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Abstract  

This study compares two ensemble methods, pseudo global warming (PGW) and multi-model 

ensemble mean (MME), in evaluating future vegetation-climate changes and feedback over 

East Asia using a regional model driven with boundary conditions derived from historical and 

RCP8.5 runs of four global models. Over most of the domain, MME and PGW produce similar 

future climate changes, except for two regions: over Northeast Asia, MME projects less winter 

warming and less increase of summer precipitation than PGW; over North China Plain, MME 

projects greater increase of summer precipitation than PGW. Both PGW and MME project 

greater leaf area index (LAI) and expansion of tree coverage at the expense of grass over most 

of the domain due to elevated CO2 concentration and climate change. However, over Northeast 

China, PGW and three ensemble members project an increase of temperate trees at the expense 

of boreal trees or grass and a decrease of LAI, and one ensemble member projects a loss of 

forest to grassland. Both PGW and MME identify two hotspots of vegetation-temperature feed-

back, including the Northeast China where the projected loss of boreal evergreen forest causes 

a significant winter cooling (which offsets a major portion of GHG-induced warming), and the 

Tibetan Plateau where the projected LAI increase and vegetation expansion lead to a significant 

winter warming through reduced albedo. The vegetation feedback impact on precipitation is 

similar between the two approaches, including a significant wet signal in a belt between 30-

40°N during winter and over the Tibetan Plateau during summer.  

 

Keywords: Vegetation-climate interactions; Multi-model ensemble; Climate change; East 

Asia 

 

Plain Language Summary 

Climate is undergoing severe changes. Climate simulation and projections from global climate 

models suffer from coarse resolution and model dependence, especially for the East Asia re-

gion. In this study, we assess multi-model ensemble projections of the East Asian vegetation-

climate changes using a regional model driven with boundary conditions from multiple global 

models. Two ensemble approaches are used, the traditional multi-model ensemble mean 

(MME) that is based on unweighted average of the four runs driven with individual global 

models, and the reanalysis-based pseudo global warming (PGW) that derives the regional 

model’s boundary conditions by adding the 4-model average of future changes to the boundary 

conditions from the reanalysis data. PGW and MME produce a similar future climate change 

signals over most of the model domain except for the Northeast China, North China and India 

region. Both PGW and MME identify two hotspots of vegetation-temperature feedback, in-

cluding the Northeast China with significant winter cooling due to forest loss and the Tibetan 

Plateau with significant winter warming due to LAI increase and vegetation cover expansion. 

 

1 Introduction  

As the global surface temperature continues to rise with the increase of greenhouse gas 

(GHG) concentration, so does the need for regional climate change assessment to support the 

development of climate adaptation and mitigation strategies. This is especially critical for 

densely populated regions such as the East Asian Monsoon region (e.g., Cai et al., 2017). How-

ever, regional-scale climate change projections from global models are often deemed unreliable 

(e.g., Xie et al., 2015), and are subject to a large degree of model uncertainty (e.g., Hall 2014; 

Jiang and Tian, 2012; He and Zhou, 2015). Regional climate models (RCMs) inherit atmos-

pheric circulation uncertainties from general circulation models (GCMs) and do not address 

this issue. The multi-model ensemble mean (MME) approach is usually used to reduce the 

uncertainties of future climate change projections from both regional and global models (Col-

lins et al., 2012; Erfanian et al., 2016; Gao et al., 2018; Wu et al., 2020). However, to account 
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for uncertainties originating from both the regional model and the driving global model, MME 

approach for regional climate projections needs to include multiple RCMs driven by different 

GCMs (White and Toumi, 2013; Schaller et al., 2011;Means et al., 2012; Giorgi et al., 2012; 

Erfanian et al., 2016, 2017), and the large number of simulations is computationally inhibiting. 

Moreover, the conventional MME mean creates physical inconsistency among different cli-

mate variables and diminishes the magnitude of inter-annual variability. 

To overcome the challenges of the conventional MME approach, alternative ensemble 

approaches have been developed. For example, Erfanian et al. (2017) developed an Ensemble-

based Reconstructed Forcing (ERF) method for regional climate projections as an alternative. 

The ERF approach involves a single historical-vs-future pair of RCM integration, where lateral 

boundary conditions (LBCs) for the RCM historical simulation were derived from the multiple-

model ensemble mean of the GCM historical runs and LBCs for the RCM future projection 

were derived from the multi-model ensemble mean of the GCM future runs. While the ERF 

approach can dramatically reduce the computational cost while attaining a desirable level of 

performance in simulating the mean climate, inter-annual variability is dampened and im-

portant inter-annual climate phenomena (e.g., El Nino) are not captured due to the use of en-

semble mean LBCs. Another approach based on the concept of pseudo global warming (PGW) 

derives the RCM historical LBCs from reanalysis data, and derives the RCM future LBCs by 

summing the 6-hourly reanalysis data and the differences between GCMs’ historical and future 

climates (Kawase et al., 2009; Xu et al., 2018). In order to quantify the uncertainty around the 

mean climate using the PGW method, the climatological increments estimated by GCM simu-

lations were statistically analyzed using the Singular Vector Decomposition (SVD) to create 

multiple model LBCs for the RCM future simulations (Wakazuki and Rasmussen 2015). With 

the PGW approach, the inter-annual variability in both the historical and future RCM simula-

tions originates from the reanalysis data. In this study we assess future climate and vegetation 

changes in Asia using the PGW approach and compare with the conventional MME approach.  

Future climate changes are projected to induce substantial changes of the terrestrial eco-

system (Cramer et al., 2001; Diffenbaugh and Field, 2013; Zhu et al., 2016; Liu et al., 2019). 

Because of the rising GHG concentration and increasing temperature, the Earth is greening up 

globally, with the CO2 fertilization effects as the dominant driver in the Tropics and with the 

warming effect as the dominant driver in cold regions including high latitudes and the Tibetan 

Plateau (Zhu et al., 2016); leaf area index (LAI) changes simulated by dynamic global vegeta-

tion models (DGVMs) driven with projected future climate indicated that the observed green-

ing trend will continue into the future (Sitch et al., 2008; Yu et al., 2014; Gang et al., 2017). 

Moreover, vegetation composition is also expected to change. Using different versions of 

DGVM in the Community Land Model (CLM-DGVM) driven with climate projections from 

multiple GCMs, Alo and Wang (2008) and Yu et al. (2014) both found a poleward spread of 

temperate and boreal forests at the northern high latitudes and a shift from evergreen to drought 

deciduous trees in the Tropics. Yu et al. (2014) showed that the competition between climate 

change and CO2 fertilization effects leads to large uncertainties in projecting future vegetation 

changes in the Tropics. Using a Comprehensive Sequential Classification System and the seg-

mentation model driven with climate change from 33 GCMs under four Representative Con-

centration Pathways (RCPs), Gang et al. (2017) exhibited that forest and desert would expand 

globally at the cost of grassland, particularly in the Northern Hemisphere. Regionally, diverse 

changes of vegetation may occur, with the direction and magnitude of changes depending on 

both climate mean and extremes (Yu et al., 2019). For example, Gao et al. (2017) found spa-

tially heterogeneous responses to past climate change in northern China, with the Northwest 

and Northeast differing in the primary climate driver for past vegetation trends, based on a 

positive precipitation-vegetation correlation over Northwest China and the Northeast China 

Plain and a negative temperature-vegetation correlation over the rest of Northeast China.  
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Climate-induced vegetation changes can influence land-atmosphere flux exchanges thus 

further modifying regional climate (Bonan 2008; Alkama and Cescatti, 2016). The local im-

pacts of vegetation-atmosphere interactions are dependent on the geographical position and 

climatology background (Nemani et al., 2003; Swann et al., 2016; Lee et al., 2011). Xue et al. 

(2010) illustrated that globally monsoon regions are experiencing the strongest vegetation bi-

ophysical process impacts, and East Asia is one of the most influenced regions. Notaro et al. 

(2011) found that monsoon response to a reduction of vegetation cover is region dependent, 

with a delay of monsoon onset over Australia and an advance over China and Southwest United 

States. Several modeling and observational studies focusing on North China and East China 

suggested that the increase of tree coverage may have been the cause for an increase of precip-

itation and evapotranspiration and a decrease of temperature during summer (Ma et al., 2013; 

Yu et al., 2013; Wei et al., 2017), but spatial heterogeneity in climate response to land cover 

changes can be substantial (Niu et al., 2019). In addition to prescribed vegetation cover 

changes, interactions between dynamic vegetation and regional climate are also important and 

the mechanistic effects can be highly region-dependent (Dan et al., 2015; Yu et al., 2016; Shi 

et al. 2019).  

This study focuses on evaluating future changes of climate and vegetation over East Asia 

(especially China) using a synchronously coupled regional climate-vegetation model and com-

pares two different ensemble approaches to account for uncertainties originating from global 

models. Section 2 describes the model, data and experimental design, and results are presented 

in Section 3. Section 4 discusses the existing issues and gives the main conclusions.  

 

2 Method  

The model used in this study is the Regional Climate Model Version 4.3.4 (RegCM4.3.4) 

from the International Centre for Theoretical Physics (Giorgi et al., 2012) synchronously cou-

pled with the Community Land Model version 4.5 (CLM4.5, Oleson et al., 2010, 2013) includ-

ing the carbon-nitrogen (CN) and dynamic vegetation (DV) sub-models (RegCM-CLM-

CNDV, Wang et al., 2016). The CN and DV sub-models can be turned on or off depending on 

specific applications. With the CN-DV component turned on, the full RCM-CLM-CNDV sim-

ulates the regional climate and vegetation distribution, structure, and density; with the CN-DV 

component turned off, the RCM-CLM simulates regional climate based on static vegetation 

with distribution and phenology prescribed according to the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data, including the fractional coverage of different plant func-

tional types (PFTs) and seasonally varying LAI (Lawrence and Chase, 2007; Lawrence et al., 

2011).  

Both static vegetation (i.e., RCM-CLM) and dynamic vegetation simulations (i.e., RCM-

CLM-CNDV) are conducted from 1979 to 1999 for the historical period, and from 2079 to 

2099 for the RCP8.5 future scenario. To derive the initial carbon, nitrogen, and vegetation 

conditions for RCM-CLM-CNDV, we followed the approach of Wang et al. (2016) and spun 

up the offline CLM-CNDV model driven by atmospheric forcing simulated by RCM-CLM for 

each of the period, with CO2 concentrations of 353.8 and 850.0 ppm for historical and RCP8.5 

simulations, respectively; the resulting equilibrium state (after ~300 years of spinning up) was 

used to initialize RCM-CLM-CNDV in the corresponding simulation. To minimize the “initial 

shock” effect, each RCM-CLM-CNDV run (historical or future) cycled through the same 20-

year LBC forcing twice. That is, the first 1979-1999 run was initialized by output from the 

offline CLM-CNDV, and the second 1979-1999 simulation was initialized by output from the 

last year of the first. Output from the second 20 years are used for results analysis. This exper-

imental design entails historical and future runs using both RCM-CLM-CNDV and RCM-

CLM, where RCM-CLM-CNDV projects future changes in both climate and vegetation with 
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the two synchronously coupled and RCM-CLM projects future climate changes with vegeta-

tion fixed at present-day observed conditions. While future changes projected by RCM-CLM-

CNDV runs are the primary focus of our results analysis, comparison with climate changes 

projected by RCM-CLM runs enables us to quantify the impact of dynamic vegetation-climate 

feedback.  

The model domain covers approximately 10°-60°N, 70°-140°E with a horizontal resolu-

tion of 50 km, and the top of the model atmosphere is set to 50hPa with 18 sigma levels. The 

model physics parameterizations include the radiative transfer scheme from Community Cli-

mate Model version 3 (Kiehl et al.,1996), the cumulus convection scheme from Emanuel 

(1991) and planetary boundary layer scheme from Holtslag et al. (1990). More details of the 

coupled model can be found in Wang et al. (2016) and Shi et al. (2019). Model performance in 

simulating the historical climate and vegetation will be evaluated against the PFT and LAI data 

from MODIS, and 2-m air surface temperature and precipitation from Climatic Research Unit 

(“CRU” hereafter; Harris et al., 2014). Another gridded observational data set CN05.1 (Wu 

and Gao, 2013) is included for evaluating model performance inside China. Both observation 

and model output are remapped to 0.5° grids to facilitate their comparison, and the units of the 

temperature and precipitation are converted into °C and mm day-1, respectively. 

To account for uncertainties originated from GCMs, outputs from historical and RCP8.5 

future scenario runs (Moss et al., 2010) of four GCMs (Table 1) are used to derive LBCs for 

the regional model. Two different ensemble approaches are used: the conventional MME ap-

proach and the reanalysis-based pseudo global warming downscaling method (“PGW” hereaf-

ter; Kawase et al., 2009; Xu et al., 2018). MME includes four pairs of historical-vs-future re-

gional runs, in which the historical and future LBCs from each individual GCM are used to 

drive the regional model and the unweighted average of the regional model outputs are used 

for comparison between historical and future climates. The PGW ensemble approach entails 

only one pair of historical-vs-future RCM runs, where the historical LBCs are derived from the 

ERA-Interim data (“ERA” hereafter) and future LBCs are constructed by adding the GCM-

projected LBC changes (i.e., in temperature, surface pressure, humidity and wind) to the his-

torical LBCs (from ERA reanalysis): 

𝑃𝐺𝑊(𝐸𝑅𝐴𝐹) = 𝐸𝑅𝐴𝐻 +𝑀𝑀𝐸𝐹 −𝑀𝑀𝐸𝐻              (1) 

where 𝐸𝑅𝐴𝐻 is the historical LBCs from the 6-hourly reanalysis data, 𝑃𝐺𝑊(𝐸𝑅𝐴𝐹) represents 

the constructed future LBCs at 6-hourly intervals based on 𝐸𝑅𝐴, 𝑀𝑀𝐸𝐹 and 𝑀𝑀𝐸𝐻 are the 

20-year climatology of 4-GCM ensemble mean of LBCs at 6-hourly intervals for the historical 

(i.e., 1980–1999) and future (i.e., 2080–2099) periods, respectively. Because reanalysis and 

GCMs use different calendars, all of the LBCs are converted to the same “noleap” calendar. 

 

3 Results  

3.1 Model Performance for Present-day Climate and Vegetation  

Shi et al. (2019) documented in detail the performance of the RCM-CLM and RCM-CLM-

CNDV models in simulating the present-day climate in China when driven with reanalysis 

LBCs, and found a good agreement between the model present-day climate and observations. 

As the focus of this study is the comparison between the two different ensemble approaches to 

future projections, only a brief description of model comparison with observations is provided 

here.  

Figure 1 shows the RCM-CLM-CNDV model biases for the historical climate of MME 

and ERA (for PGW). Although the MME can reduce the model biases caused by the GCM-

derived LBCs to some extent, strong cold biases remain over the majority of the domain with 

much stronger biases during winter (DJF) than summer (JJA; Figs. 1a-d). The cold biases from 

the ERA-driven (Figs. 1a, c) and MME (Figs. 1b-d) historical experiments are similar. These 
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biases result primarily from biases related to the RCM model structure. The cold biases are 

also consistent with results from previous studies (Gao et al., 2006, 2017; Shi et al., 2017; Ali 

et al., 2015; Notaro et al., 2017). Relative to CN05.1 using 2400-station data from China, CRU 

overestimates temperature especially in winter (Fig. S1). For precipitation, the performance of 

the MME approach over most of the domain is also similar to the one driven with ERA-based 

LBCs, with overestimation in arid or semi-arid regions and underestimation in humid or semi-

humid regions (Figs. 1e-h). Exceptions are found during summer over North China Plain and 

Northeast China where MME produces a strong dry biases while biases in the ERA-driven 

historical run are mostly negligible (Figs. 1e, g). Over the majority of the domain, most of 

individual MME members (i.e., 3-4 out of four individual GCM-driven experiments) agree 

with the MME mean in the direction of the biases.  

To evaluate the performance of the dynamic vegetation model in simulating the natural 

potential vegetation during the historical period, Figure 2 exhibits the vegetation coverage ob-

served from MODIS and simulated by the model. Due to the inability of RCM-CLM-CNDV 

to model managed vegetation (i.e., crops; Fig. 2j), the proportion of bare ground and natural 

vegetation is overestimated: over the western part of the domain, especially over India, the bare 

ground (Figs. 2a-c) is overestimated and LAI underestimated relative to the MODIS data (Figs. 

2k-m); over the majority of the eastern part of the domain, the coverage of woody plants (i.e., 

tree and shrub; Figs. 2d-f) is overestimated, which partly explains the larger-than-observed LAI 

in the model (Figs. 2k-m). On the other hand, due to signal saturation, high LAI is likely un-

derestimated in MODIS (Murray-Tortarolo et al., 2013). In general, the MME and ERA-driven 

historical simulations produce a similar spatial distribution of vegetation type and density, with 

differences over Northeast China and the neighboring North China region. Over these regions, 

the ERA-driven RCM-CLM-CNDV overestimates tree coverage (Fig. 2e) and the MME over-

estimates grasses coverage (Fig. 2i), indicating that the local vegetation and climate might be 

highly sensitive to LBCs. This will be further analyzed in subsection 3.3. 

 

3.2 Surface Climate Change  

RCM-CLM-CNDV and RCM-CLM project similar climate changes over most of the do-

main, except for regions with strong vegetation feedback to climate. Here we assess the surface 

climate changes based on output from the RCM-CLM-CNDV experiments (Figure 3), and will 

describe the dynamic vegetation feedback to regional climate in subsection 3.4. RCM-CLM-

CNDV driven with individual GCM LBCs projects significant warming across the domain, but 

the magnitude of the projected warming differs among the ensemble members. MME and PGW 

approaches produce similar magnitude and spatial patterns of future warming over most of the 

domain (Figs. 3a, b, d, e); the differences between PGW and MME projections are mainly over 

arid and semi-arid regions (e.g., the western and northeastern part of the domain), and the dif-

ferences in summer (Fig. 3f) are weaker than in winter (Fig. 3c). Over Northeast China during 

winter (Fig. 3c), the large differences between MME and PGW as well as among different 

MME members might be caused by the diverse response of vegetation cover in this region to 

climate change.  

For most the region, more precipitation is projected except the southeastern part in the 

winter. Although the magnitudes of future precipitation changes are smaller in DJF (Figs. 3g-

h) than in JJA (Figs. 3j-k), the changes in the northern part are statistically significant because 

of the rather small precipitation variability. In DJF, both the PGW (Fig. 3g) and MME (Fig. 

3h) approaches project a decrease of precipitation over Southeast China and an increase over 

the rest of the domain. In JJA, precipitation is projected to increase over the Southeast China 

by most simulations; over the North China Plain, PGW projects a mixed response of precipi-

tation with some areas of strong decrease (Fig. 3j) while MME projects a strong, spatially co-

herent increase with a high level of consensus among the ensemble members (Fig. 3k-l). The 
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regions where precipitation difference between PGW and MME are significant coincide with 

those of significant temperature differences.  

In addition to the mean climatology, the inter-annual variability is also an important factor 

for the East Asian monsoon region. Take the East Asian summer monsoon region (EASMR; 

Figure 2a) from Li et al., (2019) as an example, Table 2 lists the spatially averaged mean and 

inter-annual standard deviation of JJA temperature and precipitation and their future changes. 

For the historical period, it is clear that the ERA-driven experiments have more realistic tem-

perature (0.65 °C) and precipitation (1.48 mm day-1) variability than the MME mean (0.38 °C 

and 0.70 mm day-1, respectively). PGW and MME project similar magnitude of the temperature 

changes, and their differences in projecting precipitation changes are larger. Not surprisingly, 

MME reduces the inter-annual variability of both temperature and precipitation, leading to a 

much smoother time series and an unusually low inter-annual variability than individual MME 

members or the PGW approach. For temperature based on both ensemble approaches and based 

on each MME member, the projected changes in the mean (about 5.2~5.4 °C) far exceeds both 

the inter-annual variability and the model-related uncertainties. For precipitation, while a clear 

increase is projected based on all approaches, the magnitude of the increase projected by each 

ensemble member is small (although statistically significant) relative to the large magnitude of 

internal variability and model uncertainties.  

It is notable that the CCSM4-driven historical temperature (24.63 ± 0.69 °C) is highest 

and FGOALS-g2-driven future temperature (27.13 ± 0.71°C) is the lowest; the GFDL-driven 

experiments produce the lowest historical temperature (22.99 ± 1.01°C) and the highest future 

temperature (30.37 ± 0.91°C). Collectively, these serve as a reminder that strong performance 

in simulating the present-day climate does not mean more realistic future projections.  

 

3.3 Projected Vegetation Changes  

For future vegetation changes over most of the model domain, both the PGW and MME 

approaches project a mild increase of woody plants coverage and a compensating decrease of 

grass coverage and bare ground (Figure 4). The magnitude of the projected vegetation changes 

are the largest over Tibetan Plateau and most of northern China. Notable differences between 

PGW and MME are found over two regions: over India where MME projects a greater expan-

sion of tree coverage into areas that are historically grassland or bare ground, and over the 

Northeastern portion of the domain where MME projects more bare ground and grass coverage 

and less woody plants coverage than PGW. In addition to vegetation cover changes, LAI is 

also projected to increase over most of the domain (Figs. 4g-h) except for the arid and semi-

arid regions (e.g., Northwest China). The general increase of woody plant coverage and LAI 

are primarily a result of the CO2 fertilization effects dominant over climate change impact. A 

notable exception from the greener and denser projection is found in MME over the Northeast 

China where woody plants are projected to lose the competition to grass in the future (Figs. 4d, 

f); in PGW, such a signal for grass-vs-tree competition is projected for regions much further 

north (and appears to extend beyond the model domain).  

Considering the remarkable disparities between the two approaches in surface climate 

(Figs. 1g-h) and vegetation (Figs. 2d-f) over Northeast China and India, the spatially averaged 

vegetation coverage fraction for these regions are shown in Figure 5. For Northeast China (Fig-

ure 5a), the model driven with all LBCs can reproduce the observed spatial distribution of 

vegetation type, including boreal needleleaf evergreen tree, boreal broadleaf deciduous tree, 

arctic C3 grass and bare ground, but the magnitudes differ among the LBCs. The historical 

simulations driven with ERA and three of the four GCMs (e.g., FGALS-g2, GFDL-CM3 and 

HadGEM2-ES, Fig. 3a) produce considerable tree coverages (e.g., boreal needleleaf evergreen 

trees and boreal broadleaf deciduous trees), but the historical simulation driven with CCSM4 

produces less tree coverage and much more bare ground and arctic C3 grass instead. In the 
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future, the CCSM4-driven projection produces a moderate forest expansion and FGOALS-

driven projection produces a substantial forest loss, while both the GFDL- and HadGEM2-

driven projections suggest a shift in the dominant tree type from boreal needleleaf evergreen 

to temperature broadleaf deciduous trees with little change in the total tree coverage. Collec-

tively, these changes lead to a loss of tree coverage in the MME ensemble mean. In the 

FGOALS-driven projection, the evergreen trees are replaced with grasses, and the temperate 

broadleaf deciduous tree coverage shrinks to the Korean peninsula (figures not shown); in all 

other projections (driven by CCSM4, GFDL, HadGEM2, and PGW), the temperate trees would 

either win the competition either against grass (in the CCSM4-driven projection) or against the 

boreal needleleaf evergreen trees that are vulnerable to the projected increase of summer heat 

(in the projections driven by GFDL, HadGEM2, and PGW). 

The high degree of model dependence of simulated vegetation in Northeast China (Figure 

5a) result from the model’s climate dependence on LBCs. Figure 6a presents the seasonal cycle 

of climate variables averaged over the Northeast China from RCM-CLM simulations with 

static vegetation (which is close to the climate of RCM-CLM-CNDV over most of the domain). 

For the historical period, temperature in RCM-CLM (Fig. 6a) has a large inter-model range, 

reaching ~8 °C in summer (between the highest mean temperature in the model driven with 

CCSM4 LBCs and lowest in the model driven with GFDL LBCs); results from MME and 

ERA-driven simulation are similar, reflecting the effectiveness of ensemble mean in reducing 

LBC-induced temperature biases. On the other hand, precipitation (Fig. 6a) are more heavily 

influenced by the RCM circulation field than LBCs, and its largest inter-model range (which 

occurs in summer) is ~0.5 mm/day; meanwhile, precipitation is subject to stronger internal 

variability than temperature, which underlies the large disparity between MME and the ERA-

based historical simulation. ET is strongly influenced by air surface temperature and shows a 

model-dependence similar to temperature, with the highest ET in CCSM4- and lowest in 

FGOALS- and GFDL-driven simulations (Fig. 6a). Both the precipitation and temperature dif-

ferences contribute to soil moisture differences among different ensemble members. For ex-

ample, among the four simulations driven with GCM LBCs, the CCSM4-driven simulation has 

the lowest precipitation, highest ET, and therefore driest soil (Fig. 6) during the growing sea-

son, which favors grass over trees; in addition, higher temperature can induce heat stress for 

boreal trees and ultimately cause boreal forests to lose the competition to grass in the CCSM4-

driven simulation (which then influences the MME results). For the RCP8.5 future experi-

ments, the warming magnitudes from FGOALS-g2 is the weakest in winter (Fig. 6a), which is 

not sufficient to push the future temperature past the threshold for temperate broadleaf decid-

uous forests to establish and survive over some regions (Fig. 5a), thus the boreal grass domi-

nates in the future. In other future change experiments, an extensive coverage of temperate 

broadleaf deciduous trees are projected for the future because the annual coldest monthly air 

temperature (Fig. 6a) is projected to exceed the survival threshold (-17 °C) for temperate trees.  

For vegetation over India, PGW, MME, and three of the four ensemble members all pro-

ject quite similar historical vegetation and future vegetation changes (Fig. 5b). The experiment 

driven by FGOALS-g2 produces much more tropical broadleaf deciduous trees instead of bare 

ground, contributing to the differences between MME and PGW. The uniqueness of results 

from the experiments driven with FGOALS-g2 likely results from the very low projected tem-

perature (lower than any other ensemble members) (Fig. 6b) that is not high enough to induce 

heat stress. The changes over most of the other regions are qualitatively similar to Tibetan 

Plateau (Fig. 5c), where the vegetation coverage changes are gradual and consistent among 

PGW, MME and 4 MME members.  

Despite the differences among the models driven with different LBCs and between the 

two ensemble approaches in projecting tree coverage changes over Northeast China, PGW, 

MME mean and all individual members of the MME are in agreement on a projected decrease 
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of LAI over Northeast China (Figs. 4g-h), indicating that the CO2 fertilization effects cannot 

offset the climate change induced browning in this region. Apart from few bare ground increase 

(Figs. 4b, 5a), in most of the projections, the reduction of LAI is dominated by the loss of 

winter foliage due to the transition from evergreen to deciduous trees (Figure 5a); in the CCSM-

driven projection, the LAI reduction is dominated by a decrease of vegetation density during 

the growing season, despite of the conversion from grass to woody plants. In addition to the 

effect of plant functional type changes, both the projected heat and water stress contribute to 

the decrease of LAI during the growing season. 

 

3.4 Impacts of Vegetation Dynamics  

The impacts of dynamic vegetation feedback on projected future temperature and precip-

itation changes are exhibited in Figure 7. Based on both PGW and MME approaches, the im-

pact of dynamic vegetation feedback on DJF precipitation features a weak but statistically sig-

nificant wet signal along 30°N-35°N of the China domain (Figs. 7e-f), resulting from the pro-

jected increase of LAI across most of the domain. For JJA precipitation, the impact of vegeta-

tion dynamics is stronger but does not pass the statistical significance test across the domain 

except for part of the Tibetan Plateau (Figs. 7g-h) where the projected vegetation expansion 

tends to promote precipitation.  

Relative to the precipitation signal, significant impact of dynamic vegetation feedback on 

temperature is simulated over a larger portion of the domain in both PGW and MME. During 

summer across most of the domain based on both ensemble approaches, vegetation feedback 

leads to a cooling signal (Figs. 7c-d) as a result of projected LAI increase enhancing evapo-

transpiration (Figs. 8g-h); during winter, there are substantial differences between PGW and 

MME along 32.5°N over the Tibetan Plateau region, around the Northeast China, and over part 

of India (Figs. 7a-b), which is consistent with the substantial differences between the two en-

semble approaches in projecting future vegetation changes.  

Over the Northeast China region, both approaches produce a strong cooling effects during 

winter (Figs. 7a-b) due to the foliage loss caused by the projected loss of boreal needleleaf 

evergreen trees, with a much larger spatial extent of this cooling signal based on the MME 

approach. The cooling is caused by the significant radiative effects of albedo increase (Fig. 9a) 

due to the reduction of wintertime LAI and partial loss of vegetation cover. Indeed, the vege-

tation feedback signal for temperature is similar to that for absorbed solar radiation (Figs. 8a-

b) In summer, both the albedo effect (cooling) and the evapotranspiration effect (warming) of 

the LAI reduction are important (Figs. 8c, d, g, h), which offset each other. As a result, the 

vegetation feedback effect on summer temperature is negligible (Figs. 7c-d). 

Over the India region, similar to the projected expansion of vegetation cover, the vegeta-

tion feedback to temperature has a winter cooling effect in MME mean due primarily to the 

increased evapotranspiration in the outlier model FGOALS-g2 model (Fig. 9b); PGW and most 

of MME members agree with the direction of the temperature signals. Over the Tibetan Plateau, 

the PGW approach produces an extremely strong winter warming (Fig. 7a) due to increase of 

vegetation cover. However, the winter warming signal based on the MME approach is much 

weaker (Fig. 7b), which is a result of a strong albedo-induced warming in the HadGEM2-driven 

projection (Fig. 9c) moderated by either a cooling signal or no-change from the other three 

ensemble members (driven by GFDL-CM3, CCSM4, and FGOALS-g2) (Fig. 7b).  

Given the long snow season in the present-day climate of both Northeast China and Ti-

betan Plateau regions, the impact of vegetation feedback on snow depth was also analyzed 

(Figure 10). No significant impacts are found over Northeast China, but strong and consistent 

reduction of snow depth are projected by both PGW and MME over Tibetan Plateau (Figs. 

10a-b). The decrease of snow depth and snow duration (Fig. 10c) leads to a lower surface 
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albedo, which further enhances the vegetation albedo effect on surface solar radiation absorp-

tion (Fig. 9c) and the resulting warming over Tibetan Plateau. 

 
4 Conclusions and Discussion  

This paper investigates the potential dependence of regional climate and vegetation pro-

jections on the driving GCMs and on the ensemble approaches. Initial and boundary conditions 

from multiple sources, including the ERA-Interim reanalysis data and four CIMP5 GCMs, are 

used to drive a regional climate-vegetation model. Two multi-model ensemble approaches are 

compared, including the traditional multiple model ensemble mean and reanalysis-based 

pseudo global warming method. While the traditional MME approach reduces the random er-

rors in individual models thus helping identify the most significant signal of future changes, it 

also underestimates the inter-annual variability of the regional climate. PGW as an alternative 

can capture most of the main projected signals without losing the inter-annual variability; how-

ever, over regions of strong vegetation-climate feedback, PGW’s mean climate may differ sub-

stantially from the MME mean.  

The two ensemble approaches project similar temperature and precipitation changes, with 

strong warming and a general wet signal across the domain. The two approaches differ sub-

stantially in some regions, over the North China Plain where the MME approach projects a 

strong wet signal while PGW produces a mixed precipitation signal for summer, over Northeast 

China and adjacent regions where MME projects a much smaller magnitude of winter warming 

than PGW, and over western India where MME projects a strong increase of summer precipi-

tation while the signal in PGW is weak and mixed. The different winter warming in Northeast 

China has to do with the strong response of vegetation in this region especially the loss of forest 

to grassland in one member of the MME approach. Over the rest of the domain, PGW can 

replace the MME approach with a much lower computational cost without scarifying accuracy.  

Over the southern part of the East Asia domain, due to the increasing CO2 concertation 

and rising temperature, both PGW and MME project a mild “upgrade” of vegetation type (from 

bare ground to grass and from grass to trees) and a greening trend with increases of LAI. Over 

the northern part of the domain, both PGW and MME project a browning trend with decreases 

of LAI due to shifts of vegetation types and growing-season heat stress, but the two approaches 

differ in projecting the magnitude and spatial extent of the LAI changes and vegetation type 

shifts, especially over Northeast China. Over Northeast China, of the four MME members, 

three project a shift from boreal needleleaf evergreen trees to temperate broadleaf deciduous 

trees, and one outlier projects a loss of forest to grassland. Meanwhile, the projection from 

PGW is similar to the majority of the MME members.  

Both PGW and MME approaches identify Northeast China and the areas to the north and 

Tibetan Plateau as regions of strong vegetation-temperature feedback during winter. Because 

evaporative cooling is negligible during winter, the projected reduction of LAI over Northeast 

China can lead to local cooling due to higher albedo; the projected increase of vegetation cov-

erage and LAI over Tibetan Plateau can increase local temperature due to lower albedo, and 

this warming effect can be further enhanced by the albedo effect of snow reduction. The sig-

nificant vegetation feedback is consistent among projections driven by all GCMs over North-

east China and shows a higher degree of model dependence over the Tibetan Plateau.  

Findings from this study are subject to model limitations. The dynamic vegetation model 

coupled with the regional model cannot simulate managed vegetation. Instead, natural potential 

vegetation is simulated over cropland and pastureland. Within our model domain, the India, 

North China and Northeast China regions are primarily agricultural land in reality and are sim-

ulated to be forest and grassland by the model. This partially contributed to the overestimation 

of tree coverage and LAI in the historical simulation. The overestimation of LAI from dynamic 
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vegetation model is in line with results from Murray-Tortarolo et al. (2013) and Anva et al. 

(2013).  

Compared to vegetation projections using offline DGVMs driven with climate from 

GCMs, which are subject to uncertainties originating from the DGVMs and GCMs, the projec-

tions in this study are subject to additional uncertainties and biases related to the structure of 

the regional climate model as well as the feedback between climate and vegetation, as discussed 

in previous studies (e.g., Wang et al., 2016; Gao et al., 2016; Shi et al., 2019). For regions 

where the vegetation-climate feedback is strong, biases in the historical simulation using the 

coupled model and uncertainties of future projections are expected to be larger than models 

without vegetation dynamics. However, as shown in Shi et al. (2019), the biases in this partic-

ular model for this particular region were at a similar magnitude to those with prescribed veg-

etation, so the added model capacity was not at the expense of model performance.  

Both the MME and PGW ensemble approaches can reduce the uncertainties associated 

with GCM LBCs. However, when the ensemble size is small, the results of MME and PGW 

will be affected by the choice of GCMs and one distinctive model may dominate the ensemble 

mean. Specifically in this study, the overestimation of temperature in CCSM4 plays an im-

portant role in the MME present-day climate biases; the large magnitude of warming from 

GFDL is clearly reflected in the ensemble projections of temperature. This will be less prob-

lematic as the ensemble size increases.  

Across most of the model domain, Northeast China and the adjacent region of North China 

Plain are identified in this study as a hotspot of large model uncertainty and high climate and 

ecosystem sensitivity. In fact, Northeast China region suffered from record-breaking summer 

heat in 2018 and global warming was found to have increased the probability of such extreme 

heat in the region by 78% (Zhou et al., 2020). In the context of the model, the high uncertainty 

and sensitivity in the Northeast China have to do with the fact that maximum temperature in 

the present-day climate is close to the threshold for the onset of heat stress for boreal evergreen 

trees and the minimum temperature is close to the survival threshold for temperate deciduous 

trees. As a result, model biases and projected changes in temperature can likely cause a thresh-

old to be crossed and thus favor a vegetation type that has a leaf phenology different from 

observations or present-day climate, with especially strong feedback to winter temperature due 

to the vegetation albedo effect. Specifically, for the present-day simulations, warm bias and 

dry bias (mainly caused by the driving LBCs) will lead to drier soil and more severe heat stress 

in the model, which may limit tree growth and leads to underestimation of tree coverage. For 

the future, warming is strong at mid- to high- latitudes even during summer, and boreal trees 

are among the most vulnerable biomes under climate change. Because of the projected warm-

ing, the coldest temperature will no longer limit the survival and establishment of new PFT 

types such as temperate broadleaf deciduous tree over Northeast China, and the higher temper-

ature during the summer growing season will cause heat stress that influences all PFTs, leading 

to lower LAI (vegetation browning). For similar reasons, Tibetan Plateau (where present-day 

temperature is low due to high altitude) is another region that is sensitive to projected warming. 

Future projections for this region feature an expansion of temperate broadleaf tree coverage 

over the present-day bare ground, which leads to a future increase of LAI.  
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Table 1. Reanalysis and CMIP5 coupled models used in this study. A single realization, as 

specified, is employed for each model. 

Model name Model cen-

ter 

Realization Atmosphere 

resolution 

(lat x lon) 

Calendar References 

ERA-Interim ECWMF / 241 x 480 gregorian (Dee et al., 

2011) 

CCSM4 NCAR r6i1p1 192 x 288 noleap (Gent et al., 

2011) 

FGOALS-g2 LASG-

CESS 

r1i1p1 60 x 128 noleap (Li et al., 2013) 

GFDL-CM3 GFDL r1i1p1 90 x 144 noleap (Griffies et al., 

2011) 

HadGEM2-ES MOHC r1i1p1 144 x 192 360-day (Collins et al., 

2011) 

 

 

 

Table 2. Mean and standard deviation of 2-m surface air temperature (in °C) and precipitation 

(in mm day-1) spatially averaged over East Asia Summer Monsoon region, from two observa-

tional datasets and the RCM-CLM-CNDV experiments as well as the projected future changes 

(RCP8.5 – Historical).  

Observation/ 

model 

2-m air surface temperature (°C) Precipitation (mm day-1) 

 historical RCP8.5 Changes historical RCP8.5 Changes 

CRU 24.63 ± 0.52   5.12 ± 1.31   

CN05.1 24.07 ± 0.61   5.27 ± 1.50   

ERA (PGW) 24.26 ± 0.65 29.71 ± 0.69 5.45 5.83 ± 1.48 6.34 ± 1.76 0.51 

MME 23.73 ± 0.38 28.96 ± 0.42 5.23 4.89 ± 0.70 6.00 ± 0.78 1.11 

CCSM4 24.63 ± 0.69 29.18 ± 0.91 4.55 5.20 ± 1.32 5.72 ± 1.57 0.52 

FGOALS-g2 23.48 ± 0.72 27.13 ± 0.71 3.65 5.49 ± 1.41 6.90 ± 1.62 1.41 

GFDL-CM3 22.99 ± 1.01 30.37 ± 0.91 7.38 3.68 ± 1.18 4.65 ± 1.42 0.97 

HadGEM2-ES 23.83 ± 0.59 29.14 ± 0.56 5.31 5.20 ± 1.15 6.74 ± 1.74 1.54 
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Figure 1. Model biases of 2-m surface air temperature (a-d, units: °C) and precipitation (e-h, 

units: mm day-1) from RCM-CLM-CNDV experiments compared to CRU observation during 

the 1980-1999 period. The oblique lines indicate areas where 3 to 4 members agree with the 

MME results on the sign of the model biases.  
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Figure 2. Coverage (in %) for bare ground (a-c), woody plants (d-f), grasses (g-i) and crops (j) 

and the grid-average of leaf area index (k-m, units: m2/m2): from satellite data used to prescribe 

vegetation in RCM-CLM (a, d, g, j, k) and from the RCM-CLM-CNDV present-day simulation 

forced by ERA (b, e, h, l) and GCM-driven MME results (c, f, i, m). The red, green, blue and 

black rectangles in Panel (a) mark the regions used for spatial averaging over Northeast China, 

Tibetan Plateau, India and East Asian Summer Monsoon region, respectively. 

  



 

 

©2020 American Geophysical Union. All rights reserved. 

 
 

Figure 3. Changes in the spatial distribution of 2-m air surface temperature (a-f) and precipi-

tation (g-j) between the historical and the RCP8.5 experiments as simulated by the RCM-CLM-

CNDV using the PGW (a, d, g, j), the MME approach (b, e, h, k) and the differences between 

PGW and MME (c, f, i, l). The oblique lines indicate the areas where 3 to 4 members agree 

with the MME results on the sign of projected future changes. Black dots indicate areas where 

the changes or differences pass the 5% significance test. 
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Figure 4. Projected future changes in bare ground (1st row), woody plants (2nd row), grasses 

(3rd row) cover (in %) and LAI (4th row; in m2 m-2), based on PGW (left column) and MME 

(right column) approaches. The oblique lines indicate areas where 3 to 4 members agree with 

the MME results on the direction of future changes. 
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Figure 5. Historical simulations, RCP8.5 projections, and projected future changes of bare 

ground, woody plants and grass coverage (superimposed bars from top to bottom) spatially 

averaged over (a) Northeast China, (b) India and (c) Tibetan Plateau. The segments in each bar 

represent up to 17 different PFTs: 1. Bare ground; 2. Needleleaf evergreen temperate tree; 3. 

Needleleaf evergreen boreal tree; 4. Needleleaf deciduous boreal tree; 5. Broadleaf evergreen 

tropical tree; 6. Broadleaf evergreen temperate tree; 7. Broadleaf deciduous tropical tree; 8. 

Broadleaf deciduous temperate tree; 9. Broadleaf deciduous boreal tree; 10. Broadleaf ever-

green shrub; 11. Broadleaf deciduous temperate shrub; 12. Broadleaf deciduous boreal shrub; 

13. Arctic C3 grass; 14. C3 grass; 15. C4 grass; 16. C3 crop; 17. C3 irrigated crop.  
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Figure 6. Seasonal cycle of 2-m air surface temperature (units: °C), precipitation (units: mm 

day-1), ET (mm day-1) and moisture content in the top 10 cm soil (units: mm) spatially averaged 

over Northeast China region (a) and India (b). Solid and dash lines for historical and RCP8.5, 

respectively.  
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Figure 7. Impacts of dynamic vegetation feedback on projected changes of temperature (a-d, 

units: °C) and precipitation (e-h, units: mm day-1), from PGW (a, c, e, g) and MME (b, d, f, h). 

The oblique lines indicate areas where 3 to 4 members agree with the MME results, and black 

dots indicate areas where the changes or differences pass the 5% significance test. 
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Figure 8. Impacts of dynamic vegetation feedback on changes of net shortwave radiation (a-

d) and latent heat flux (e-h) (units: W m-2) from PGW (a, c, e, g) and MME (b, d, f, h) in DJF 

(a, b, e, f) and JJA (c, d, g, h). The oblique lines indicate areas where 3 to 4 members agree 

with the MME results, and black dots indicate areas where the changes or differences pass the 

5% significance test. 
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Figure 9. Dynamic vegetation feedback on future changes of net shortwave radiation, net 

longwave radiation, sensible heat flux and latent heat flux changes (units: W m-2), spatially 

averaged over Northeast China (a), India (b) and Tibetan Plateau(c) regions. The impacts of 

vegetation feedback on ground heat flux is negligible and not included here.  
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Figure 10. Impacts of vegetation feedback on (a-b) projected snow depth changes (units: m), 

and (c) projected snow depth changes averaged over Tibetan Plateau. The oblique lines indicate 

areas where 3 to 4 members agree with the MME results, and black dots indicate areas where 

the changes or differences pass the 5% significance test. 

 

 


