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Abstract
Ground-level O3 pollution has become one of the most consequential air quality problems in
China. Many previous studies have addressed the increasing trend of surface O3 concentrations in
Eastern China. In this study, a new feature, i.e. the change in the dominant patterns of surface O3,
was revealed, and the associated physical mechanisms were analyzed. The impacts of
meteorological conditions and anthropogenic emissions were separated, and the change in the O3

dominant pattern was found to be mainly due to the variability in the meteorological conditions.
From 2017 to 2019, the stable confrontation of the western Pacific subtropical high (WPSH) and
East Asian deep trough (EADT) was closely related to the south-north covariant pattern of O3,
because the variability in the meteorological conditions centered on the North China and
Huanghuai regions. In the period of 2015–2016, the joint movements of the WPSH and EADT
modulated the meteorological anomalies, creating a dipole mode in Eastern China that
contributed to out-of-phase variations in O3 in North China and the Yangtze River Delta.

1. Introduction

At the beginning of 2013, the central government
of China enacted and executed many measures to
improve air quality (Xue et al 2019). As expected, the
concentrations of fine particulatematter (PM2.5) sub-
stantially declined (Wei et al 2017, Li et al 2019b),
which brought large health and economic benefits
(Chen et al 2017, Xue et al 2019). However, the
concentrations of surface ozone showed contrasting
trends and resulted in severe photochemical pollu-
tion in summer (Tang et al 2018, Wang et al 2020).
Surface O3 levels that exceeded the standard dam-
aged human health (Felzer 2020, Stenke 2020) and
weakened net primary productivity (Yue et al 2017)
in Eastern China. In addition to the increasing trend
and related negative impacts, the dominant patterns
of daily ground-level O3 also changed in Eastern
China in recent years (Yin et al 2019a). From 2014 to
2016, summer ozone pollution showed a south-north

differential (DSN) pattern with two centers in North
China (NC) and Yangtze River Delta (YRD). How-
ever, the dominant patterns shifted to a south-north
covariant (CSN) pattern and was centered in North
China and the Huanghuai region (NCH) in 2017 and
2018. This feature was preliminarily revealed, but the
reasons driving this transition of the dominant pat-
terns are still unclear.

The variability in surface O3 was determined by
the joint effects of emissions and meteorological
conditions. As revealed by many previous studies,
anthropogenic emissions have played important roles
in the long-term trend of ozone pollution (Zhang
et al 2014, Li et al 2019a). Numerical experiments
using an up-to-date regional chemical transport
model showed that the causes of increasing O3 due
to changes in anthropogenic emissions varied geo-
graphically (Liu and Wang 2020). After removing
the components regressed by meteorological vari-
ables, Zhu et al (2019) found that the increasing
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trend of O3 in NC was largely explained by decreases
in PM2.5, which slowed down the sink of hydrop-
eroxy radicals. The increase in surface O3 in YRD
could be attributed to a reduction in nitrogen oxide
(NOx) emissions and an increase in the release
of volatile organic compounds (VOCs) (Yu et al
2019). Two kinds of the most important precurs-
ors, NOx and VOCs, were largely emitted in the eco-
nomically developed regions from NC to the YRD
(figures S1(a) and (b), which are available online
at https://stacks.iop.org/ERL/15/124062/mmedia).
Because the economic pattern in Eastern China has
been relatively stable, the map of emitted VOCs
and NOx did not significantly change in the recent
10 years, indicated by high spatial correlation coeffi-
cients for 4080 grids cells (figure S1(c)). Therefore,
the variations in anthropogenic emissions mainly
influenced the long-term temporal trend in the sur-
face O3 and the perennial locations of severe air pol-
lution but had difficulty determining the changes in
daily O3-polluted modes.

Meteorological conditions play important roles
in variations in ground-level O3 from daily to inter-
annual time scales. As a major teleconnection pat-
tern in the Northern Hemisphere, the positive phase
of Eurasia pattern can modulate the local meteor-
ological conditions to enhance the photochemical
reactions, thereby increase the ozone concentration
in NC (Yin et al 2019b). The East Asian summer
monsoon were also significantly influenced the inter-
annual variations in surface O3 pollution in China
(Yang et al 2014). On a daily time scale, severe heat
waves in summer frequently resulted in severe O3

pollution in the YRD (Pu et al 2017). The western
Pacific subtropical high (WPSH) stronger than its
summer climate mean is closely related to the pres-
ence of environmental conditions that are not con-
ducive to ozone formation, such as higher humidity,
more cloud cover, less solar radiation and lower air
temperature in the YRD (Zhao andWang 2017). Pho-
tochemical production was shown to be enhanced
between 800 hPa and 900 hPa above NC on dry and
sunny days, and the formedO3 was transported to the
surface by downward air flow related to anticyclonic
circulations at 500 hPa (Gong and Liao 2019, Dong
et al 2020). The meteorological conditions associ-
ated with two dominant patterns (i.e. CSN and DSN

patterns) were also modulated by large-scale atmo-
spheric circulations, such as theWPSHandEast Asian
deep trough (EADT).

Although the changes in dominant patterns of
daily O3 pollution were preliminarily uncovered, the
robustness of these transitions and the reasons have
not yet been analyzed, to the best of our know-
ledge. In this study, we aimed to verify the roles of
daily meteorological conditions in the change from
DSN to CSN and the associated physical mechanisms.
The remainder of this paper is organized as follows.
The data and methods are described in section 2.

Section 3.1 confirms the change in the dominant O3

patterns and the roles of meteorological conditions
through observational and numerical approaches.
Then, the possible physicalmechanisms are examined
in section 3.2. The main conclusions and necessary
discussions are included in section 4.

2. Datasets andmethods

2.1. Data descriptions
The hourly ozone concentration data since May 2014
are publicly available at https://www.aqistudy.cn/
historydata/ (last access: 12 April 2020). The number
of observation sites in 2014 was much fewer than that
at later dates; thus, we used the ozone data from 2015
to 2019 to analyze the dominant patterns of the max-
imum daily 8 h average ozone concentrations (MDA8
O3). The sites with more than 5% of the data missed
were eliminated, and then 660 sites in Eastern China
were employed in this study. TheNOx andVOCs data
were emissions data from the Multi-resolution Emis-
sion Inventory for China, which can be downloaded
from the website of www.meicmodel.org.

The daily atmospheric data employed in the step-
wise multiple linear regression (MLR) are listed in
table S1; the variables included surface air temper-
ature (SAT) and relative humidity (RH), 10 m zonal
and meridional wind (u10m and v10m), boundary
layer height, precipitation, low and medium cloud
cover (mlcc), 850 hPa meridional wind, and sea
level pressure. These reanalysis data, with a resol-
ution of 0.125◦ × 0.125◦, were provided by the
fifth generation European Center for Medium-Range
Weather Forecasts reanalysis dataset (Copernicus Cli-
mate Change Service 2017). Furthermore, the zonal
and meridional wind, geopotential height, RH, and
vertical velocity at different vertical levels and down-
ward solar radiation at the surface were also used to
analyze the associated atmospheric circulations.

2.2. Quantifying contributions of meteorological
conditions according toMLR
Anumber of previous studies have examined themet-
eorological influences on air pollution in China (Li
et al 2019a, Yin et al 2019b) and decomposed the
impacts of meteorological conditions and anthropo-
genic emissions with a MLR approach (Zhai et al
2019). In this study, we also constructed a stepwise
MLRmodel with the highly correlatedmeteorological
variables at eachmeasured site. That is, the regression
values were identified as the impacts of meteorolo-
gical conditions on surface ozone (MDA8 O3M), and
the residual differentials were the effects of anthropo-
genic emissions (MDA8 O3R, equation (1)). Nine of
the significantly correlated meteorological variables
were considered candidates (table S1) and then were
severally selected by the stepwise MLR at each station
(equation (2)). To focus on synoptic-scale variability,
all data (Xk and MDA8 O3) were deseasonalized by
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subtracting the 30 d moving averages from the ori-
ginal data for each year (Tai et al 2012), and the linear
trend was synchronously removed (Zhai et al 2019).

MDA8 O3 =MDA8 O3M+MDA8 O3R (1)

MDA8 O3Mi (t) =
9∑

k=1
βi,k Xi,k (t)+ bi (2)

where MDA8 O3Mi (t) is the regressed ozone time
series for station i, and Xi,k (t) is the corresponding
time series for the deseasonalized and detrendedmet-
eorological variables. The MDA8 O3R component
cannot be explained by the MLR model and includes
variability mainly attributed to changes in anthropo-
genic emissions (Pei et al 2020) and possible noise due
to limitations of MLR. In order to examine the pos-
siblemulticollinearity problem, the variance inflation
factor of each developed MLR model were calculated
(Kutner et al 2004). The largest variance inflation
factor is less than 4.5, therefore, the multicollinear-
ity problem is insignificant. To avoid overfitting, we
also tried to limit the largest number of input factors
in the stepwiseMLRmodel to three (Leung et al 2018,
Li et al 2019a), and the results are consistent with the
former.

2.3. Simulating surface O3 with fixed emissions by
GEOS–Chem
The hourly ozone concentrations were also sim-
ulated with the nested-grid version of the global
3D chemical transport model (GEOS–Chem) with
detailed oxidant–aerosol chemistry and driven by
MERRA-2 assimilated meteorological data (Gelaro
et al 2017). This model used dry deposition velo-
city to compute the ozone concentration at a
given altitude (such as 10 m) above the sur-
face so that the simulated data could be com-
pared with the data from the observational net-
work (Travis and Jacob 2019). The emissions data
for 2010 were downloaded from the website of
http://geoschemdata.computecanada.ca/ExtData/HE
MCO/AnnualScalar. The ozone simulations
were configured with a horizontal resolution of
0.5◦ × 0.625◦ nested grid over East Asia and driven
by changing meteorological fields from 2015 to 2019
but with fixed emissions in 2010. Thus, the annual
differences of simulated O3 solely resulted from the
changes of meteorology-related processes rather than
anthropogenic emissions.

The ozone concentration is determined by several
physical–chemical processes.Weused non-local plan-
etary boundary layer (PBL) mixing in the simulation,
so the emissions and dry deposition trends within
the PBL were applied within the mixing (Holtslag
and Boville 1993).Wet deposition was not considered
because of its small contribution to the O3 mass
flux (Liao et al 2006). Thus, in the analysis of the

physical–chemical processes related tometeorological
conditions, the chemistry, convection, PBL mixing,
transport and their sum within the PBL were the
focus.

2.4. Extracting the dominant patterns by EOF
The empirical orthogonal function (EOF) is to
decompose the original data into orthogonal basis
functions, including spatial and temporal coefficients
and corresponding variance contribution (North et al
1982). In the spatial pattern of EOF, the sites with
large spatial coefficient are the center of daily vari-
ability where the decomposed values frequently and
largely varied from their mean state. In our research,
the EOF analysis was applied to the daily observations
of MDA8 O3 in Eastern China from 2015 to 2019,
and was also applied to the simulated MDA8 O3 to
compared with the results of the observational res-
ults. Because the O3 variability was purely produced
by changing meteorological conditions in the numer-
ical simulations, the change in dominant patterns of
simulated MDA8 O3 was influenced by meteorolo-
gical contributions. In this study, we used the test
method from North et al (1982) to verify the signi-
ficance of the separated EOF patterns. That is, if the
eigenvalue (λi) of the ithmode satisfied the condition

λi −λi+1 ≥ λi(2/n)
1/2, the eigenvalue λi was signi-

ficantly separated.

3. Results

3.1. Changes in dominant O3 patterns
As illustrated by Yin et al (2019a), two dominant pat-
terns of summer ozone pollution were determined
based on the observations from2015 to 2018. The first
prominent pattern changed synergistically in East-
ern China and the second pattern showed remarkable
south-north differences. When the range of data was
extended to 2019, these two patterns were also signi-
ficant (passing the North test), with variance contri-
butions of 25% and 12.9% for the first (CSN pattern)
and second (DSN pattern) EOF modes, respectively
(figures 1(a) and (b)). In the CSN pattern, the daily
MDA8 O3 in Eastern China covaried (figure 1(a))
and was centered on NCH. However, the variation
in MDA8 O3 showed features that varied between the
south and north and was centered on NC and YRD in
the DSN pattern (figure 1(b)). These first two patterns
were successfully reproduced by GEOS–Chemmodel
driven by the meteorology from 2015 to 2019 and
fixed emissions (figure omitted). Similar EOF ana-
lyses were also executed for the observed MDA8 O3

in each year from 2015 to 2019. It was obvious that
the first EOF mode was similar to the DSN pattern
in 2015 and 2016 and was similar to the CSN pattern
from 2017 to 2019 (figure S2). The spatial correlation
coefficients between the two dominant patterns and
the first EOF mode in each year were calculated and
are shown in figure 1(c). The high spatial correlation
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Figure 1. The first (a) and second (b) EOF spatial patterns of observed MDA8 O3 in summer from 2015 to 2019. EOF analysis was
applied to the MDA8 O3 after subtracting the 30 d moving averages from the original data. The percentages in panels are the
variance contributions. The first and second EOF patterns for 5 years were defined as CSN and DSN, respectively. The black boxes
in panels (a) and (b) indicate the locations of NCH, NC and YRD. Spatial correlation coefficient between the CSN (red) and the
first EOF patterns of each year from 2015 to 2019, between DSN (blue) and the first EOF patterns. In panels (c–e), the EOF pattern
in each year was decomposed from the observed MDA8 O3 (c), MDA8 O3M (d) and MDA8 O3R (e). Solid circles and triangles
indicate that the absolute value of the spatial correlation coefficient was above 0.6.

coefficients (>0.6) confirmed that themost dominant
mode in 2015 and 2016 was the DSN pattern, which
then shifted to the CSN pattern (figure 1(c)).

As mentioned above, the concentrations of O3

were significantly correlated with the meteorological
conditions, and the top meteorological predictors
in the MLR varied geographically (Li et al 2019a).
In this study, we performed stepwise regression on
the deseasonalized and detrended MDA8 O3 at each
site using the meteorological variables in table S1.
The coefficient of determination (R2, fraction of vari-
ance explained) was used to describe the ability of
the optimizedMLR to reproduce the variability in the
observed MDA8 O3 (figure S3). The 5 years averaged
values of R2 for the NC, YRD and NCH were 0.51,
0.45 and 0.46, respectively, indicating good perform-
ance. The fitted values were the O3 components influ-
enced bymeteorological conditions andwere denoted
as MDA8 O3M. In Beijing (largest city in NC), the
correlation coefficient between the observed MDA8
O3 and MDA8 O3M was above 0.76 in each year,
exceeding the 99% confidence level (figure 2(a)). In
the largest city of the YRD (Shanghai), this correlation

coefficient was above 0.68 and exceeded the 99% con-
fidence level (figure 2(b)).

The dominant patterns of the MDA8 O3M and
associated meteorology were diagnosed basing on
the full period (2015–2019) and two sub-periods
(2017–2019 and 2015–2016), respectively. The res-
ults well agreed each other. Therefore, in order to
enhance the signals of the most important mode and
explore the reasons for the changes in dominant pat-
terns, the MDA8 O3M was decomposed by the EOF
method for the period of 2017–2019 and 2015–2016,
respectively. The first EOF mode of MDA8 O3M in
these two periods resembled the CSN and DSN pat-
tern and was defined as the CSNM and DSNM pattern
(figures 3(a) and (b)). The spatial correlation coeffi-
cients were 0.81 (between theCSNMandCSN pattern)
and 0.74 (between theDSNMandDSN pattern), indic-
ating that themeteorological conditions possibly con-
tributed to the distributions of the dominant patterns
of surface ozone pollution in Eastern China. With
fixed emissions, the O3 concentrations were simu-
lated by the GEOS–Chemmodel with meteorological
conditions from 2015 to 2019. In this experiment, the
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Figure 2. Variations in the observed MDA8 O3 (unit: µg m−3, black) and fitted MDA8 O3M (unit: µg m−3, red) after subtracting
the 30 d moving averages from the original data in (a) Beijing (located in NC) and (b) Shanghai (located in YRD). The correlation
coefficients between the observed MDA8 O3 and fitted MDA8 O3M in each year are also presented.

Figure 3. The first EOF pattern of the fitted MDA8 O3M from 2017 to 2019 (a) and from 2015 to 2016 (b). The first EOF pattern
of simulated MDA8 O3 from 2017 to 2019 (c) and from 2015 to 2016 (d) are also shown. The simulated O3 concentrations were
produced by GEOS–Chem with fixed emissions but changing meteorological conditions. The percentages are the variance
contributions of the first EOF mode. The black box in panels (a) and (c) indicates the location of NCH, while those in panels
(b) and (d) are the NC and YRD areas.
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Figure 4. Composites of the daily geopotential height at 850 hPa (unit: 10 gpm, contours) and horizontal wind at 850 hPa
(unit: m s−1, arrows) associated with the first EOF pattern of MDA8 O3M (a) from 2017 to 2019 (i.e. positive CSNMminus
negative CSNM) and (b) from 2015 to 2016 (i.e. positive DSNMminus negative DSNM). The white dots indicate that the
differences with shading was above the 95% confidence level. The WPSHC and WPSHD indicated the location of the WPSH,
whose annual variance (unit: 10 gpm) is shown in panel (c). The WPSHC is defined as area-averaged Z850 (29–36◦ N, 112–122◦

E; green box in panel a), and the WPSHD represents the area-averaged differences in Z850 (the yellow box minus the green box in
panel b; 39–47◦ N, 118–133◦ E, yellow box; 22–31◦ N, 108–120◦ E, green box). EADTC and EADTD indicate the location of the
EADT, and the annual variance (unit: 10 gpm) is shown in panel (d). EADTC is defined as the area-averaged Z850 (42–59◦ N,
118–146◦ E; 42–70◦ N, 146–176◦ E; black box in panel a), and EADTD represents the area-averaged differences in Z850 (the
black box minus the yellow box in panel b; 43–59◦ N, 147–167◦ E, black box; 39–47◦ N, 118–133◦ E, yellow box).

variability in O3 was solely produced by the meteoro-
logical conditions. The deseasonalized and detrended
MDA8 O3 in this simulation had a high correlation
with the observed values (i.e. approximately 0.7 in
Beijing and approximately 0.75 in Shanghai), indic-
ating good performance of GEOS–Chem in reprodu-
cing the synoptic variability in O3 (figure S4). The
CSN and DSN patterns of MDA8 O3 were successfully
reproduced (figures 3(c) and (d)), which verified the
roles of meteorological conditions in determining the
dominant patterns of daily MDA8 O3.

Can meteorological conditions influence the
change in dominant patterns of surface ozone pol-
lution in Eastern China? That is, whether the EOF
results of MDA8 O3M also changed from the DSN

pattern from 2015 to 2016 to the CSN pattern since
2017 should be examined. As expected, the first EOF
mode shifted from the DSN to the CSN pattern in
the 5 years (figure S5), which was further verified by
the calculated spatial correlation coefficients, which
are shown in figure 1(d). The correlation coefficient
between the first EOF mode and DSN pattern was
significant (above 0.6) from 2015 to 2016 but dra-
matically declined after that. However, the correl-
ation coefficient with the CSN pattern increased to

become significant starting in 2017 (figure 1(d)). The
MDA8 O3R (i.e. MDA8 O3−MDA8 O3M, equation
(1)) was mainly related to changes in anthropogenic
emissions (Zhai et al 2019, Li et al 2019a), whose
EOF mode remained almost unchanged from 2015
to 2019 (figure S6) and had weak spatial correlations
with both the DSN and CSN patterns (figure 1(e)).
In addition, the dominant pattern of MDA8 O3R
resembled the distributions of the NOx and VOCs
emissions (figure S1), indicating a close relationship
between them.

3.2. Associated physical mechanisms
In the former section, by separating the contributions
of anthropogenic emissions and meteorological con-
ditions, we speculated that the change in the dom-
inant patterns of surface ozone pollution in Eastern
China was mainly driven by the variability in met-
eorological conditions. In this section, we attemp-
ted to analyze the associated physical mechanisms.
For both the CSNM and DSNM patterns, the time
series exceeding 1 (lower than−1) standard deviation
were defined as their positive (negative) phase (figure
S7). The associated large-scale atmospheric circula-
tions andmeteorological conditions were composited
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Figure 5. Composites of the daily atmospheric circulations associated with the first EOF pattern of MDA8 O3M from 2017 to
2019 (i.e. positive CSNMminus negative CSNM): (a) downward solar radiation at the surface (unit: 105 J m−2, shading) and the
sum of mlcc (unit: 1, contours), (b) surface wind (unit: m s−1, arrows) and SAT (unit: K, shading), and (c) 110–130◦ E mean
wind (unit: m s−1, arrows) and RH (unit: %, shading). The white dots indicate that the differences with shading was above the
95% confidence level. The green boxes in panels (a) and (b) are the NCH regions. Composites of the daily mass fluxes of ozone
(d) associated with the first EOF pattern of MDA8 O3M for (a), (b) the NCH-averaged from 2017 to 2019 (i.e. positive CSNM
minus negative CSNM). The bottom axis in panel (d) is the name of the physical-chemical processes: chemical reaction (Chem),
PBL mixing (Mix), transport (Trans), convection (Conv) and their sums (Sum), unit: Tons d−1. The mass fluxes were simulated
by GEOS–Chem and were calculated within the planetary boundary layer. The black slashes indicate that the composite results
were above the 95% confidence level.

as the differences between the positive and negative
phases (positive minus negative) to explore the reas-
ons for the change in the dominant patterns of O3.

According to the positive (negative) phase of
CSNM, the positive (negative) MDA8 O3M was con-
centrated in the NCH region (figures S8(a) and
(b)). Anomalous anticyclonic circulations were loc-
ated above the NCH region in the middle (figure
S9(a)) and lower (figure 4(a)) troposphere and res-
ulted in downward air flow from the stratosphere to
the near surface (figure 5(c)). The transport of O3

from the stratosphere to the surface was an import-
ant way to elevate the concentrations of surface O3

(Langford et al 2009). On the other hand, the signi-
ficant descending air flows indicated efficient adia-
batic heating (resulting in high SAT, figure 5(b))
and dry air below 300 hPa (figure 5(c)). Further-
more, mlcc were significantly reduced, which allowed
intense solar radiation to enhance the photochemical

reactions (figure 5(a)). The produced O3 could be
transported to the surface by downward air flow
related to anticyclonic circulations (Gong and Liao
2019). The composite results from GEOS–Chem also
verified the impacts of the meteorological condi-
tions. The chemical reactions had large positive val-
ues (54.7 Tons d−1), and the sum of all physical–
chemical processes was 35.1 Tons d−1, resulting in
more O3 (figure 5(d)). Therefore, the negative and
positive phases of the abovementioned meteorolo-
gical conditions significantly influenced the variabil-
ity in the MDA8 O3M in the NCH regions.

The MDA8 O3M for the positive and negat-
ive phases of the DSNM pattern had similar cen-
ters (i.e. NC and YRD) but presented opposite signs
(figures S8(c) and (d)). The adjacent cyclonic and
anticyclonic anomalies were located over the YRD
and NC in the middle (figure S9(b)) and lower
(figure 4(b)) troposphere, inducing ascending and

7



Environ. Res. Lett. 15 (2020) 124062 Z Yin and X Ma

Figure 6. Composites of the daily atmospheric circulations associated with the first EOF pattern of MDA8 O3M from 2015 to
2016 (i.e. positive DSNMminus negative DSNM): (a) downward solar radiation at the surface (unit: 105 J m−2, shading) and the
sum of mlcc (unit: 1, contours), (b) surface wind (unit: m s−1, arrows) and SAT (unit: K, shading), and (c) 110–130◦ E mean
wind (unit: m s−1, arrows) and RH (unit: %, shading). The white dots indicate that the differences with shading was above the
95% confidence level. The green boxes in panels (a) and (b) are the NC and YRD regions. Composites of the daily and mass fluxes
of ozone (d) associated with the first EOF pattern of MDA8 O3M for the area-averaged differences (NC minus YRD) from 2015 to
2016 (i.e. positive DSNMminus negative DSNM). The bottom axis in panel (d) is the name of the physical-chemical processes:
chemical reaction (Chem), PBL mixing (Mix), transport (Trans), convection (Conv) and their sums (Sum), unit: Tons d−1. The
mass fluxes were simulated by GEOS–Chem and were calculated within the planetary boundary layer. The black slashes indicate
that the composite results were above the 95% confidence level.

descending motions (figure 6(c)), respectively. The
contrast between the meteorological conditions in
NC and the YRD was stark, i.e. hot–dry in NC but
cool–moist in the YRD (figures 6(b) and (c)). More
importantly, the photochemical production of O3 in
NC was significantly enhanced but was restrained
in the YRD by the variability in solar radiation
(figure 6(a)). The GEOS–Chem simulations also con-
firmed the stark contrast of the chemical reactions
related to the meteorological conditions. The hot-dry
environments in NC resulted in chemical reactions
that were 64.8 Tons d−1 stronger than those in the
cool-moist air in the YRD (figure 6(d)). Thus, the
differences in meteorological conditions between the
NC and YRD played important roles in the formation
of the DSNM pattern.

As illustrated in figures 4(a) and (b), the con-
figurations of WPSH and EADT were closely related
to the distribution of MDA8 O3M in Eastern China.
The WPSH occupied the east of China, and the

EADT was stronger and extended to the Korean
Peninsula for the positive phase of CSNM, and vice
versa. These two large-scale atmospheric circulations
stably confronted each other and resulted in per-
sistent changing centers of meteorological condi-
tions in NCH. The WPSHC index was defined as the
area-averaged geopotential height at 850 hPa (Z850)
in the Huai River region (29–36◦ N, 112–122◦ E;
green box in figure 4(a)), and the EADTC index
was calculated as the area-averaged Z850 in North-
east China (42–59◦ N, 118–146◦ E; 42–70◦ N, 146–
176◦ E; black box in figure 4(a)). The annual vari-
ances of WPSHC and EADTC from 2017 to 2019 were
larger than those from 2015 to 2016 (figures 4(c)
and (d)), indicating that these two key factors fre-
quently fluctuated and effectively modulated the
local metrological conditions. Therefore, the stable
confrontation of WPSH and EADT showed that
the variations in meteorological conditions presen-
ted features associated with the CSNM pattern of
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Figure 7. The WPSH ridge line at 120◦ E (red spots) and the EADT axis at 45◦ N (blue spots) and their statistical boxplots in
2018 (a) and 2016 (b). The bottom and top edges of the boxes are the 25th and 75th percentiles, respectively. The whiskers extend
from the minimum to the maximum values. Variations in the MDA8 O3 (unit: µg m−3) of NC (black) and YRD (green) in 2018
(c) and 2016 (d). The first EOF spatial patterns simulated by the GEOS–Chem model MDA8 O3 in summer in 2018 (e) and 2016
(f). The GEOS–Chem model was driven by meteorological fields in summer 2018 and 2016 and fixed emissions. The black boxes
in panels (a), (b), (e), and (f) indicate the locations of NCH, NC and YRD, respectively.

MDA8 O3 in Eastern China. In contrast, the WPSH
and EADT, which were associated with the DSNM
pattern, mutually advanced and retreated. For the
positive phase of the DSNM pattern, the WPSH
moved northward, and the EADT receded toOkhotsk
(figure 4(b)). To include information on systematic
movement, theWPSHD indexwas defined as the area-
averaged difference in Z850 betweenNortheast China
and South China (the yellow box minus the green
box in figure 4(b); 39–47◦ N, 118–133◦ E, yellow box;
22–31◦ N, 108–120◦ E, green box), and the EADTD

index was also calculated as the area-averaged dif-
ference in Z850 between the Kamchatka Peninsula
and Northeast China (the black box minus the yel-
low box in figure 4(b); 43–59◦ N, 147–167◦ E, black
box; 39–47◦ N, 118–133◦ E, yellow box). The annual
variances of WPSHD and EADTD were stronger from
2015 to 2016 (figures 4(c) and (d)), meaning the
WPSH and EADT during this period advanced and
retreated more frequently and resulted in the DSNM
pattern of MDA8 O3 in Eastern China.

The configuration of WPSH and EADT showed
features of mutual movements from 2015 to 2016,
modulating the meteorological conditions to repres-
ent a dipole mode and contributing to theDSNMpat-

tern of MDA8 O3 in Eastern China. However, the
stable confrontation of WPSH and EADT resulted
in a monopole mode of the meteorological condi-
tions and determined the CSNMpattern of MDA8 O3

from 2017 to 2019. Similar to Yin et al (2019a), the
years 2016 and 2018, when the dominant modes were
clearly separated (because the variance contribution

of the first EOF mode was almost twice that of the
second pattern), were selected as two cases to exam-
ine the rationality of the above physical mechanisms.
The latitude corresponding to theWPSH ridge line at
120◦ E and the longitude corresponding to the EADT
axis at 45◦ Nwere extracted to quantify the daily vari-
ability in the positions of these two key factors. The
standard deviation of the WPSH ridge position was
4.9 degrees in 2018 and was 22% stronger in 2016
(i.e. 6 degrees). Similarly, the standard deviation of
the EADT axis position in 2016 was also stronger
than that in 2018 (figures 7(a) and (b)). The positions
of the WPSH and EADT varied slightly more in 2018
and resulted in a stable changing center of meteoro-
logical conditions in NCH. The observed MDA8 O3

in NC and the YRD varied synchronously and had
a significantly positive correlation coefficient (0.38,
figure 7(c)). The first EOF mode of MDA8 O3 simu-
lated by GEOS–Chem also showed the features of the
CSNM pattern (figure 7(e)). In 2016, the positions of
the WPSH and EADT frequently varied, leading to a
stark contrast inmeteorological conditions inNC and
the YRD and thus out-of-phase MDA8 O3 between
NC and the YRD (the correlation coefficient between
them was−0.35, exceeding the 99% confidence level,
figure 7(d)). The simulated MDA8 O3 also appeared
as a DSNM pattern (figure 7(f)).

4. Conclusions and discussion

In this study, we confirmed that the dominant pat-
tern of summer ozone pollution in Eastern China
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changed. From 2015 to 2016, the daily ozone pollu-
tion showed differential pattern between the south
and north. However, the ozone pollution in the south
and north covaried after 2017 (i.e. it changed from
a south–north differential pattern to a south-north
covariant pattern). By separating the impacts of met-
eorological conditions and anthropogenic emissions,
we found that the change in the O3 dominant pat-
tern was mainly due to the variability in the meteor-
ological conditions. From 2017 to 2019, the WPSH
and EADT stably confronted each other, and the
fluctuation in their intensity resulted in variabil-
ity in meteorological conditions centered on NCH.
Anomalous anticyclonic circulations located above
the NCH region resulted in hot–dry air and stronger
photochemical reactions and transported O3 to the
surface and vice versa. These physical mechanisms
dominated and forced the daily O3 to covary in East-
ern China. In the period of 2015–2016, the WPSH
and EADT frequently and mutually advanced and
retreated, modulating the meteorological anomalies
to create a dipole mode in Eastern China. Cyclonic
and anticyclonic anomalies were located over the
YRD and NC and led to a stark contrast in meteoro-
logical conditions in NC and the YRD, i.e. hot–dry in
NC but cool–moist in the YRD. The enhanced photo-
chemistry in NC and restrained O3 production in the
YRD significantly contributed to the different levels
of MDA8 O3 in these two areas and vice versa. These
physical mechanisms induced the daily O3 in Eastern
China to show out-of-phase variations.

O3 observations with high resolution can be
obtained from the observational network of theChina
Ministry of Ecology and Environment after 2014.
Although there were fewer sites in 2014, Zhao and
Wang (2017) reported that the O3 pattern differed
between the north and south. In total, these two
dominant patterns are highlighted in the periods of
2014–2016 and 2017–2019. The positions of WPSH
and EADT and their joint movements have inter-
annual change, which contribute to the change in
dominant patterns of surface ozone. The aforemen-
tioned interannual change ofWPSHandEADT is also
affected by some external forcings, such as sea sur-
face temperature (Jeong et al 2018, Li et al 2020; Yu
and Sun 2020) and Arctic sea ice (Guo et al 2014,
Wu et al 2015), which were worthy of future stud-
ies. The time range of the observations was short and
limited to revealing a long-standing relationship. A
possible path was to employ the simulated O3 con-
centrations by GEOS–Chem for more than three dec-
ades because this model successfully recognized these
two patterns from 2015 to 2019, and the external for-
cing factors that lead to changes in the location of
WPSH and EADT might be explained in the future.
Since the emission inventory has not been updated
in a timely manner after 2017, we adopted statistical
methods for this study and verified our conclusions
by simulations with changing meteorological fields

from 2015 to 2019 and fixed emissions in 2010. If the
emission inventory is updated, the simulations with
variable emissions but fixed meteorological fields will
illustrate more information for studying the change
in dominant patterns of MDA8 O3.
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