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ABSTRACT 11 

We analyzed 24-hour accumulated precipitation forecasts over the four-months 12 

period from 1 May to 31 August 2013 over an area located in East Asia covering the 13 

region 70.15°E–139.95°E, 15.05°N–58.95°N generated with the Ensemble Prediction 14 

Systems (EPSs) from ECMWF, NCEP, UKMO, JMA and CMA contained in the 15 

TIGGE dataset. The forecasts are first evaluated with the Method for Object-based 16 

Diagnostic Evaluation (MODE). Then a multi-model ensemble (MME) forecast 17 

technique based on weights derived from object-based scores is investigated and 18 

compared with the equally-weighted MME and the traditional gridpoint-based MME 19 

forecast using weights derived from the point-to-point metric, mean absolute error 20 

(MAE). 21 

The object-based evaluation revealed that attributes of objects derived from the 22 

ensemble members of the five individual EPS forecasts and the observations differ 23 

consistently. For instance, their predicted centroid location is more southwestward, 24 

their shape is more circular, and their orientation is more meridional than in the 25 

observations. The sensitivity of the number of objects and their attributes to 26 

methodological parameters is also investigated. 27 

A MME prediction technique based on weights computed from the object-based 28 

scores, Median of Maximum Interest (MMI) and Object-based Threat Score (OTS), is 29 

explored and the results compared to the ensemble forecasts of the individual EPS, the 30 

equally-weighted MME forecast, and the traditional super-ensemble forecast. When 31 
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using MODE statistics for the forecast evaluation, the object-based MME prediction 32 

outperforms all other predictions. This is mainly because of a better prediction of the 33 

objects’ centroid locations. When using the precipitation-based fractions skill score 34 

(FSS), which is not used in either of the weighted MME forecasts, the object-based 35 

MME forecasts are slightly better than the equally-weighted MME forecasts but inferior 36 

to the traditional super-ensemble forecast based on weights derived from the point-to-37 

point metric, MAE.  38 

Key words: The Method for Object-based Diagnostic Evaluation (MODE), 24-h 39 

accumulated precipitation, multi-model ensemble forecasts  40 
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1. Introduction 41 

In the past two decades, numerical weather forecasting rapidly developed and - 42 

besides model improvements - evolved from traditional single deterministic forecasts 43 

to ensemble forecasting (Gneiting and Raftery 2005; Bauer et al. 2015). Different 44 

forecast systems differ in their overall architecture, spatial resolution, choice of initial 45 

conditions, data assimilation technology, and physical parameterization schemes used 46 

in the numerical models. Multi-model ensemble (MME) forecasting is an effective way 47 

to make use of the forecasts from different Ensemble Prediction Systems (EPS) with 48 

the goal being to reduce systematic deviations from observations and thus improve the 49 

overall prediction skill. Based on The Observing System Research and Predictability 50 

Experiment (THORPEX) program, which provides forecasts from different operational 51 

numerical weather prediction (NWP) centers, MME forecasting is currently already 52 

widely used. Many studies have shown that the MME forecast performance is superior 53 

to the forecast of an individual (one-model-based) EPS (Krishnamurti et al. 1999; 54 

Fraley et al. 2010; Zhi et al. 2012; Zhang et al. 2015; He et al. 2015; Ji et al. 2019). 55 

Besides the equally-weighted MME, more complex MME methods, such as linear 56 

regression (Krishnamurti et al. 1999; 2000), Bayesian model averaging (BMA; Raftery 57 

et al. 2005; Vrugt et al. 2006), ensemble MOS (EMOS; Scheuerer 2014; Scheuerer and 58 

Hamill 2015) and artificial neural networks (Yuan et al. 2007; Bakhshaii and Stull 59 

2009) have been proposed and are already widely used for precipitation forecasting 60 

(Tebaldi et al. 2004; Ke et al. 2008), typhoon forecasts (Kumar et al. 2003; Jordan et 61 
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al. 2008), and regional climate predictions (Kharin and Zwiers 2002; Yun et al. 2005). 62 

Many studies suggest that unequally-weighted MME forecasts can achieve better skill 63 

than equally-weighted ones (Chen et al. 2010; Zhang and Zhi 2015; Kim and Chan 64 

2018). Peng et al. (2002) and Ke et al. (2009) show, however, that they are not always 65 

better and may even be worse than the best individual EPS forecast. 66 

Unequally-weighted MME methods often determine the weight of each contributing 67 

EPS by their relative performance during a training period, which assumes a certain 68 

temporal stability of their forecast performance. Most methods use scores derived from 69 

point-to-point comparisons between forecasts and observations, e.g. the weighted 70 

ensemble mean (WEMN, Nohara et al. 2006), the bias-removed ensemble mean 71 

(BREM, Kharin and Zwiers 2002), and the super-ensemble (SUP, Krishnamurti et al. 72 

2000), which uses the mean absolute error (MAE) during a training period. 73 

However, point-to-point verification scores (e.g. MAE or Equitable Threat Score 74 

(ETS)) provide only limited information about the quality of a precipitation forecast 75 

because they only compare the observations and predictions point by point without 76 

taking, for example, the resemblance of spatial patterns into account (Mass et al. 2002; 77 

Baldwin and Kain 2006; Gilleland et al. 2009). Precipitation is highly discontinuous in 78 

space and time. Thus, even almost perfect forecasts of e.g. the shapes and sizes of 79 

precipitation systems may lead to poor point-to-point scores because of many false 80 

alarms and misses known as “double penalty’’ already at small spatial deviations. 81 

However, the correct prediction of spatial features like shape, size and approximate 82 
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location of extended precipitation fields are important because they can be used as a 83 

valuable guidance to improve forecasts, especially of extreme weather. 84 

Several methods have been used to get around the limitations of point by point 85 

verification, which categorize into filtering and displacement methods. Filtering 86 

methods generally apply smoothing or scale separation to evaluate the forecast for 87 

different spatial scales (Marsigli et al. 2006; Roberts and Lean 2008; Ebert 2008; 2009; 88 

Casati et al. 2004; 2009; Zepeda-Arce et al. 2000; Harris et al. 2001; Mittermaier 2006; 89 

Marzban and Sandgathe 2009), while displacement methods identify discrete features 90 

or objects in the forecast and the observations and quantify their respective 91 

displacements in terms of location or other attributes (Ebert and McBride 2000; 92 

Baldwin and Lakshmivarahan 2003; Keil and Craig 2007; Marzban and Sandgathe 93 

2008; Gilleland et al. 2010). 94 

The Method for Objected-based Diagnostic Evaluation (MODE) developed by Davis 95 

et al. (2006a) is adopted for calculating verification scores in this study. MODE is a 96 

typical feature-based displacement approach and an example for a spatial diagnostic 97 

technique. MODE attempts to mimic the way a human would subjectively evaluate a 98 

forecast via setting a precipitation threshold and spatially convoluting (scale-dependent 99 

averaging) the precipitation field. The median of maximum interest (MMI; Davis et al. 100 

2009) and the object-based threat score (OTS; Johnson et al. 2011a) are two scores 101 

calculated from the attributes of the detected objects in the forecast and in the 102 
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observations (for more detail see Section 2.3), which are sensitive to different aspects 103 

of forecast accuracy (Johnson and Wang 2013).  104 

Although MODE has been most commonly used for the verification of high-105 

resolution model forecasts of convective storms, it can also be applied to lower-106 

resolution numerical model weather forecasts, regional climate simulations, or 107 

chemistry model simulations (e.g. Brown et al. 2007; Wolff et al. 2014; Li et al. 2015). 108 

Twenty-four hour accumulated precipitation over areas of hundreds of kilometers 109 

exhibits characteristic spatial patterns that should be reproduced by model forecasts. 110 

Object-based methods allow us to evaluate whether this is indeed the case. In this study, 111 

we focus on daily precipitation forecasts with lead times of 1–7 days and venture to 112 

improve their prediction skills of shape, size and/or location by a new MME approach, 113 

which employs weights derived from object-based scores. We will compare its quality 114 

with the predictions achieved by the individual EPS, by an equally-weighted MME 115 

forecast, and by an MME forecast using weights based on point-to-point metric, MAE, 116 

derived from the precipitation forecasts and the observations during a training period. 117 

First, we evaluate ensemble forecasts of 24-h accumulated precipitation produced by 118 

the five ensemble prediction systems (EPSs, i.e. the European Centre for Medium-119 

Range Weather Forecasts (ECMWF), the National Center for Environment Prediction 120 

(NCEP), the UK Met Office (UKMO), the Japan Meteorological Agency (JMA), and 121 

the China Meteorological Administration (CMA)). For each ensemble member forecast 122 

of each individual EPS, MODE is used to obtain the attributes of every identified object.  123 
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Various attributes of one identified object are compared to the attributes of the best 124 

corresponding object in the observations; then the performance of each EPS is 125 

represented by the object attribute differences averaged over all objects identified for 126 

each ensemble member of an individual contributing EPS. 127 

Second, three MME predictions are computed and their forecast accuracy evaluated 128 

using the spatial object-based measures MMI and OTS, but also using the FSS as an 129 

independent skill score that was not used for calculating weights in any of the three 130 

MME forecasts. We compare the three MME techniques in order to investigate if the 131 

MME forecast with object-based weights provides more accurate spatial information in 132 

the precipitation forecast. 133 

The remainder of this paper is structured as follows. Section 2 briefly describes the 134 

datasets that were used and introduces MODE. In section 3, we present the performance 135 

evaluation of the five individual EPSs and of the three MME precipitation forecasting 136 

methods. A discussion and major conclusions are provided in section 4. 137 

2. Data and methods 138 

2.1 Data 139 

We used 24-h accumulated precipitation ensemble forecasts produced by ECMWF, 140 

NCEP, UKMO, JMA and CMA at 0.5° x 0.5° resolution initialized daily at 1200 UTC 141 

for lead times of 1–7 days (Table 1). The data is available from the TIGGE-ECMWF 142 

portal (http://apps.ecmwf.int/datasets/data/tigge). TIGGE (The THORPEX Interactive 143 
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Grand Global Ensemble) is a key component of the THORPEX program; it contains 144 

ensemble forecast data from 10 global model prediction centers and has been widely 145 

used for scientific research on ensemble forecasting, predictability and the development 146 

of products to improve the prediction of severe weather (Breivik et al. 2014; Loeser et 147 

al. 2017; Parsons et al. 2017). We analyzed the data for a four-months period from 1 148 

May to 31 August 2013 and over an area located in East Asia covering the region 149 

70.15°E–139.95°E, 15.05°N–58.95°N. 150 

For forecast validation we selected a high-resolution gridded dataset of hourly 151 

precipitation, which merged precipitation analyses of the U.S. National Oceanic and 152 

Atmospheric Administration Climate Prediction Center morphing technique 153 

(CMORPH) given at a spatial resolution of 8 km, with the Chinese gauge-based 154 

precipitation analysis based on about 30,000 automatic weather stations. This merged 155 

gauge–satellite precipitation product (available at 156 

http://data.cma.cn/data/detail/dataCode/SEVP_CLI_CHN_MERGE_CMP_PRE_HO157 

UR_GRID_0.10/ ) with a resolution of 0.1° x 0.1° used optimal interpolation and the 158 

probability density functions of both products, and has been proved to be superior to 159 

other similar international products over China (Xie and Xiong 2011; Pan et al. 2012). 160 

The verification data were interpolated to 0.5° x 0.5° resolution by bilinear interpolation 161 

(Rauscher et al. 2010; Kopparla et al. 2013; Ahmed et al. 2019).  162 

2.2 Method for Object-Based Diagnostic Evaluation (MODE) 163 
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MODE sets weight and confidence coefficients for predefined precipitation object 164 

attributes and calculates a total interest function based on a fuzzy logic approach, which 165 

quantifies the similarity between any two objects (Davis et al. 2006a; Johnson et al. 166 

2013). The predefined attributes are chosen by a particular user for a particular 167 

application. In general, MODE consists of four steps: identifying objects, calculating 168 

object attributes, finding matching objects between observations and predictions, and 169 

assessing the similarity of their attributes.   170 

2.2.1 Identifying Objects and object attributes 171 

In order to extract the spatial boundary of an object, the original precipitation field is 172 

spatially smoothed with a convolution radius R (unit: grid points). Then an intensity 173 

threshold T (unit: mm (24 h)-1) is used to define the boundaries of precipitation objects 174 

(Davis et al. 2006a). The original precipitation field within these boundaries then 175 

defines the precipitation objects, which are solely determined by the selection of the 176 

convolution radius R, which is related to the precipitation scale, and the threshold T, 177 

which is related to the precipitation intensity. These two paremeters can be chosen 178 

based on the scales of interest. The result of each step is demonstrated in Fig. 1. 179 

We usually pay attention to the overall location of a precipitating system, its size and 180 

its shape, especially when dealing with more extreme weather (Johnson and Wang 181 

2013). Therefore, the specific attributes used in our study are the area coverage of 182 

precipitation objects, their aspect ratio (the ratio of minor axis to major axis; i.e. 1.0 for 183 

a circular object and <1 otherwise) and orientation angle (the orientation of the major 184 
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axis in degrees counterclockwise starting at zonal orientation), and their centroid 185 

location. For matched object pairs (introduced in Section 2.2.2), attribute differences in 186 

the four mentioned object attributes (Table 2) are calculated. 187 

2.2.2 Object matching 188 

Object matching creates a pair consisting of one object in the forecasted field and 189 

one object in the observed field. Here, we followed Davis et al. (2006a), who 190 

determined paired objects solely based on their centroid distance D and their areas. If 191 

𝐷 < (𝐴𝑟𝑒𝑎𝑜
1/2

+ 𝐴𝑟𝑒𝑎𝑓
1/2

)/2  with 𝐴𝑟𝑒𝑎𝑜  and 𝐴𝑟𝑒𝑎𝑓  the areas of the observed 192 

object and the forecasted object, respectively, both objects create a matched pair.  193 

Thus, a matching object pair requires the centroid distance between both to be less than 194 

their average size. 195 

2.3 Quantification of similarity of matched object pairs 196 

For a matched pair, its total interest 𝐼 is computed via 197 

𝐼 =
∑ 𝜔𝑖𝑐𝑖𝐺𝑖
𝑛
𝑖=1

∑ 𝜔𝑖𝑐𝑖
𝑛
𝑖=1

                            (1) 198 

𝑐𝑖 and 𝜔𝑖 are the confidence value and the weight of the attribute i, respectively, and 199 

n is the number of attributes used. While the weight depends only on the particular 200 

attribute, the confidence value varies with the sizes and distances of the paired objects 201 

(Table 2). Gi is the interest value of the matched objects in terms of attribute i; it 202 

quantifies the degree of similarity between the objects for that attribute as a monotonic 203 

function decreasing from 1 to 0 as the attribute dissimilarity increases (Fig. 2). 204 

2.4 Quantification of object-based forecast accuracy 205 
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The Median of Maximum Interest (MMI; Davis et al. 2009) and the fuzzy Object-206 

based Threat Score (OTS; Johnson et al. 2011a) are two metrics used to quantify the 207 

similarity of the objects in the forecasted and observed fields. The MMI proposed by 208 

Davis et al. (2009), which is called the standard MMI in the following, is the median of 209 

the maximum total interests in the forecasted and observed fields to which all objects 210 

contribute equally regardless of size. The MMI calculated in our study will be slightly 211 

larger than the standard MMI, because we first determine the matched objects by their 212 

centroid distance and areas, and then the total interest 𝐼 is only calculated for the 213 

matched paris. Thus, unmatched objects are not considered. 214 

The OTS is the fraction of the area of all objects that is contained in matched objects, 215 

multiplied by their total interests: 216 

𝑂𝑇𝑆 =
∑ 𝐼𝑝𝑃
𝑝=1 (𝑎𝑓

𝑝
+𝑎𝑜

𝑝
)

𝐴𝑓+𝐴𝑜
                         (2) 217 

with P the total number of objects pairs, 𝐴𝑓 and 𝐴𝑜 the total area of all objects in the 218 

forecasted and the observed field, respectively, and 𝑎𝑓
𝑝
 and 𝑎𝑜

𝑝
 (p=1,2,…,P) the areas 219 

of the p-th paired objects in the forecasted and observed field, respectively. 𝐼𝑝 is the 220 

total interest value for p-th matched pair. According to Eq. (2) the OTS takes the object 221 

area and the number of matched objects into account. Thus, larger objects will 222 

contribute more to the OTS than smaller objects, while over-forecasting or under-223 

forecasting the number of objects will decrease the OTS due to more unmatched objects. 224 

Both indices range between 0 and 1 and have a value of 1.0 for perfect forecasts. Both 225 
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scores are used in the present study to quantify two complementary aspects of forecast 226 

accuracy. 227 

The MMI of each EPS is the median computed from the 51 members of ECMWF, 228 

21 members of NCEP, 24 members of UKMO, 51 members of JMA, and 15 members 229 

of CMA, respectively. The OTS of each EPS is the average OTS of its ensemble 230 

members. Both EPS-scores computed over a training period are used as weights to 231 

construct the object-based MME prediction as an alternative to point-to-point metrics 232 

as used in the classical approach (see next section).  233 

2.5 Different multi-model ensemble types 234 

2.5.1 Traditional grid point-based multi-model ensemble 235 

Super-ensembles have the potential to improve weather and climate forecast skills 236 

above individual ensemble forecasts (Kim et al. 2010; Johnson et al. 2014; 237 

Krishnamurti et al. 2016). They automatically remove the bias between the observations 238 

and model forecasts estimated during a training period, which contributes to the 239 

improved prediction skill of multi-model forecasting. In this study, the point-to-point 240 

weighted multi-ensemble forecast is defined as: 241 

 𝑆𝑈𝑃𝑗 = 𝑂̅ + ∑ 𝛿𝑖(𝑌𝑖𝑗 − 𝑌𝑖)
𝑁
𝑖=1                       (3) 242 

𝛿𝑖 = (
1

𝑇
∑ |𝑌𝑖𝑡 − 𝑂𝑡|
𝑇
𝑡=1 )

−1
∑ (

1

𝑇
∑ |𝑌𝑖𝑡 − 𝑂𝑡|
𝑇
𝑡=1 )

−1
𝑁
𝑖=1⁄          (4) 243 

with 𝑂̅  and𝑌𝑖  respectively the average observed and forecasted value by EPS i 244 

(i=1,2,…,5) computed over a training period 𝑇 in days, and 𝑌𝑖𝑗 the forecast of EPS i 245 

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0266.1.



14 

 

on day j of the forecast period. 𝛿𝑖 is the individual contributing EPS weight, with 𝑌𝑖𝑡 246 

the forecast value of the i-th EPS on day t (t=1,2,…,T), 𝑂𝑡 the respective observation, 247 

and N the total number of used EPS (in our case N=5). 248 

2.5.2 Object-based multi-model ensemble 249 

In this study, the weights for MME forecasts are also calculated by object-scores (i.e. 250 

MMI and OTS). As described before, first, the precipitation object with its several 251 

object attributes is identified by MODE. Second, one object in the observed field will 252 

be matched to one object in the forecast field by satisfying the matching criteria. Third, 253 

the similarity between the two matched objects is determined on the basis of the 254 

differences in their attributes. Fourth, the similarity values are used to calculate the 255 

object-based metrics MMI and/or OTS from which the object-based scores for each 256 

EPS are obtained. The performance of each EPS during a training period determines its 257 

weight. Tests identified a sliding window of 30 days before the forecast period as the 258 

optimal training period. During the training period, for a certain EPS, each ensemble 259 

member is evaluated by MODE, and then MMI and/or OTS of this EPS is calculated 260 

by the median and/or mean of all ensemble members. Finally, the multi-model 261 

ensemble forecasts MMEMMI or MMEOTS are determined by multiplying the ensemble 262 

mean of each contributing EPS by the weight calculated for the training period as 263 

follows: 264 

𝑀𝑀𝐸𝑀𝑀𝐼/𝑂𝑇𝑆 = ∑ 𝛿𝑖
𝑀𝑀𝐼/𝑂𝑇𝑆𝑁

𝑖=1 𝑌𝑖                  (5) 265 

𝛿𝑖
𝑀𝑀𝐼 =

1

𝑇
∑ 𝑀𝑀𝐼𝑖,𝑡
𝑇
𝑡=1 ∑

1

𝑇
∑ 𝑀𝑀𝐼𝑖,𝑡
𝑇
𝑡=1

𝑁
𝑖=1⁄             (6) 266 
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𝛿𝑖
𝑂𝑇𝑆 =

1

𝑇
∑ 𝑂𝑇𝑆𝑖,𝑡
𝑇
𝑡=1 ∑

1

𝑇
∑ 𝑂𝑇𝑆𝑖,𝑡
𝑇
𝑡=1

𝑁
𝑖=1⁄              (7) 267 

with N the number of EPS, 𝑌𝑖 the ensemble mean for the i-th EPS, and 𝛿𝑖
𝑀𝑀𝐼/𝑂𝑇𝑆

the 268 

weight of each contributing EPS calculated by MMI or OTS. T is the length of the 269 

training period in days, and 𝑀𝑀𝐼𝑖,𝑡 or 𝑂𝑇𝑆𝑖,𝑡 is the MMI or OTS value for i-th EPS 270 

on day t during the training period. 271 

2.6 Fractions skill score 272 

Besides the MMI and OTS, the Fractions Skill Score, FSS (Roberts and Lean 2007; 273 

Roberts 2008), which is not used to generate the weights in the tested MMEs, is applied 274 

to evaluate the forecast skill for individual EPS and the MME forecasts. This spatial 275 

verification score quantifies forecast skill over different spatial scales. FSS is calculated 276 

based on the fractional coverage within a square neighborhood centered on each grid 277 

point. FSS requires for a given spatial scale, s, the forecasted and the observed areal 278 

fractions Mi and Oi at each grid point, respectively, with precipitation above a given 279 

threshold, and is calculated for an area divided into N sub-areas of size s x s as follows:  280 

𝐹𝑆𝑆 = 1 −
𝐹𝐵𝑆

𝐹𝐵𝑆𝑤𝑜𝑟𝑠𝑡
                        (7) 281 

𝐹𝐵𝑆 =
1

𝑁
∑ (𝑂𝑖 −𝑀𝑖)

2𝑁
𝑖=1                    (8) 282 

𝐹𝐵𝑆𝑤𝑜𝑟𝑠𝑡 =
1

𝑁
(∑ 𝑂𝑖

2 +𝑁
𝑖=1 ∑ 𝑀𝑖

2𝑁
𝑖=1 )               (9) 283 

𝐹𝐵𝑆𝑤𝑜𝑟𝑠𝑡 is the largest Fractions Brier Score (FBS), which indicates the case when 284 

there are no common non-zero fractions between predictions and observations. The FSS 285 

ranges between 0 and 1; 0 stands for a totally mismatched forecast and 1 for a perfect 286 

forecast. 287 
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3. Results 288 

3.1 Individual objects 289 

Convolution radius R and threshold value T are the only two parameter that influence 290 

object recognition and thus affect the values of object attributes such as object number, 291 

area, and centroid location. In this section, we analyze the effect of the choice of R and 292 

T on the object attributes. Since the effective resolution of the model dynamics is about 293 

seven grid points (Skamarock 2004) and precipitation is generated grid point-wise in 294 

the model by the action of parameterizations, we have chosen 3 grid points for the 295 

minimum convolution radius R as compromise. Since larger R values will smooth out 296 

especially the interesting heavy precipitation areas, we analyze the impact of different 297 

R in the intermediate range between 3 and 6 grid points. Only the results for 24-h 298 

forecasts are shown; results for other lead times are qualitatively similar. 299 

The variation of the number of objects and their areas with precipitation thresholds 300 

and convolution radii in the observations and the forecasts of the ECMWF EPS is 301 

displayed in Fig. 3. Observations and forcast exhibit similar behavior; e.g. the number 302 

of objects first increases with the precipitation threshold T until 5 mm is reached, and 303 

then gradually decreases until 25 mm is reached from where the number of objects 304 

strongly decrease. Generally, the forecast produces a lower number of objects than the 305 

observations, suggesting that the model is more inclined to predict larger continuous 306 

precipitation areas. This bias also leads to a large number of false alarms in point-to-307 

point statistics (not shown). The number of objects understandably decreases with 308 
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increasing convolution radius R in both observations and forecasts. Also the average 309 

object areas have similar dependencies on T and R for observations and forecasts, but 310 

there are also differences. The average object areas are smaller for the forecasts than 311 

for the observations for precipitation less than 5mm. The forecast areas are slightly 312 

larger than or equal to the observed areas for higher precipitation thresholds. The 313 

average precipitation area is – different from the number of objects - relatively 314 

insensitive to the choice of the convolution radius. This is maybe because averaging 315 

makes them bigger – but also flatter, so the chosen threshold more or less compensates 316 

for that. For a given precipitation threshold, T, the number of objects decreases with 317 

increasing object area for observations and the ECMWF EPS (Fig. 4). The decrease in 318 

object number with increasing area gets larger for higher precipitation thresholds. For 319 

larger precipitation thresholds the forecasts produce significantly less objects with 320 

larger areas than the observations (be aware, that only the forecast may produce object 321 

numbers below 1, because these values are averages over the ensemble members). The 322 

effect of R and T on object number and area is qualitatively similar for the other four 323 

models (not shown). 324 

In Figure 5 we compare the distributions of several object attributes between 325 

observations and 24-hour predictions by all ensemble members of all five EPSs for a 326 

convolution radius R=4 grid points (~220km) and a precipitation threshold T=10mm as 327 

an example. This qualitative analysis of the observed and forecasted daily precipitation 328 

distributions is performed in order to investigate if the different numerical models 329 
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behind the different EPS do capture the observed spatial features. The number of 330 

objects decrease rapidly with increasing area (Fig. 5a) with the models having a lower 331 

number of very small areas. The object aspect ratio distributions are broad and peak 332 

around 0.6 for the observations and at 0.7 for the model forecasts (Fig. 5b). Most objects 333 

have an orientation angle between -30 and 30 degrees with the largest number of objects 334 

found around 15 degrees especially for the forecasts, which also have secondary peaks 335 

at 90 degrees (Fig. 5c). More objects are found in the southern part of the domain, which 336 

is also more pronounced in the forecasted field, while the east-west distribution is more 337 

even for both observations and model forecasts (Fig. 5d,e). In general, the forecasted 338 

and observed distributions are qualitatively similar, which demonstrates that the spatial 339 

features of 24-h accumulated precipitation are captured reasonably well by the 340 

numerical models. 341 

3.2 Comparison of matched object attributes 342 

We compare now the object attributes of centroid location, aspect ratio, and 343 

orientation angle in the matched object pairs. Figures 6 and 7, respectively, show the 344 

mean objects’ zonal (i.e. east-west) and meridional (i.e. north-south) centroid 345 

differences for the five EPSs compared to the observations for different convolution 346 

radii and precipitation thresholds. The mean zonal or meridional centroids of the 347 

forecasted objects are generally within 0 to 2 grid points of the observed ones for all 348 

EPSs. The forecasted objects from all EPSs are located west to the observed objects for 349 

thresholds less than 10mm. But for larger thresholds, the objects of NCEP, UKMO and 350 
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JMA EPSs are eastward from the observed ones. The predicted objects are consistently 351 

southward compared to the observed ones for all thresholds and convolution radii. The 352 

aspect ratio deviations between model predictions and observations are always positive 353 

but small (Fig. 8) indicating that the shape of the forecasted objects is more circular 354 

than for the observed objects. The orientation angle differences are on average within 355 

0 to 10 degrees except for the large convolution radii at a threshold of 50mm (Fig. 9). 356 

The average positive deviations between forecasted and observed objects indicate a 357 

more meridional orientation of the former. In summary, the forecasted objects are more 358 

circular, more southwest and have a more meridional orientation than the observed 359 

objects. A most likely hypothesis is that these characteristics of forecasted objects are 360 

attributed to model dynamics and physics (Johnson et al. 2011b; Johnson and Wang 361 

2013). 362 

Since the four main attributes are not very sensitive to the choice of R (Fig. 6-9) and 363 

the difference of object numbers between the forecast and the observation becomes 364 

small when R is larger than 3 grid points (Fig. 3), we choose R=4 grid points to 365 

investigate the performance of object-based MME forecasting. We have chosen a 366 

threshold value of 10 mm for 24-h accumulated precipitation in order to focus on 367 

moderate to strong precipitation and exclude light precipitation, which is usually 368 

overpredicted in frequency especially by non-convection-permitting model simulations 369 

(Giorgi et al. 1992; Golding 2000; Dravitzki and McGregor 2011). 370 

3.3 Multi-model ensemble forecasting  371 
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Many studies have shown advantages of MME prediction over predictions from a 372 

single EPS (Candille 2009; Beck et al. 2016; Wanders and Wood 2016; Samuels et al. 373 

2018). We first calculate the weights based on the MAE by point-to-point statistics and 374 

the MMI or OTS based on MODE, hereafter abbreviated as SUP, MMEMMI and 375 

MMEOTS, respectively. The results of these three MME predictions are weighted 376 

ensemble mean forecasts. Thus, they are deterministic forecasts, which we evaluated 377 

via MODE taking a threshold of 10mm and a convolution radius of 4 grid points. 378 

The object-based scores for both the individual EPSs and the three MME predictions 379 

(i.e. MMEMMI, MMEOTS and SUP) are compared in Fig. 10. As expected, the forecast 380 

skill generally decreases with lead time for all predictions. The ECMWF EPS is more 381 

skillful than the other EPSs in terms of MMI and OTS and thus it contributes relatively 382 

more to the results of MMEMMI and MMEOTS (Fig. 11). UKMO EPS performs good for 383 

lead times of 1–4 days, and NCEP EPS is better for longer lead times. The relative 384 

performance of each EPS is shown by their respective weights. The CMA EPS has the 385 

lowest scores and thus contributes the least (Fig. 11). The MME predictions weighted 386 

by the MMI and OTS metrics perform similarly well, and perform better than both the 387 

individual EPSs and the traditional grid point-based MME prediction based on the 388 

point-to-point MAE metric for almost all lead times.  389 

In order to understand why the MME forecasts based on MMI and OTS are better 390 

than the single-model ensemble forecasts and the traditional point-to-point MME, we 391 

analyze the four main attribute differences (aspect ratio, orientation angle, zonal and 392 
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meridional centroid location) between the observed and forecasted fields for all lead 393 

times (Fig. 12).  For all lead times the forecasted objects are on average more circular 394 

than the observed ones (Fig. 12a). The object orientation angles resulting from the 395 

traditional super-ensemble forecast are somewhat closer to the observations. The 396 

orientation angle of the forecasted objects is on average larger than for the observed 397 

objects; thus, the forecasted objects have on average a more meridionally oriented 398 

orientation than the observed objects (Fig. 12b). For aspect ratio and orientation angle, 399 

the MMEMMI and MMEOTS forecasts on average are not better than the individual model 400 

and traditional point-to-point super-ensemble forecasts, while the centroid locations – 401 

both latitude and longitude – are better reproduced by both the MMEMMI and MMEOTS 402 

forecasts and are thus the main reason for their overall better performances given the 403 

higher weight the centroid locations get in Eq. (1). The traditional point-to-point super-404 

ensemble forecast is unable to predict the location well in our case, especially for the 405 

meridional centroid location. But it still beats some individual EPSs for lead times of 3 406 

days and longer. (Figs. 12c,d). The average bias for these four attributes in the MME 407 

forecasts is qualitatively similar to the bias of the individual models because all models 408 

exhibit similar error characteristics. Accordingly, a MME forecast will suffer from the 409 

same errors. 410 

We evaluate the equally-weighted MME mean forecasts (EMME) and the two 411 

unequally-weighted MME forecasts MMEOTS and SUP with the FSS, which is not used 412 

for weight determination in the training periods (Fig. 13). The results for MMEMMI are 413 
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similar to those of MMEOTS and thus not displayed in Fig. 13. The FSS always increases 414 

with scale; accordingly it is easier to predict precipitation probabilities for larger areas. 415 

For all spatial scales, the object-based MME forecasting MMEOTS is slightly better than 416 

the equally-weighted one (EMME) for all lead times. The grid-point-based MME 417 

(SUP) provides the best predictions when evaluated with the FSS. There may be two 418 

main reasons for this result. First, precipitation objects often have complicated shapes 419 

that are not sufficiently represented by the MODE attributes. In this study, only 420 

orientation angle and aspect ratio are used to describe the shape of the precipitation 421 

object; thus other meaningful precipitation information may be missed. Second, the grid 422 

point-based super-ensemble removes the bias of precipitation intensity between the 423 

observations and model forecasts, while the object-based MME in our study removes 424 

the spatial bias (e.g. centroid location) but not the precipitation intensity bias.  425 

4. Summary and Discussion  426 

Traditional point-to-point verification methods neglect important spatial 427 

information, and are usually insensitive to differences in precipitation location and 428 

shape errors. Precipitation is regarded as an object by MODE and several object 429 

attributes such as number, area, shapes and centroid locations are identified. The 430 

differences in object attributes between the model forecasts and the observations could 431 

provide important diagnostic information about prediction biases and help forecasters 432 

to better use model forecast products. 433 
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In this study, the ensemble forecasts from five EPSs (ECMWF, NCEP, UKMO, JMA, 434 

and CMA EPS) available from the TIGGE datasets are evaluated via object attributes 435 

based on MODE. In addition, we investigate a MME technique based on object-based 436 

scores and compare it with the equally-weighted multi-model ensemble mean and 437 

super-ensemble forecasts based on the point-to-point metric MAE.  438 

We first analyze the impact of the convolution radius R and precipitation threshold 439 

T on the attributes of the derived precipitation objects. The number of detected objects 440 

decreases with increasing convolution radius and precipitation threshold. For all 441 

precipitation fields the number of detected objects decreases with increasing object area. 442 

In general, the numerical models could capture the distribution of attributes of the 443 

observed precipitation objects, and their forecast skill decreases as expected with lead 444 

time. The objects aspect ratio varies between 0.3 and 0.9 and the orientation angles are 445 

within ±30 degrees. More objects are found in the eastern/central and southern portion 446 

of the domain than in other parts of the domain. In addition, for matched objects - 447 

compared to the observed one - the forecasted object centroid positions by all individual 448 

model ensembles are more southward and westward. Forecasted objects tend to be more 449 

circular and more southwest-northeast orientated compared to the observed ones. 450 

Causes for these features of forecast objects are probably related to dynamical errors 451 

and model physics. 452 

For the five EPSs used in this study, the ECMWF EPS performs best. The MME 453 

weighted by the spatial metrics outperforms both all single model EPSs and the 454 
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traditional point-to-point super-ensemble forecast mainly because of the better 455 

forecasted object centroid locations when evaluated using the ensemble mean of the 456 

object-based metrics. When all EPSs have similar error characteristics, MMEs will not 457 

help much. Thus, the causes for such biases – most probably related to model dynamics 458 

and parameterization physics - must be found and the models improved accordingly. 459 

When evaluated with the grid point-based (i.e., non-object) metric, FSS, the object-460 

based MME still performs somewhat better than the equally-weighted ensemble mean, 461 

but is not as good as the grid point-based MME predictions. This is probably attributed 462 

to the use of too few attributes used in our MODE realization and to the inherent bias 463 

removal built in the traditional sup-ensemble. MME performance strongly depends on 464 

how it is generated, and additional metrics may be used to determine the weights for 465 

MME forecasting. Possibly, forecast skill may be further improved by combining 466 

different post-processing methods. 467 

The rather small differences between object-based and equally-weighted MME 468 

forecasts, in terms of MMI and OTS (not shown), are probably due to similar model 469 

biases of the five EPSs in our study domain and suggest an extension of such studies to 470 

other domains.  471 

The precipitation objects are identified in our study from the raw ensemble forecasts 472 

without any bias correction. Thus, the object-based scores may be improved by 473 

appropriate bias correction. Alternatively, appropriate measures of the objects’s 474 

precipitation intensity could be developed and added as object attributes both for object 475 
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pair identification and EPS weight determination and potentially improve the forecast 476 

skill of object-based MME above pure grid point-based MME even when evaluated by 477 

grid point-based metrics. The object-based MME prediction results may also be further 478 

improved by excluding the EPSs performing worst in the training period. In addition, 479 

the FSS metric can also be employed to determine the weights of the contributing EPSs. 480 

Because precipitation structures become increasingly complex as resolution increases, 481 

features such as shape and orientation are hard to define at high resolution, thus the FSS 482 

might be an alternative to MODE. 483 
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Captions 634 

Table 1. Ensemble forecast systems used in this study. 635 

Table 2. Weights and confidence values for pair attributes of matched objects used in 636 

this study. CD and CDI denotes the centroid distance and centroid distance interest, 637 

respectively. AR is the area ratio (AR= min( 𝐴𝑟𝑒𝑎𝑜 , 𝐴𝑟𝑒𝑎𝑓 )/max(𝐴𝑟𝑒𝑎𝑜 , 638 

𝐴𝑟𝑒𝑎𝑓)) and K is the aspect ratio. This table is adopted from Johnson and Wang 639 

(2013). 640 

Fig. 1 Observed objects for 24-h accumulated precipitation on 2 Jun 2013. (a) original 641 

precipitation field before smoothing; (b) convoluted precipitation field after 642 

smoothing with a 4-gridpoint avaraging radius; (c) filtered precipitation field with 643 

the precipitation intensity greater or equal to 10mm. 644 

Fig. 2 Interest function Gi for (a) area ratio; (b) centroid distance; (c) aspect ratio 645 

difference and (d) angle difference. This figure is adopted from Johnson and Wang 646 

(2013). 647 

Fig. 3. The total number of objects and the average objects area for the observation 648 

(solid line) and the ECMWF EPS (dashed line) for different convolution radii 649 

(colors) and precipitation thresholds (abscissa). 650 

Fig. 4. Number of average precipitation objects vs. average object area for different 651 

precipitation thresholds T (line color and type) for the observations (left) and the 652 

forecasts of the 51 members of the ECMWF EPS (right) and for increasing 653 

convolution radii R (top-to-bottom). 654 
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Fig. 5. Distribution of objects with specific attribute values as a fraction of the total 655 

number of objects for convolution radius R=4 grid points and precipitation 656 

threshold T=10mm for observations (black bar) and 24-h lead time predictions 657 

from all members of all EPS (white bar). (a) object area, (b) object aspect ratio, 658 

(c) object orientation angle, (d) zonal grid point of object centroid, (e) meridional 659 

grid point of object centroid. 660 

Fig. 6. The objects mean zonal centroid location of the individual members of the five 661 

EPS compared to the observation. (a) ECMWF, (b) NCEP, (c) UKMO, (d) JMA, 662 

and (e) CMA. 663 

Fig. 7. The same as Fig. 6, but for meridional centroid location. 664 

Fig. 8. The same as Fig. 6, but for aspect ratio. 665 

Fig. 9. The same as Fig. 6, but for orientation angle. 666 

Fig. 10. (a) MMI and (b) OTS for five individual EPSs and the three multi-model 667 

forecasting with R=4 grid points and T=10mm for the lead time of 1-7 days. 668 

Fig. 11. Weights of the five EPSs with lead times of 1-7 days calculated by MMI (right) 669 

and OTS (left), respectively. 670 

Fig. 12. The average difference between the forecasted (individual EPSs and multi-671 

model ensemble forecasts) and observed object attribute distributions with R=4 672 

grid points and T=10 mm as a function of lead time for (a) aspect ratio, (b) 673 

orientation angle, (c) zonal grid point of centroid and (d) meridional grid point of 674 

centroid. 675 
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Fig. 13. Fractions skill scores against forecast lead days for spatial scales s of 1 grid 676 

point (dots), 2 grid points (asterisks), and 3 grid points (triangles) for the multi-677 

model ensemble predictions based on MAE (SUP), equally-weighted multi-model 678 

ensemble mean (EMME), and multi-model ensemble predictions based on object-679 

based scores (MMEOTS).  680 
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Tables 681 

Table 1. Ensemble forecast systems used in this study. 682 

Predictio

n Center 

Model spectral 

resolution 

Initial 

perturbatio

n 

scheme 

Representatio

n of model 

error and 

uncertainty 

Ensembl

e 

members 

Max 

forecas

t 

Lead 

time 

(day) 

ECMWF 
T399l62/T255L6

2 

Singular 

vectors and 

EDA 

SKEB/SPPT 

51 

15 

NCEP T126L28 

Ensemble 

transform 

and 

rescaling 

STTP 

21 

15 

UKMO 90km ETKF SKEB 24 15 

JMA T106 
Singular 

vectors 

SPPT 
51 

11 

CMA T106 
Bred 

vectors 

None 
15 

10 

683 
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Table 2. Weights and confidence values for pair attributes of matched objects used in 684 

this study. CD and CDI denotes the centroid distance and centroid distance 685 

interest, respectively. AR is the area ratio (AR= min(area(obs), 686 

area(mod))/max(area(obs), area(mod))) and K is the aspect ratio. This table is 687 

adopted from Johnson and Wang (2013).  688 

Pair attributes 

of matched 

objects 

Weight Confidence 

Centroid distance 

(CD) 
2.0 AR 

Area ratio (AR) 2.0 

1.0 if CD≤160km 

1-[(CD-160)/640] if 160<CD<800km 

0.0 if CD≥800km 

Aspect ratio 

difference 
1.0 CDI×AR 

Orientation angle 

difference 
1.0 

CDI×AR× √a2 + b2 

a,b=[(𝐾 − 1)2/(𝐾2 − 1)]0.3 for the two 

matched objects 

689 
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Figures 690 

 691 

Fig. 1. Observed objects for 24-h accumulated precipitation on 2 Jun 2013. (a) original precipitation 692 

field before smoothing; (b) convoluted precipitation field after smoothing with a 4-gridpoint 693 

avaraging radius; (c) filtered precipitation field with the precipitation intensity greater or equal to 694 

10mm.  695 
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 696 

Fig. 2. Interest function Gi for (a) area ratio; (b) centroid distance; (c) aspect ratio difference and (d) 697 

angle difference. This figure is adopted from Johnson and Wang (2013).  698 
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 699 

Fig. 3. The total number of objects and the average objects area for the observation (solid line) and the 700 

ECMWF EPS (dashed line) for different convolution radii (colors) and precipitation thresholds 701 

(abscissa).   702 
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 703 

Fig. 4. Number of average precipitation objects vs. average object area for different precipitation 704 

thresholds T (line color and type) for the observations (left) and the forecasts of the 51 members 705 

of the ECMWF EPS (right) and for increasing convolution radii R (top-to-bottom).  706 
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 707 

Fig. 5. Distribution of objects with specific attribute values as a fraction of the total number of objects 708 

for convolution radius R=4 grid points and precipitation threshold T=10mm for observations 709 

(black bar) and 24-h lead time predictions from all members of all EPS (white bar). (a) object 710 

area, (b) object aspect ratio, (c) object orientation angle, (d) zonal grid point of object centroid, 711 

(e) meridional grid point of object centroid.  712 
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 713 

Fig. 6. The objects mean zonal centroid location of the individual members of the five EPS compared 714 

to the observation. (a) ECMWF, (b) NCEP, (c) UKMO, (d) JMA, and (e) CMA.  715 
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 716 

Fig. 7. The same as Fig. 5, but for meridional centroid location.  717 
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 718 

Fig. 8. The same as Fig. 5, but for aspect ratio.  719 
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 720 

Fig. 9. The same as Fig. 5, but for orientation angle.  721 
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 722 

Fig. 10. (a) MMI and (b) OTS for five individual EPSs and the three multi-model forecasting with R=4 723 

grid points and T=10mm for the lead time of 1-7 days.  724 

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0266.1.



49 

 

 725 

Fig. 11. Weights of the five EPSs with lead times of 1-7 days calculated by MMI (right) and OTS 726 

(left), respectively.  727 

Accepted for publication in Monthly Weather Review. DOI 10.1175/MWR-D-19-0266.1.



50 

 

 728 

Fig. 12. The average difference between the forecasted (individual EPSs and multi-model ensemble 729 

forecasts) and observed object attribute distributions with R=4 grid points and T=10 mm as a 730 

function of lead time for (a) aspect ratio, (b) orientation angle, (c) zonal grid point of centroid and 731 

(d) meridional grid point of centroid.   732 
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 733 

Fig. 13. Fractions skill scores against forecast lead days for spatial scales s of 1 grid point (dots), 2 734 

grid points (asterisks), and 3 grid points (triangles) for the multi-model ensemble predictions 735 

based on MAE (SUP), equally-weighted multi-model ensemble mean (EMME), and multi-model 736 

ensemble predictions based on object-based scores (MMEOTS). 737 
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