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A B S T R A C T   

Rapid changes in anthropogenic land use threaten ecological security; thus, it is vital to determine future land 
use structures and spatial layouts for ecological security and sustainable development. Studies on scenario-based 
land use simulations have taken insufficient account of land use in terms of ecological security and this pre-
vented the realization of ecological civilization. Therefore, in this study, we developed a land use/cover pre-
diction framework that incorporates ecological security. Focusing on ecological security objectives, we in-
tegrated habitat quality, the importance of ecosystem services and landscape connectivity to identify the 
ecological security source areas (ESSA) as a minimum protection area in the Yangtze River Delta (YRD) region. 
We then set up ESSA-based ecological protection (EP) and natural growth (NG) scenarios to predict land use/ 
cover in the YRD region for 2030 using the future land use simulation (FLUS) model. The results show that the 
total area of the ESSA is 64,911 km2, accounting for 32.51% of the YRD, mainly in southern Anhui and western 
Zhejiang provinces. Under the NG scenario, construction land shows the highest growth proportion by 2.10% of 
the total area of YRD, while the farmland area decreases by 1.73%, followed by woodland (0.27%). Under ESSA- 
based EP, the areas of woodland and construction land increase by 1.11% and 0.7%, respectively. Through the 
delineation of ESSA, 159 km2 of woodland, 150 km2 of orchard, 523 km2 of water area and 98 km2 of wetland 
are protected; in addition, the growth of the construction land slows down and all new construction land is 
located outside the ESSA under ESSA-based EP. The findings of this study can provide fundamental scientific 
guidance for land spatial planning given an ecological security premise.   

1. Introduction 

Human activities continuously change the land use/cover in the 
world leading to decreased stability of ecosystems and threatening 
ecological security (Wood et al., 2018). Over the past half-century, with 
dramatically increasing global population and rapid urbanization, the 
structure and function of ecosystems have been greatly disturbed by 
human land use activities and therefore experienced unprecedented 
changes (Costanza et al., 2014; Geijzendorffer et al., 2017). These land 
use activities resulted in various environmental problems including soil 
erosion, biodiversity loss and water pollution, threatening global eco-
logical security and sustainable development (Li et al., 2019; Yao et al., 
2019). The optimization of land use patterns to reduce the impact of 
land use changes on ecosystems and ensure regional ecological security 

has thus become a research hotspot (Jin et al., 2019, 2018; Ma et al., 
2019). 

In recent years, China has showed great progress in economic de-
velopment, but the conflict between anthropogenic land use and eco-
logical protection has also increased significantly (Li et al., 2018; Qiu 
et al., 2019). To overcome the eco-environmental problems caused by 
human activities, China has raised the implementation of ecological- 
security-related policies to the national strategy level (Jiang et al., 
2019; Wang et al., 2019). With rapid economic development and ur-
banization, the Yangtze River Delta (YRD) region has experienced se-
vere eco-environmental degradation while realizing rapid economic 
growth. Therefore, exploring the spatial planning of land under the 
constraint of ecological security in the YRD is of great significance in 
terms of providing guidance for other regions in China. 
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Land use/cover change is a result of multiple interacting processes 
driven by socioeconomic and biophysical factors and has significant 
impacts on the ecological environment (Lin et al., 2014; Verburg et al., 
2002). Exploring the competition and evolution among land use types 
and predicting future land use changes can help optimize land use 
patterns and improve the ecological environmental quality (Liu et al., 
2011; Luo et al., 2014). Various models have been developed and ap-
plied to predict future land use patterns, such as cellular automata 
(Kang et al., 2019), conversion of land use and its effects (CLUE) model 
(Zhou et al., 2016) and agent-based models (Teng et al., 2011). Re-
cently, a new model, the future land use simulation (FLUS) model, has 
been proposed to simulate the long-term changes in multiple land use 
types simultaneously by coupling human and natural systems (Liu et al., 
2017). Compared with the previous models, the FLUS model not only 
improves the calculation process of the probability of occurrence by 
using artificial neural networks (ANNs), but also elaborate conversion 
among different land use types with a self-adaptive inertia and com-
petition mechanism (Liang et al., 2018). ANNs have been proved to be a 
more effective tool than logistic regression, which is the core of the 
CLUE model to manage complex nonlinear relationships between dif-
ferent land use types and their driving factors (Islam et al., 2018; 
Kadavi and Lee, 2018). The FLUS model makes it more convenient to 
simulate land use by utilizing complex geographic, socio-economic and 
climatic conditions. 

Existing models do not adequately consider ecological security 
when simulating future land use patterns. Most previous studies di-
rectly selected nature reserves and rivers as spatial restricted areas for 
ecological protection, ignoring the role of ecosystem services and 
landscape integrity in safeguarding ecological security. For example, 
Teng et al. (Teng et al., 2011) simply designated nature reserves, rivers 
and reservoirs as constrained areas to simulate urban expansion. Wang 
et al. (Wang et al., 2018) selected nature reserves and the Yangtze River 
Delta as restricted areas to project land use changes for ecological 
protection. Ecological security can be defined as the state of the eco-
logical environment where the safety of human life and production, as 
well as the ability to adapt to environmental changes, is guaranteed 
(Huang et al., 2007; Liu and Chang, 2015). The goals of ecological 
security include preventing ecological degradation, maintaining the 
sustainability of ecosystem services and maintaining landscape 

integrity (Wu et al., 2013). Compared with the existing protected areas, 
ecological security source areas (ESSA) are considered effective path-
ways to guarantee ecological security (Peng et al., 2018; Zhang et al., 
2016). ESSA refer to the sources of biological movements and eco-
system service flows and transmissions, which play a key role in overall 
ecosystem health and are essential to achieve regional ecological se-
curity (Yu et al., 2009). In recent years, the identification of ESSA has 
experienced rapid development and is achieved using three main 
methods: (1) direct selection of forest land or nature reserves (Teng 
et al., 2011; Yao and Xie, 2016); (2) selection of ecological patches with 
a large supply of ecosystem services (Shi and Yu, 2014); and (3) 
building a comprehensive index system to evaluate the importance of 
ecological patches (Kong et al., 2010). Nevertheless, only a few studies 
have identified ESSA based on habitat quality, ecosystem services and 
landscape connectivity simultaneously, which correspond to three goals 
of ecological security. 

In this study, we propose a land use/cover prediction framework 
that incorporates ecological security by coupling the comprehensive 
evaluation of ESSA and using the FLUS model. The ESSA evaluation can 
help us find where ESSA should be strictly protected. The land use/ 
cover prediction under the constraints of ESSA can guide regional 
spatial planning by balancing ecological protection and anthropogenic 
land use. The main objectives of this study are to (1) address ecological 
security and identify ESSA by performing an assessment of habitat 
quality, ecosystem services and landscape connectivity; (2) simulate 
and predict future land use patterns constrained by ESSA using the 
FLUS model; (3) compare and analyze the land use changes under 
ESSA-based EP with NG scenarios. 

2. Study area and data sources 

2.1. Study area 

The YRD region encompasses 26 cities in China (Shanghai, nine 
cities in Jiangsu Province, eight in Zhejiang Province and eight in Anhui 
Province) (Fig. 1). It is located in a subtropical monsoon climate zone 
downstream of the Yangtze River (115°46′ E–123°25′ E, 29°20′–32°34′ 
N). Total annual precipitation ranges between 800 and 1600 mm. The 
landform of the study area is dominated by the Taihu Plain, with an 

Fig. 1. Location and land use pattern of the Yangtze River Delta region in 2015.  
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elevation of less than 10 m, and low hills in the southwest and south. 
The total area of the region is 211,700 km2, accounting for 2.21% of 
China. As one of the most dynamic regions of rapid economic devel-
opment in China, the YRD region faces severe environmental de-
gradation and deterioration of ecosystem functions. 

2.2. Data sources 

The basic data used in this study and the data sources are listed in  
Table 1. The land use data were generated via the interpretation of 
remote sensing data and visual interpretation of Landsat 8 remote 
sensing images. The annual average temperature and precipitation data 
were generated based on the collation, calculation and spatial inter-
polation of daily observations from over 2400 meteorological stations 
in China, in units of 0.1 °C and 0.1 mm, respectively. 

3. Methods 

The general structure of the proposed framework is illustrated in  
Fig. 2 and involves three main technical steps. First, ESSA were iden-
tified through a comprehensive evaluation system consisting of habitat 
quality, the importance of ecosystem services, and landscape 

connectivity. Second, the Markov model was used to project the de-
mand area of each land use type in 2030. Third, the FLUS model was 
used to predict the land use patterns in 2030 for ESSA-based EP and NG 
scenarios. The land use pattern in the EP scenario is constrained by 
ESSA through complex processes of competition and interactions 
among different land use types. The simulation under NG was con-
ducted to perform a comparative analysis with ESSA-based EP and to 
illustrate the importance and necessity of land use predictions that in-
corporate ecological security. 

3.1. Identification of ecological security source areas 

ESSA are the main areas where regional ecological security is 
maintained for the overall stability and continuity of regional ecosys-
tems. ESSA should not only have important ecosystem services, but also 
have high habitat quality to prevent ecological degradation and the 
ability to maintain landscape connectivity (Peng et al., 2018). There-
fore, we constructed a comprehensive evaluation method to identify 
ESSA based on the habitat quality, ecosystem services and landscape 
connectivity. The weights of these three indicators obtained using the 
Delphi method are 0.25, 0.50 and 0.25, respectively. The results were 
standardized to five classes using the Jenks natural breaks classification 

Table 1 
Data information and sources. DEM = digital elevation model; NDVI = normalized difference vegetation difference; NPP = net primary productivity; GDP = gross 
domestic product.      

Data Name Resolution Time Data Source  

Vegetation type 1 km 1980 Chinese Academy of Sciences Data Center for Resources and Environmental Sciences (http://www.resdc.cn) 
Soil type 1 km 1995 
DEM 90 m 2003 
Nighttime light image 1 km 2013 
Land use/cover 1 km 2010/2015 
Precipitation 1 km 2015 
Temperature 1 km 2015 
NDVI 1 km 2015 
NPP 1 km 2015 
Administrative boundary City/county 2015 
GDP 1 km 2015 China Economic and Social Development Statistical Database (http://tongji.cnki.net/kns55/) 
Population 1 km 2015 
Nature reserves – 2015 Specimen Resource Sharing Platform of China Nature Reserve (http://www.papc.cn/) 
Perennial average evapotranspiration 1 km 1961–2000 Science and Technology Resource Service System of National Ecosystem Observation and Research Network 

(http://www.cnern.org.cn/) 

Fig. 2. The framework of land use prediction incorporating ecological security.  
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method in ArcGIS 10.2, which can maximize the differences between 
the classes. Two classes with the highest scores were selected as ESSA 
(Guo et al., 2019). 

3.1.1. Habitat quality 
Habitat quality refers to the ability of an ecosystem to provide 

sustainable living conditions for individuals and a community based on 
the availability of resources (Hall et al., 1997). Habitat quality gen-
erally decreases with as nearby land use intensity increases (Petrosillo 
et al., 2009). The Integrated Valuation of Ecosystem Services and Tra-
deoffs (InVEST) tool has been widely employed to estimate the habitat 
quality (Posner et al., 2016). Habitat quality is calculated as follows: 
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where Qxj is the habitat suitability; k is the subsaturation constant, 
generally a half of the maximum value of Dxj; and z is a constant. The 
parameter settings in the model are presented in Table 2. The intensity 
of human activity is expressed using the nighttime light index. 

3.1.2. Importance of ecosystem services 
The importance of ecosystem services is evaluated to determine the 

critical positions, which are extremely important to regional ecosystems 
based on the analysis of the main ecosystem services and ecological 
processes (Li et al., 2013). Based on the major ecological problems in 
the YRD region, the importance of ecosystem services was evaluated by 
spatially integrating the water yield, soil conservation and biodiversity 
conservation with the weights of 0.3, 0.3 and 0.4 respectively (Li et al., 
2020; Peng et al., 2018). 

The water yield service was calculated using the water balance 
equation, and the surface runoff coefficient was taken from a previous 
study (Gong et al., 2017). 
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where TQ is the annual water yield, m3; Pi is the annual precipita-
tion, mm; Ri is the surface runoff, mm; ETi is the evapotranspiration, 
mm; Ai is the area of i ecosystem, m2; i is the type of ecosystem; and j is 
the number of ecosystem types. 

Soil conservation service was estimated using the revised general 
soil erosion equation (RUSLE) (Xiao et al., 2015). 

= × × × ×A R K LS C P(1 )c (3)  

where Ac is the annual amount of soil conservation, t/hm2 a; R is the 
rainfall erosivity factor, MJ mm/hm2 h a; K is the soil erodibility factor, t 
hm2 h/MJ hm2 mm; LS is the slope length and steepness factor; C is the 
vegetation coverage factor; P is the factor of engineering conservation 
measures. 

Biodiversity conservation service was evaluated using the method of 
landscape security pattern (Hu et al., 2010). First, we selected 30 na-
tional and provincial nature reserves in the YRD region as sources of 
biodiversity conservation. Then, the integrated resistance surface was 
constructed by normalizing the resistance factors such as slope, net 
primary productivity (NPP) and nighttime light index. Finally, we 

obtained the spatial cost distance of the biological movements using the 
minimum cumulative resistance model, which reflects the importance 
of biodiversity conservation. Boundaries of different importance levels 
were identified based on the relationship between the distance from the 
sources and the accumulated resistance value. 

3.1.3. Landscape connectivity 
The level of landscape connectivity within the region can quanti-

tatively characterize whether a certain landscape type is suitable for 
species exchange and migration and this is important for the biodi-
versity conservation and ecosystem balance (Saura and Pascual-Hortal, 
2007). Morphological spatial pattern analysis (MSPA) is a method that 
uses mathematical morphological operations to identify areas im-
portant for landscape connectivity at the pixel level (Soille and Vogt, 
2009; Velázquez et al., 2017). We identified and extracted the core area 
from the entire landscape using the MSPA in the Guidos Toolbox. Then, 
we used the probability of connectivity (PC) index to evaluate the 
landscape connectivity of the core area using the software Conefor 2.6 
(Saura and Pascual-Hortal, 2007). The higher the value of PC, the better 
the landscape connectivity. 
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where AL is the total area of the landscape; ai and aj are the areas of 
ecological patches i and j, respectively; pij is the maximum connectivity 
value of all paths between patches i and j; and n is the number of 
patches. 

3.2. Land use demand area projection 

To better understand the impact of ecological protection on future 
land use, the NG and ESSA-based EP scenarios were designed in this 
study. The NG scenario follows the historical trend of land use change 
and does not apply any policy to alter original land use changes. 
Considering the time series as a random process, the Markov model 
determines the trends to make predictions by studying the initial 
probability of different states of land use and the probability of con-
version between the states (Aburas et al., 2017; Lu et al., 2018). 
Therefore, a Markov model was used here to predict the demand area 
for each land use type in 2030 based on the historical land use data in 
2010 and 2015 for the NG scenario. 

The ESSA-based EP scenario aims to protect important ecological 
areas with specific location and ecosystem functions to maintain re-
gional ecological security. According to the “Development Plan of 
Yangtze River Delta Urban Agglomerations from 2010 to 2030” (DP- 
YRD) (Commission, 2016), the local government is planning to imple-
ment stricter ecological protection policies. Hence, in the ESSA-based 
EP scenario, we set the area of the status quo (55,070 km2) as the lower- 
bound value of the woodland area required to protect the forest eco-
system. The water and wetland area should be equal to the corre-
sponding area in the status quo, 13,912 km2 and 1563 km2, respec-
tively, to ensure water security. As the development intensity of the 
land in the YRD region reached 17.1% in 2013, higher than the level of 
15% of the Pacific coastal agglomeration in Japan, the space potential 

Table 2 
Habitat quality assessment parameters in YRD region.          

Threat source Weight Sensitivity Maximum influence distance (km) 
Farmland Woodland Grassland Water area Wetland  

Human activity intensity 1  0.75  0.75  0.5  0.8  0.8 10 
Highway 0.8  0.8  0.65  0.3  0.65  0.7 3 
Railway 1  0.5  0.55  0.2  0.55  0.6 5 
Port 1  0.5  0.8  0.8  0.8  0.8 10 
Channel 0.8  0.5  0.7  0.7  0.7  0.75 3 
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for follow-up construction is insufficient. To control the intensity of the 
development of construction land and improve the efficiency with 
which territorial space is utilized, construction land in 2030 should be 
less than the area predicted in 2020 based on the Markov model 
(25,486 km2) and greater than the status quo (23,655 km2). 

3.3. Land use allocation based on the FLUS model 

The FLUS model consists of two modules: (1) an ANN used to train 
and calculate the probability of occurrence of each land use type on a 
specific grid, and (2) an elaborated self-adaptive inertia and competi-
tion mechanism for analyzing the competition and interactions among 
multiple land use types. The optimal land use type is allocated to each 
grid until the quantity of each land use type reaches the predicted de-
mand. 

3.3.1. Driving factors of land use changes 
In the first module, 12 spatial variables were selected to calculate 

the probability of occurrence. The natural environment factors include 
elevation, topographical relief and normalized difference vegetation 
difference (NDVI). The climate factors include precipitation and tem-
perature. The socio-economic factors include nighttime light index, 
GDP and population per grid. The distance factors include the distance 
to urban centers, county centers, railways and rivers, which are gen-
erated using the Euclidean distance tool in ArcGIS. Based on the land 
use data in 2015 and multiple input variables, the ANN approach was 
applied by random sampling training and with 10% sample proportion. 

3.3.2. Spatial constraints and conversion settings 
In the second module, different from the traditional method of di-

rectly designating nature reserves and scenic spots as spatial con-
straints, this study designates ESSA as spatial constraints in the ESSA- 
based EP. For the NG scenario, there are no spatial constraints. In ad-
dition, two parameters need to be provided for a self-adaptive inertia 
and competition process. The neighborhood effect refers to the diffi-
culty degree of the conversion from one land use type to another. The 
closer the neighborhood effect is to 1, the stronger the expansion ca-
pacity of the land use type is. The neighborhood effect for each land use 
type is determined based on the expert knowledge and the related lit-
erature (Liang et al., 2018; Liu et al., 2017) (Table 3). The conversion 
constraint matrix describes the permission of the conversion from one 
land use type to another. In the matrix, “1″ denotes possible conversion 
and “0” denotes the opposite. The conversion constraint matrices are 
illustrated in Fig. 3. 

3.3.3. Model validation 
We used the kappa coefficient to evaluate the performance of the 

FLUS model. Generally, the kappa coefficient ranging between 0.6 and 
0.8 represents high simulation consistency, while 0.8–1.0 represents 
nearly complete consistency. Land use data in 2010 were regarded as 
the initial state to obtain the predicted land use in 2015 using the FLUS 
model. By comparing the real land use image in 2015 with the pre-
dicted land use map in 2015, we show that overall accuracy of the 
simulation is 87.83% and the individual accuracy levels for farmland, 
woodland, grassland and wetland are higher than 89% (Table 4). The 
kappa coefficient of eight land use types is 0.82. The validation results 

show that the FLUS model have high simulation accuracy when applied 
to the YRD region. Therefore, its reliability in predicting future land use 
change with validated parameters is also high. 

4. Results 

4.1. Ecological security source areas 

High-quality habitats are mainly located to the south of the YRD, in 
mountainous and hilly areas in the west, and around Taihu and Chaohu 
lakes (Fig. 4a). Areas with a high ecosystem service value are mainly 
located in western Zhejiang and southern Anhui (Fig. 4b). Areas with 
high landscape connectivity are mainly located in the southern and 
central YRD, accounting for 38.36% of the total area, which indicates 
that overall regional landscape connectivity is high (Fig. 4c). 

The total area of ESSA in the YRD region is 64,911 km2, accounting 
for 32.51% of the entire area (Fig. 4d). ESSA are distributed in southern 
and western Anhui, in the mountainous and hilly areas, central and 
western Zhejiang, as well as Taihu and Chaohu lakes, which are located 
in the cities of Anqing, Chizhou, Xuancheng, Huzhou, Hangzhou, 
Jinhua, Shaoxing and Taizhou. In terms of land use types, ESSA are 
mainly composed of woodland, water area and wetland, followed by 
farmland and grassland. These areas not only have high forest coverage 
and high ecological services provision, such as water yield, soil reten-
tion and biodiversity conservation, but also are located in high alti-
tudes. 

To verify the identification result of ESSA, we compared ESSA with 
the existing national and provincial natural reserves in the YRD region. 
Based on this data, the distribution of all national and provincial nature 
reserves nearly overlaps the distribution of ESSA. Fig. 5 shows that most 
of the thirty national and provincial nature reserves are located within 
the ESSA, indicating the viability of the ESSA identification method. 

4.2. Temporal land use change for 2015–2030 

In 2015 data, the farmland accounts for 49.98% of the total land 
area in the YRD, followed by woodland (26.82%) and construction land 
(11.52%). The total area of farmland, woodland, orchard and grassland 
accounts for nearly 81%, while the area of water and wetlands only 
account for 7.46% in the YRD. Table 5 lists land use change under the 
two scenarios from 2015 to 2030. Under NG, the area of the con-
struction land increased by 4314 km2. The area of the farmland de-
creased by 3553 km2, followed by woodlands and wetlands with the 
decrease of 547 km2 and 122 km2, respectively. 

However, under the ESSA-based EP scenario, ESSA cannot be oc-
cupied and woodland conversion is more stringent, as shown previously 
in Fig. 3. Therefore, Woodlands showed the opposite trend compared to 
that in the NG scenario; the area of woodlands increased by 2278 km2. 
The area of the farmland decreased by 931 km2, which is also in line 
with China's farmland protection policy. The largest drop occurred in 
the area of grasslands (2105 km2). Besides, water and wetland areas 
remained stable under the ESSA-based EP. In general, under the ESSA- 
based EP, the growth of the construction land slows down while 
woodland, wetland and water areas are effectively protected. 

The land use conversion matrix obtained with the Markov model 
was used to explore the land conversion process under two scenarios 

Table 3 
The neighborhood effect of each land use type under NG and ESSA-based EP.           

Scenario Farmland Woodland Orchard Grassland Water area Wetland Construction land Unused land  

Natural growth  0.5  0.8  0.4  0.3  0.5  0.4 1  0.3 
Ecological protection  0.6  0.9  0.5  0.4  0.7  0.5 0.8  0.3    
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(Table 6). Under the NG scenario, the interchange between various land 
uses are more obvious and intense. The changed land accounts for 
9.86% of the total land area under NG; however, under ESSA-based EP, 
the ratio is only 3.35%. This indicates a more stable and orderly change 
in land use. 

Fig. 3. The conversion constraint matrix under natural growth and ecological protection scenarios (codes 1–8 in bold represent farmland, woodland, orchard, 
grassland, water area, wetland, construction land and unused land respectively). 

Table 4 
The validation results of the FLUS model in the Yangtze River Delta region.      

Land use type User's accuracy Overall accuracy Kappa coefficient  

Farmland  0.904024 0.878336 0.815876 
Woodland  0.895974 
Orchard  0.483221 
Grassland  0.897931 
Water area  0.868035 
Wetland  0.895425 
Construction land  0.751993 
Unused land  0.500000 

Fig. 4. Ecological security source areas in the YRD region. (a. habitat quality; b. ecosystem services importance; c. landscape connectivity; d. ecological security 
source areas). 

Fig. 5. Spatial overlap between nature reserves and ecological security source 
areas in the YRD region. 
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4.3. Spatial changes in land use in 2015–2030 

Fig. 6 displays the land use patterns in 2030 for two scenarios. In 
both scenarios, construction lands in the YRD region are mainly located 
in Shanghai, western Jiangsu and northern Zhejiang. Woodlands are 
concentrated in the south of the YRD region, while farmlands are 
widely distributed in the north and west of the YRD region. To analyze 
the spatial characteristics of land use changes, changes in four major 
land use types from 2015 to 2030 under two scenarios were extracted 
for visualization (Fig. 6). 

The decrease in the area of farmlands mainly distributed along the 
Yangtze River in the NG scenario is more than that in the ESSA-based 
EP scenario. Woodlands present a completely opposite spatial change 
trend under NG and ESSA-based EP. The former shows a reduction in 
the south of the study area, while the latter shows an increase in the 
west of study area. Similar to farmlands, water areas experience a sig-
nificant decrease under NG. However, water areas remain unchanged 
under ESSA-based EP due to the strict constraints on land use. Under 
NG, construction land shows an expansion at the cost of loss of farm-
lands, concentrated in the east of the study area. On the contrary, the 
expansion degree of the construction land is much lower under ESSA- 
based EP. The Fig. 6 shows that construction land expansion is re-
strained in rapidly developing areas such as Shanghai and Suzhou 
under the ESSA-based EP. 

4.4. Land use occupying ecological security source areas 

Under the NG scenario, the areas of farmland, woodland, orchard, 
grassland, water bodies and wetland are 8958, 44286, 458, 4780, 5856 
and 467 km2, respectively, in the area designated as ESSA. Under the 
ESSA-based EP scenario, the land use type in ESSA remains the same as 
the land use status in 2015. The areas of farmland, woodland, orchard, 
grassland, water bodies and wetland are 8097, 44445, 608, 4718, 6379 

and 565 km2, respectively. Thus, under the ESSA-based EP scenario, 
159 km2 of woodland, 150 km2 of orchard, 523 km2 of water area and 
98 km2 of wetland are protected in ESSA while 861 km2 of farmland 
and 60 km2 of grassland are replaced with other types of ecological 
land. 

We further extracted the new construction land data for 2015–2030 
under the two scenarios and overlaid them with the distribution map of 
ESSA (Fig. 7). Under the NG scenario, new construction land is widely 
distributed around the towns in the center and east of the study area. 
There is 8 km2 of new construction land occupying the ESSA, which is 
scattered in the southeast of the YRD region. Under ESSA-based EP, new 
construction land is reduced to 1430 km2, all of which is located outside 
the ESSA and mainly distributed in the northwest of the study area. The 
results show that ESSA-based EP has a positive impact on ecological 
environmental protection, and the land use pattern under ESSA-based 
EP is more conducive to regional ecological security. 

5. Discussion 

5.1. Limitations 

The first limitation of this study is related to the indicators of eco-
system services. Three ecosystem services concerning water, soil and 
biology were valued and mapped in this study. However, other im-
portant services that also likely provide a large value to the society, 
such as carbon storage, agriculture production and marine ecosystem 
services were not considered. In summary, the evaluation results in this 
study do not completely reflect the local ecosystem services capacity 
and values. There are ubiquitous trade-offs between provisioning ser-
vices and other types of services found in the Millennium Ecosystem 
Assessment (2005), which means we should simultaneously consider 
multiple local services and correctly assess the existence and magnitude 
of trade-offs. Only this way, decision-makers can formulate rational 

Table 5 
Land use change for 2015–2030 under natural growth (NG) and ecological protection (EP) scenarios.           

Land use type Area (km2) Proportion (%) Change (%) 
2015 2030 (NG) 2030 (EP) 2015 2030 (NG) 2030 (EP) NG EP  

Farmland 102,627 99,034 101,696  49.98  48.25  49.53 −1.73 −0.45 
Woodland 55,070 54,523 57,348  26.82  26.55  27.93 −0.27 1.11 
Orchard 1315 1285 679  0.64  0.63  0.33 −0.01 −0.31 
Grassland 7133 7112 5028  3.47  3.46  2.45 −0.01 −1.03 
Water area 13,912 13,879 13,912  6.78  6.76  6.78 −0.02 0.00 
Wetland 1563 1441 1563  0.76  0.70  0.76 −0.06 0.00 
Construction land 23,655 27,969 25,085  11.52  13.62  12.22 2.10 0.70 
Unused land 51 83 15  0.02  0.02  0.01 0.00 −0.02 

Table 6 
Land use conversion matrix for 2015–2030 under natural growth (NG) and ecological protection (EP) (area unit: km2).            

Scenarios 2030 Farmland Woodland Orchard Grassland Waterarea Wetland Construction land Unused land 
2015  

NG Farmland — 1824 469 143 4156 398 4034 3 
Woodland 1960 — 22 336 54 3 172 0 
Orchard 554 2 — 0 19 0 8 0 
Grassland 257 165 0 — 60 3 24 0 
Water area 4208 3 59 8 — 353 67 0 
Wetland 492 1 3 1 375 — 7 0 
Construction land 0 0 0 0 0 0 — 0 
Unused land 3 5 0 0 1 0 2 — 

EP Farmland — 2342 3 26 0 0 1375 0 
Woodland 310 — 2 6 0 0 0 0 
Orchard 611 12 — 0 0 0 18 0 
Grassland 1869 232 0 — 0 0 36 0 
Water area 0 0 0 0 — 0 0 0 
Wetland 0 0 0 0 0 — 0 0 
Construction land 0 0 0 0 0 0 — 0 
Unused land 25 10 0 0 0 0 1 — 

D. Zhang, et al.   Ecological Indicators 119 (2020) 106841

7



policies in any natural-resource decision-making process. 
The second limitation is the lack of scientific threshold determina-

tion of ESSA. In other words, the optimal area of ESSA should be de-
termined. In this study, the natural break point method was used for 
classification, and the ecological patches with higher importance were 
extracted as ESSA. However, whether the area of ESSA can meet the 
regional ecological needs is uncertain. Moreover, there is a slight gap 
between the results of this study and the current regional planning. The 

existing regional planning, DP-YRD, divides the territorial space of the 
YRD into three types: optimized development area, key development 
area and restricted development area. Restricted development areas 
designated by DP-YRD account for 48% of the total area and are mainly 
distributed in northern Jiangsu, western Anhui and western Zhejiang. 
By comparing the ESSA with restricted development areas, we observed 
that although the spatial distribution of ESSA is consistent with that of 
the restricted development areas, ESSA are 16% smaller than the 

Fig. 6. Spatial distributions of predicted land use/cover in 2030 and the change of farmland, woodland, water area and construction land for 2015–2030 under 
natural growth (NG) and ecological protection (EP) scenarios. 

Fig. 7. The simulated new construction land overlaid with ESSA from 2015 to 2030 under NG and EP scenarios.  
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restricted development areas. Therefore, scientific determination of the 
area threshold of ESSA needs to be further studied and improved. 

The third limitation is the limited settings of the land use prediction 
scenarios for future development planning reference in the YRD. In the 
simulations, to highlight the role of ecological protection, only two 
scenarios were conducted in this study. In fact, besides ecological se-
curity, food security is also important to support societal development. 
Ecological security, food security and economic development should be 
simultaneously considered in regional development efforts. However, 
the ecological protection scenario in this study does not reflect the real- 
life trade-off between farmland protection and ecological security. 
Hence, a method to balance and coordinate farmland protection, eco-
logical protection and economic development should be explored 
through scenario simulations. 

5.2. Land use simulation incorporating ecological security 

Previous studies have discussed the impacts of land use on the 
ecosystems; however, prevention is more important than post-destruc-
tion management. An increasing number of countries and regions began 
to emphasize the importance of planning and policy-making to mini-
mize the negative impacts of land use changes on ecology to ensure 
ecological security (Liu and Chang, 2015). Rapid population growth 
requires more construction land. However, the speed of construction 
land expansion has exceeded the growth rate of the urban population in 
China at the cost of ecological land (Zhang et al., 2016). Thus, it is 
urgent to prevent the conversion from ecological land to other land 
uses. The problem lies in the determination of the priority protected 
areas. In this study, we developed a land use prediction framework 
combined with the comprehensive identification of ESSA. Through this 
approach, areas that are critical for ecological security can be reason-
ably positioned and land use patterns can be optimized under the 
premise of ecological protection, which is of great significance for land 
use spatial planning and decision-making. 

ESSA are considered critical areas to protect ecosystem stability and 
biodiversity. Some studies have identified ESSA through ecosystem 
services and landscape connectivity (Zhang et al., 2016) or habitat 
quality and landscape connectivity (Peng et al., 2018). However, in-
complete consideration cannot reflect the comprehensive function and 
importance of ESSA in safeguarding ecological security. Compared with 
the previous studies, this study constructs a more comprehensive eva-
luation framework of ESSA based on the three connotative objectives of 
ecological security. Habitat quality corresponds to the goal of pre-
venting ecological degradation, and the importance of ecosystem ser-
vices is related to the sustainability of ecosystem services, and land-
scape connectivity focuses on ecosystem integrity. Through this three- 
dimensional consideration, ESSA can be used for ecological evaluation 
and ecological environmental planning. 

5.3. Advantages of the future land use simulation model 

In land use simulation, most studies adopt the logistic regression to 
analyze the relationships between natural and socioeconomic spatial 
variables with land use patterns, which are typically used in the CLUE 
model (Wang et al., 2018; Zhou et al., 2016). This method cannot ad-
dress the non-linear relationship between independent driving factors 
and land use change. The ANN is a machine learning model and gen-
erally used to approximate non-linear functions consisting of various 
independent variables. The advantage of ANN lies in its capability of 
fitting complex relationships between inputs and training objectives 
through a series of iterative learning and memory (Liu et al., 2017). 
Moreover, ANN can yield ideal performance when modeling a variety of 
inputs and outputs. The FLUS model embeds ANN into the probability 
estimation module to calculate the probability of occurrence of each 
land use type on a specific grid. It is capable of addressing the com-
plicated relationships between the driving factors and land use change 

using machine learning and is more effective than logistic regression. 

5.4. Possible innovation of landscape connectivity analysis 

The PC indicator has been widely used to evaluate landscape con-
nectivity (Ernst, 2014; Ng et al., 2013; Nogués and Cabarga-Varona, 
2014). However, the traditional method of only using the PC index has 
some limitations. On the one hand, landscape connectivity at the patch 
level ignores the connectivity between patches; on the other hand, the 
running time in Conefor increases rapidly with the growing number of 
nodes and links, especially for the PC indicator. The MSPA based on the 
mathematical morphological operations method can identify the ha-
bitat patches with high connectivity at the pixel level and does not 
require the identification of individual patches. Besides, the landscape 
types identified by MSPA are not affected by the large spatial scale. 
Therefore, we integrated MSPA with PC analysis to assess landscape 
connectivity and improve the efficiency and effectiveness of the cal-
culation process. This combined method cannot only improve the 
computational efficiency of the PC indicator, but also make it possible 
to evaluate landscape connectivity on a large scale by combining the 
evaluations at the pixel level and patch level. 

6. Conclusions 

Since the end of the 20th century, with the rapid development of 
urbanization, ecological space in the YRD has been gradually eroded. 
Moreover, due to the excessive exploitation and utilization of natural 
resources, ecological and environmental problems have become in-
creasingly prominent in the YRD. The land use change from 2010 to 
2015 reveals the expansion of construction land at the expense of 
ecological land. About 1.3% of the ecological land has been lost, 
whereas construction land expanded by 2373 km2. This development 
pattern will continue to disturb the entire ecosystems. 

This study aims to explore the trends in the land use change con-
strained by ecological security source areas (ESSA). The identification 
of ESSA is a critical step in land use simulations based on ecological 
security. The multi-perspective ESSA identification, considering habitat 
quality, ecosystem services and landscape connectivity, reflects various 
connotative objectives of ecological security. The FLUS model em-
bedded with ANN is a good fit to calculate the complex relationships 
between selected driving factors and land use change. The selection of 
driving factors in this study covers a variety of aspects such as geo-
graphical, climatic, economic and social factors. The overall accuracy of 
the simulation with the FLUS model is over 87%. 

The results show that the important ecological protected areas in 
the YRD are 64,911 km2, accounting for 32.51% of the total area, 
mainly distributed in southern Anhui, western Zhejiang, Taihu Lake 
and Chaohu Lake. Through the delineation of ESSA, 159 km2 of 
woodland, 150 km2 of orchard, 523 km2 of water area and 98 km2 of 
wetland are protected; in addition, the growth of the construction land 
slows down and all new construction land is located outside the ESSA 
under ESSA-based EP. In order to achieve the goal of ecological pro-
tection, stakeholders and government decision makers should formulate 
and implement relevant protection policies, including promptly deli-
miting the ESSA, strictly controlling the occupation of natural forestry 
and wetlands, protecting the water quality and quantity of water 
sources and strengthening the construction of green infrastructure. 

Although this study discusses the impact of ESSA on land use 
changes, it is insufficient to predict the land use demand area under 
different scenarios. Land use demand area prediction is an important 
link in land use planning. The overall land use quantity structure de-
termines the macroscopic balance between humans and nature, fol-
lowed by the spatial balance in different regions. Land use planning 
based on a reasonable land use demand is beneficial to the sustainable 
development of the society. Therefore, a stronger time prediction model 
such as the system dynamic (SD) model should be combined with the 
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proposed land use projection framework in future work. Besides, this 
study is limited to predicting future land use based on current time- 
driven factor data. More accurate projection of future socio-economic 
and climatic scenarios can help us better simulate and predict future 
land use. Thus, further study is needed to simulate future land use 
under different scenarios through future social, economic, demo-
graphic, geographical and climatic conditions to improve the spa-
tial–temporal prediction ability of the model guide planning and policy 
efforts. 
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