a) where stator and mover teeth completely overlapped
is selected as the original position. To assess the learning and
generalization performances, the root-mean-square error of the
sparse LS-SVMs is defined as

erms =

√√√√ 1

N

N∑
j=1

e2j (18)

where ej is the error between the phase current from the exper-
imental data points and the corresponding estimated phase
current from the output of the sparse LS-SVMs, and N is the
number of training or testing data points.

Based on MATLAB, the parameters C = 150 and σ = 0.03
are obtained with the given training set by the tenfold cross-
validation method, and then the parameters C and σ are applied
to train the sparse LS-SVMs to calculate the values of b and
αj using the given training set. The sparse LS-SVMs are built
after the training process is completed. That is, the built sparse
LS-SVMs are the inverse force function of the PSRM. The
relationship of phase current, position, and thrust force from
the inverse force function is illustrated in Fig. 6(b). Compared
with Fig. 6(a) and (b), it is clear that the phase current from
experimental data points is consistent with that from the inverse

force function, and it also shows the feasibility of the inverse
force function to estimate the phase current of the PSRM. The
training and testing outputs of the inverse force function are
demonstrated in Fig. 7(a) and (b), respectively. In addition, the
root-mean-square errors of training and testing are 0.3269 and
0.6266 A, respectively. Concerning Fig. 7 and these root-mean-
square errors, it is observed that the inverse force function has
small training error and testing error except that the estimated
phase current is less than 1 A. For the PSRM, the operating cur-
rent mainly works ranging from 2 to 6 A. Therefore, the inverse
force function based on the sparse LS-SVMs is appropriate for
planar motion of the PSRM.

IV. EXPERIMENTAL VERIFICATION

A. Experimental Setup

The experimental setup of the PSRM system is depicted in
Fig. 1(a). The system is composed of the PSRM, dSPACE con-
troller, current drivers, linear optical encoders, PC, and power
supply. Two Renishaw’s linear optical encoders of Tonic series
with dual resolution of 100 and 50 nm are applied to detect
the position of X- and Y-axes. Six 50A20 servo drives from
advanced motion controls (AMC) are used as current drivers to
provide dc phase currents to the PSRM. The control algorithm
is developed under MATLAB/Simulink, and it is downloaded
to dSPACE modular hardware by real-time-workspace (RTW)
and real-time-interface (RTI) for achieving real-time control.
The utilized dSPACE modular hardware includes DS1005
PPC board, DS3001 incremental encoder interface board, and
DS2103 D/A board. DS1005 PPC board is one of the proces-
sor boards of dSPACE running at 1 GHz. DS3001 incremental
encoder interface board with six incremental encoder inter-
face channels and 32-bit position counter is used to collect
the position signals of the PSRM from linear optical encoders.
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DS2103 D/A board with 32 parallel D/A converters, 16-bit res-
olution, and 1.6-µs sample time is provided to output phase
current commands to current drivers. ControlDesk is one of the
software of dSPACE, and is employed to data collection and
parameter managing of the PSRM system.

B. Experimental Results

The developed inverse force function and two PD controllers
are applied to the PSRM system for circular and quinquangular
trajectory tracking. For circular and quinquangular trajectory
tracking, the sampling time of the control algorithm is 0.001 s,
and phase current command is limited to 8 A in the con-
trol algorithm. For circular trajectory tracking, parameters of
PD controller in X-axis are kpx = 250 and kdx = 1.21, and
those in Y-axis are kpy = 300 and kdy = 0.86. A circular tra-
jectory with 100 mm diameter and 0.2 Hz frequency is used
as the reference trajectory, where a reference signal of sinu-
soidal waveform with 50 mm amplitude and 0.2 Hz frequency is
applied in X-axis, and a waveform of cosine with 50 mm ampli-
tude and 0.2 Hz frequency is employed as the reference signal in
Y-axis. For quinquangular trajectory tracking, parameters of PD
controller in X-axis are kpx = 191 and kdx = 0.76, and those
in Y-axis are kpy = 278 and kdy = 0.82. For linear motion in
X-axis, a reference signal of continuous waveform with maxi-
mum amplitude of 60 mm and 1/6 Hz frequency is applied. A
continuous waveform with maximum amplitude of 57 mm and
1/6 Hz frequency is used as the reference signal in Y-axis.

The phase current commands of X- and Y-axes for circu-
lar trajectory tracking are indicated in Fig. 8, while those for
quinquangular trajectory tracking are presented in Fig. 9. As
shown in Figs. 8 and 9, the inverse force function is capable
of providing continuous phase current command in real time,
phase current commands of both axes for both trajectory track-
ing are bounded on [0A 8A], and they mainly run ranging from
2 to 4 A. That is, the PSRM system mainly works at nonlin-
ear magnetic field, since the linear magnetic field runs under
phase current from 0 to 2 A. According to the training and
testing results of the inverse force function, precise phase cur-
rent is provided when phase current is larger than 1 A. Thus,
the PSRM system mainly works at nonlinear magnetic field,
and the inverse force function with good learning and general-
ization performances provides precise phase current command
to current driver during online operation. Fig. 10 depicts the
circular and quinquangular trajectory tracking responses of
the PSRM system, and Figs. 11 and 12 show the position
responses of X- and Y-axes for circular and quinquangular tra-
jectories, respectively. From Figs. 10–12, under the inverse
force function and PD controllers, the real circular trajectory
Tcreal and quinquangular trajectory Tqreal coincide with the
reference circular trajectory Tcref and quinquangular trajec-
tory Tqref , respectively, and the PSRM system smoothly tracks
the given circular and quinquangular trajectories since 2-D
motions smoothly track their reference trajectories. Figs. 13 and
14 demonstrate the dynamic tacking errors of X- and Y-axes
for circular and quinquangular trajectories, respectively. The
figures clearly show that the PSRM system accurately tracks
the circular and quinquangular trajectories, since the absolute

Fig. 8. Phase current commands of circular trajectory tracking. (a) Phase XA.
(b) Phase XB. (c) Phase XC. (d) Phase YA. (e) Phase YB. (f) Phase YC.

values of dynamic tracking errors of circular and quinquangular
trajectories are less than 48 and 46 µm, respectively.

C. Discussion

From the presented experimental results and aforementioned
analysis, it comes to the conclusion that the PSRM system with
the inverse force function provides precise phase current com-
mands to current drivers in the presence of real-time operation
and nonlinear magnetic characteristic, and the system exhibits
satisfactory real-time performance and achieves precise planar
motion for trajectory tracking. For the PSRM system with PD
controller, the PD controllers have different parameters and the
system has different performances in X- and Y-axes, since the
mathematical models of control plant in both axes have identi-
cal form with different parameters, such as the different mass
of moving platform and damping coefficient. Compared with
the reported PSRM system for trajectory tracking [7], [34], the
smallest reported absolute value of dynamic tracking error is
less than 0.3 mm under a circular trajectory with a radius of
15 mm, while the absolute value of dynamic tracking error is
less than 48 µm under a circular trajectory with a radius of
50 mm in this paper. Consequently, the PSRM system with
the inverse force function achieves much higher dynamic posi-
tion precision compared to the reported PSRM system. These
research results demonstrate the feasibility and effectiveness of



598 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 11, NO. 3, JUNE 2015

Fig. 9. Phase current commands of quinquangular trajectory tracking. (a) Phase
XA. (b) Phase XB. (c) Phase XC. (d) Phase YA. (e) Phase YB. (f) Phase YC.

Fig. 10. Planar trajectory tracking responses of the PSRM system.

Fig. 11. Position responses of X- and Y-axes for circular trajectory.

Fig. 12. Position responses of X- and Y-axes for quinquangular trajectory.

Fig. 13. Dynamic tracking errors of circular trajectory. (a) X-axis. (b) Y-axis.

Fig. 14. Dynamic tracking errors of quinquangular trajectory. (a) X-axis.
(b) Y-axis.

the inverse force function based on sparse LS-SVMs for the
PSRM.

The inverse force function provides an accurate nonlin-
ear modeling to achieve precise motion of the PSRM. The
advantages of the function, in comparison with the conven-
tional inverse force functions and nonlinear modeling based on
ANNs, are mainly summarized as follows: 1) the powerful abil-
ity to accurately nonlinear modeling; 2) no requirement of high
memory capacity for processor; and 3) the superior capability to
deal with overfitting, small sample, local optima, and low arith-
metic speed. Hence, the inverse force function can be readily
implemented for real-time control application of PSRMs, and it
is a recommended application with practicability for improving
the dynamic position precision of PSRMs.

V. CONCLUSION

In this paper, a novel inverse force function using sparse
LS-SVMs has been proposed to provide precise phase current
command for precise motion of the PSRM. Compared with
the conventional inverse force functions, the proposed function
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exhibits potential ability to solve the problems of precise
modeling based on complex nonlinear magnetic field and
the requirement of high memory capacity for processor. The
inverse force function has been modeled, tested, and applied
to the PSRM system for trajectory tracking. Satisfactory per-
formances of learning and generalization have been presented
via training and testing results. Experimental results with supe-
rior real-time performance demonstrate that the PSRM system
with the inverse force function outputs precise phase current
commands in the presence of nonlinear magnetic characteris-
tic, the absolute value of dynamic tracking error is less than
48 µm, and the PSRM system achieves much higher dynamic
position precision compared to the reported PSRM system.
The proposed approach has shown its feasibility, validity, and
promising industrial applicability, and provides a new way
to accurately model the inverse force function of PSRMs for
improving the dynamic position precision.
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