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Abstract

In the present paper, we have analyzed the spajpatal distributions and trends of
aerosol optical depth observed at 550 nm (A& and its relation with the optical
properties of clouds over East China. For this psep we have used the long-term
(2000-2017) data obtained from the Moderate-reswiuimaging Spectroradiometer
(MODIS) Terra satellite to examine and understdmedeixisting relationship between them.
The spatial gradient of AQJsy showed an increase from the South to the Northeostudy
domain. However, the seasonal variation of AgDvas found high in summer and low
during the winter. We have noticed a significar@asing trend in AOD over the northern
part of the study area, especially in autumn andewxiseasons. The study also investigated
the spatial and temporal changes to understandetagonship between AOD and cloud
properties, namely cloud fraction (CF), cloud temperature (CTT), Cloud effective radius
(CER) and cloud top pressure (CTP), respectivegsides, the linear regression analysis
was conducted to estimate the time series trenthéoaerosol and cloud properties during
the study period. Further, the regional correlatmoaps were adopted to improve our
understanding of the existing relationship betwaermsol and cloud properties. A positive

correlation between AOD and CF and CER is evidemost of the places in East China.

Keywords. MODIS; Aerosol optical depth; Cloud optical deptloud fraction; Cloud

effective radius; East China.
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1. Introduction

Atmospheric aerosols have a significant effectlonds and earth radiation budget. The
role of atmospheric aerosols in causing climateageamainly on regional scales, cannot be
ignored. They have visible effects on human healimate, and air quality; and indirectly
influence physical properties and lifetime of cleuxy serving as cloud condensation nuclei
(CCN) (Qin et al., 2018). The long-term spatiotemgp@ariability in aerosol optical depth
(AOD) works as an essential input for the studielated to clouds formation, climate
change, and Earth's radiation budget. Aerosols baee previously recounted to be as the
source of uncertainty that significantly affecte tharth’s weather and climatic radiative
system in many ways. They alter both ‘direct’ tigbuheir ability to scatter and absorb solar
radiation and ‘indirect’ by modifying the microphgs of clouds (IPCC, 2013).

Consequently, the long-term regional scale and keghporal resolved measurements
are required to understand and quantify the migysigchl impact of both natural and
anthropogenic aerosols on cloud properties anchpsave the uncertainties associated with
these impacts. Most research publications to date Bhown that aerosols play an essential
role in the formation and life cycle of clouds blyanging the size and density of cloud
droplets. Increasing aerosols cause an increa€¥CM concentrations, leading to denser
cloud drop concentrations and a decrease in thelatrsize under constant liquid water
content. It is known as the “first indirect effed “Twomey effect” (Twomey, 1977).

Since smaller cloud droplets affect the efficiemEyain, causing an increase in liquid
water content, cloud lifetime and cloud cover knasrthe “second indirect effect” or “cloud

lifetime effect” (Twomey, 1977). Further, tropospieceaerosols are also very prevalent types
3
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especially, with regional new particle formationbguicron range (secondary aerosols),
which are produced through the gas-to-particle emsion processes. This phenomenon
leads to a lower rate of surface evaporation anceasing atmospheric stability (Myhre et
al., 2007). Aerosol indirect effects lie on theasad type, their vertical and size distribution,
and meteorological conditions (Yuan et al., 20@8®)th the first and second indirect effects
relieve the pressure of global warming by coolihg atmosphere (Myhre et al., 2007).
However, the presence of soot particles (absorbangsols) such emitted from the biomass
burning may prevent cloud formation by reducing rtin@sture available in the troposphere
for cloud growth, known as a semi-direct effect K&enan et al., 2000).

Notwithstanding the significance of the climatifeet of aerosols and the importance of
clouds, many investigations were conducted over n&hisince the launch of
Moderate-resolution Imaging Spectroradiometer (M&Ds$ensor with the onboard Terra
and Aqua satellites (Luo et al., 2014; Kumar et214, 2018; Kumar, 2014; Adesina et al.,
2016; Kang et al., 2015, 2016; He et al., 2012,620u et al., 2018; Boiyo et al., 2018).
More recently, satellite analyses have reveale@raigient relation between aerosol and
cloud optical properties (Kumar et al., 2018; Kun2fr14; Adesina et al., 2016; Kang et al.,
2015; Sharif et al., 2015). As far as, we know anfew studies had highlighted the existing
relationship between AOD and different cloud prajsrover the mainland of China, but not
much has been done over the present region oesttgrarticularly East China (Yuan et al.,
2008; Kang et al., 2015; Tang et al., 2014). Kanhgle(2015) reported their relationship

through correlation studies over entire China,ipaldrly in the provincial capitals using the
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MODIS data from 2000 to 2013. Tang et al. (2014rexed the aerosol-cloud properties
relation over the north china region, provided tadi analysis with a short span of the data
period. However, none of the authors have much emnated and investigated
understanding their relationships and further asseat of regional climate change over East
China. To the best of our knowledge, the presenkwlealt with studying the aerosol and
cloud properties relation and firmly believes ibyides an opportunity to fill the knowledge
gap in the country. The primary objectives of thalg are as follows. The first objective is to
investigate the spatiotemporal variations of adragatical properties such as AOD,
Angstrom exponent (AE), and water vapor (WV) ovasEChina based on the 18-years
(2000-2017) of data derived from the MODIS onboEeda satellite. Whereas, the second
objective is to understand the relation of aerosoth the cloud microphysical properties
such as cloud fraction (CF), cloud effective radiG&R), cloud top pressure (CTP), and

cloud top temperature (CTT).

2. Data and Methods
2.1. Study domain

The selected study domain is East China, situgiptbaimately between 24—-38°N and
113-123°E, shown with the location of selectedaegion the topography map (Fig. 1a).
The present study has been carried out over EastaGlomain consist of 8 significant
capitals cities, namely Shandong (Provincial cdpgalinan, JN), Jiangsu (Nanjing, NJ),
Anhui (Hefei, HF), Zhejiang (Hangzhou, HZ), Jiangdanchang, NC), Fujian (Fuzhou, FZ;

Xiamen, XM), and Shanghai (Shanghai City, SH). $tuely domain is with rapid economic



130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

development as the most urbanized and industréhlizgions are located in this part of
China. This region as a whole has the highest AQtb avtypical value of 0.6, resulted from
the densely populated and nation's largest agui@ifone releases a considerable quantity of
aerosols (Kang et al., 2016, 2020; He et al., 20Q26; Hu et al., 2018). Moreover, the study
region has a low elevation above the mean sea(€able 1), with the Huaihe River Basin as
the demarcation line.

The study area is located in the eastern Asian awnsone with four distinctive seasons:
spring (March-May), summer (June-August), autunih/{&eptember-November), and
winter (December-February). The southern portiokast China is a subtropical monsoon
climate region, and the North area is a temperat@soon climate region. Due to the
prevailing northwestern winds (Syberian) in wintéhas cold and dry weather with little
rain. In contrast, the area is associated withstii®ropical monsoon climate and has a hot
and humid atmosphere with plenty of rain in sumrBercause of the prevailing southeastern
winds which carry marine air masses to the land, rdgion occasionally experiencing
cyclones and typhoons. All of these lucrative ctinds create an ideal bed to study and
understand the impact of aerosols on cloud micrsigeyand assess their relation.

2.2. The MODI S sensor

The Moderate-resolution Imaging SpectroradiometdvlODIS) provides a
comprehensive global observation of Earth’s lamgans, and atmosphere over 36 spectral
channels from 0.41 to 14.235 pum at an altitudeQ& Km, with a nadir spatial resolutions

of 0.25 m (2 channels), 0.5 m (5 channels) and 2@channels) (Hu et al., 2018; Boiyo
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et al., 2018). A variety of aerosol and cloud prtips were obtained from the MODIS

Terra and Aqua satellites via continuous obsermativpom 2000 and 2002, respectively.
Terra's orbit around the Earth is timed so thdlies from the North to South across the
equator in the morning (10:30 local time (LT)), WehAqua flies from south to north over the
equator in the afternoon (13:30 LT). The MODIS iastent provides observations at
moderate spatial (1-250 km) and temporal resolstidr2 days) over different portions of
the electromagnetic spectrum. Recently, many ssuti@e utilized the MODIS data

products around the globe to understand the sphgé&drogeneity in aerosol optical

properties and discussed its data products, retragorithms, calibration, and uncertainties
(He et al., 2016; Hu et al., 2018; Boiyo et al.120Kumar et al., 2018). Data products of
aerosol and cloud are among the hundreds of prediianeasured radiance derived from
the MODIS (Dahutia et al., 2017). Two significarewn approaches to AOD retrieval

algorithms have been introduced: the Dark Targéf) (Bnd Deep Blue (DB). The first

approach involves the DT retrieval best suits d&ed and ocean surfaces, which is limited
to surface reflectance up to 0.15 and assumestesrscy of aerosols in the mid-IR spectral
range (Remer et al., 2005; Levy et al., 2007, 20IBg second approach involves the DB
algorithm, which differs much compared to the DRy& et al., 2013). As the primary
concern related to low reflectance, the blue piiti® visible region is more prominent than
in the red component. It is used to retrieve adrpsaducts for geographical areas with

surface reflectance greater than 0.15. HoweveD®algorithm decreases the influence of
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albedo effects over bright surfaces, and has hogaracy over land, except over dust and
snow surfaces.

Since Terra and Aqua have different overpass timeshave used data from the
MODIS-Terra satellite to investigate the spatiotenap patterns and relationship between
aerosol and cloud properties. The Terra-MODIS Ctb@ 6.0 level-3 combined/merged
(DTB) daily aerosol and cloud products were dowdezhfrom the GIOVANNI over East
China from 2000 to 2017. The detailed informationatgorithms for the retrieval of aerosol

data products is available at https://giovannigséc.nasa.gov/giovanni/. The estimated

uncertainty in the MODIS AOD product was reporte@a@3 + 0.15 and 0.05 + 0.20 over the
ocean and land, respectively (Tanre et al., 199%fikan et al., 1997). Recently, the
Collection 6.1 DT and DB products are releasedmaadified several products over the land
and ocean surfaces, compared to the earlier Ciolle€.0. The use of data withf>1°
resolution (aerosol and cloud parameters) allowsougduce the uncertainty induced by
each Level-2 pixel. In particular, we have usedooaited data of aerosol and cloud products
such as AOBs, (Unitless), Water Vapor (WV, cm), Cloud FractiddF, Unitless), Cloud
effective radius (CER, micron), Cloud Top Presg@€P, hPa) and Cloud Top Temperature
(CTT, K).
2.3. Statistical methods

The linear regression statistical approach is dapab quantifying and statistically
estimating the trends of long-term data for a patéir geophysical variable. In the present

study, the same technique was adopted for the Aandaseasonal trend analyses in AOD
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alongside for the meteorological parameters. Thi#hatkhas previously been used in other
related studies (Kumar et al., 2014, 2018; Karad.e2016; Boiyo et al., 2018) has a practical
usage of directly quantifying the direction and magde of the trend in t data. Following
this method, a linear trend model (Eq. 1) was aslipt

Y, =c+wlX, +¢ 1)(
where Y, ¢ and X, represent the geophysical variabte,is the offset (y-intercept), and
X, is the independent variable representing timepeesvely. Howeverw is the trend
estimate of theY, under consideration, whikeis the noise in the time series. The statistical
significance of the estimated trends was furthetet& using the method developed by

Weatherhead et al. (1998). Adding to this, thegoat are considered significant with a

p-value of 0.05 or a 95% confidence interval w@ > 2, whereas trends are considered

significant at a 90% confidence level when 1.%’< 2; hered define the standard deviation

of the slope affiliated with the linear regression.

The relative change in AOD (which relates the auirgith initial AOD values) can be
used to describe the inter-annual variations in A@@ntitatively. In the present work, the
annual and seasonal relative changes in AOD (irmagdorm) are computed using the

expression:

AverageAOD (2009~ 2016), , — AverageAOD (2002-2008),
AverageAOD (2002-2008),

RelativeAOD Changg(s) =

@)

where subscripts ‘a’ and ‘s’ denote annual and@edsAOD values, respectively.
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3. Results and discussion

3.1. Spatial and temporal changes of AOD
3.1.1. Spatial distributions

The spatial distribution of mean yearly A@found that the 18-year climatology of
aerosols had a marked impact on the study domag 2. It is showed that the AOD
gradual increase from the South to the North ofgtuely domain (Fig. 2a). There is an
apparent north-south demarcation line that mean®thling Mountains-Huaihe line (QHL),
which is called the geographical dividing line beem the South and the Northern parts of
East China. Further, there are significant diffeesnobserved between the South and North
of the study area in terms of the amount of vegetatprecipitation, annual average
temperature, or geographical features. Also, timefoaind in the South of QHL (Fig. 1c) was
much higher due to the subtropical monsoon clirtetds to a higher normalized differential
vegetation index (NDVI) (Fig. 1b) over the entitady domain.

High AOD (>0.8) (Fig. 2b) was noticed in the Nowh the study domain (over the
western Shandong province) surrounded with highufaion density and intense
anthropogenic activities resulting in a significactumulation of fine-mode particles with
moderate to high values of AE (1.1-1.3) (Fig. 2Akhough, the Shandong province is
characterized by lower urbanization compared vhth Yangtze River Delta (YRD), and is
susceptible to windblown dust particles transpofttech the North region round the year (Yu
et al., 2016). Also, high AOD is possibly due te Herosols produced from industrial sectors
like coal-fired power stations, petrochemical opiers, and frequent construction activities

(due to rapid urbanization), over this region, citmited to the observed high AOD. Apart,
10
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high AOD (> 0.8) and low AE (< 1.0) were evidenaeer Shanghai Municipal Corporation,

which is a heavily polluted city situated closeth® marine environment enriched with

coarse salt particles. Moderate AOD values (0.4-@efe depicted in the central parts of
East China, where the areas of Jiangsu and Anbuimres and Shanghai cities are located.
While low AOD between 0.1 and 0.3 and high AE vale 1.4) were observed in the

southern regions (Jiangxi, Fujian, and Zhejiangvimees) of the study domain are highly

vegetated (large NDVI) with more amount of rainerdFig. 1c). From the reasons as
mentioned earlier, it is now clear to some exthat,tthe AOD in China, mainly East China

is closely related to the growing population, tommipy, meteorological changes, and
climate, for aerosol distribution, which is comgdaeawith the results reported by Luo et al.
(2014), Hu et al. (2018) and He et al. (2016) ushelong-term MODIS data.

Figs. 3a-d presents the spatial distribution ogseal mean AOBR, with maximum (>
1.0) noticed in summer and minimum in winter (<)0:he highest AOD appeared in the
urban areas of Shandong province with dense populand thriving industries. At the same
time, the lowest AOD was found almost around ther ye the southern regions of the study
domain. Several investigators have also reported pérsistence of high AOD during
summer over the area (Hu et al., 2018; He et @GlL62 However, the seasonal AE values
over the study domain were found 1.4 (Figs. 3eek¢ept spring indicates the dominance of
fine-mode aerosols. The low AE (0.6) found ovengdia, Fujian, and Zhejiang provinces
during the spring denote that aerosols in thosasaaee large (coarse) particles originating

from the desert regions.
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3.1.2. Temporal variations

The inter-annual monthly and seasonal mean charfigedDsso along with the standard
deviation obtained from the daily values during@8@017 for the selected eight cities are
shown in Table 2 and Fig. S1 of Supplementary Nat€¢EM). It is inferred that AOD
showed a persistent deviation with lower valuesctvioccurred during December (winter)
in most areas of the study domain, except for thaller latitude locations (NC, FZ, and
XM), where the AOD was found lower in July. Howevénte AOD peaks during June
(summer) in most of the areas, except for NC, Fd, ¥M, where it was found maximum
during April with large standard deviations, indiedarge variability in the individual daily
AOD values. Whereas, the profound differences \iarad during the spring represent more
stability in the AOD values, except for FZ and XMes with low amounts of standard
deviations in autumn. In association with anthragog and natural sources, on average, low
and high AOD values of 0.19+£0.12 and 1.29+0.38 vmarticed at FZ (in December) and JN
(in July) for the entire period of study in EastiGh(Table 2). The reason behind this abrupt
seasonality attributed to the fact that these awstlyindustrial, low vegetation coverage,
and effective biomass burning regions (He et &162 Hu et al., 2018). Further, the dust
transported coarse particles from the northeast domain during late spring is also the
leading cause of increasing AOD values in summéreastudy sites.

Kumar (2014), Alam et al. (2010, 2014), and Shetrdl. (2015) concluded that water

vapor (precipitate) and AOD are directly relate@aeh other. Hence, a higher concentration

of water vapor in summer leads to a higher AOD.id&s higher air temperatures tend to

12
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hold more water vapor that feeds gas-to-particlevecsion mechanism, which might be the
other reason causing the higher AOD levels in thersertime (Kang et al., 2016; Hu et al.,
2018). During the winter season, the AOD found miues for all stations over the study
domain likely related to low water vapor contentthre atmosphere that restricts the
possibility of the hygroscopic growth of aeroso®a et al.,, 2010; Khan et al., 2019).
Moreover, the dynamics played by the planetary bdamnlayer, which is higher in summer
than winter resulting in significant diffusion odsols, leads to lower AOD in winter (Kang
et al., 2020; Shao et al., 2020). Several auttoarsd similar results over China in the recent
past (Yuan et al., 2008; Gao et al., 2014, andeates therein). However, in our case, it
deviates from season to season due to regionalogratipenic and natural pollution (Pan et
al., 2010; He et al., 2012; Hu et al., 2018; Shaal.e2020).
3.2. Spatial tendenciesin aerosol optical properties

The spatial trends obtained on the annual and sabsulices using the observed
daily AOD and AE datasets over East China during022017 are presented in Figs. 4 and
5. The yearly mean spatial tendencies of A§Dvere noticed positive (>0.013) with the
relative trend of ~0.02 over the urban-industredizregions of the North, East, and
Northwest of the study domain. While the lowestatag trend (< -0.01) was associated
with the rural and less developed areas of thelSantl Southwest of the domain, the
positive trend in AOD implies an increase in aefdsad, attributed to the extensive
anthropogenic activities, and urban developmentthén, an increasing trend in AE

indicates the dominance of fine-mode particles dkierregion. The seasonal-based spatial

13
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pattern is more widespread in AOD as compareddd\th parameter over the study domain.
Similarly, the seasonal trends having high AOD wibrresponding high AE were
characterized over the economically industrial sagiof the central and north of the study
domain during most of the study period, being mpm@nounced in the autumn season.
However, the decreasing trends (< —0.01) were fannsbuthern regions of East China
ascribed to an increase of coarse-mode particigmating from the natural sources. Further,
the decreasing tendencies in AOD and AE during senwas observed in the northern parts
of the study domain (over the western Shandongipcey, denotes the dominance of
coarse-mode particles due to dust aerosols commy the deserts (Taklimakan and
Mongolia), with the prominence of sea salt aerofwois) the East and South of China Sea.
These results are consistent, and agreement vatprévious investigations observed over
entire China (Luo et al., 2014; Kang et al., 2046;et al., 2018; Shao et al., 2020).
3.3. Spatiotemporal changesin cloud parameters

The spatial (Fig. 6) and temporal (Fig. 7 and Ta)lalistributions of different cloud
parameters (COT, CF, CER, CTT, and CTP) over EdshaCwere analyzed using the
long-term (2000 to 2017) MODIS Terra satellite dathe annual spatial changes and the
time sequence variation in the COT are signifidettveen the southern and northern parts of
the study domain (Figs. 6b and 7b). The mean COhansouthwest and southern regions
was the highest during February. However, the abdistribution is just the opposite in the
northern domain because annual average moistutertaamd temperature are lower in the

North than in the South of the study domain; arel ¢louds are relatively stable during

14
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winter months (Balakrishnaiah et al., 2012). Thegeral variation shows that the COT over
East China decreases first with time and graduatlseases after 2004 with a maximum (~
26) during November-December, and minimum (< 8ween September and October
months, associated with general circulation, sodatiation, climate dynamics, and the
amount of water vapor content in the atmosphere.

Fig. 6¢ shows a significant increase in cloud foact(CF) over most parts of high
elevation regions of Jiangxi, Fujian, and Zhejiangh a large amount of CF (> 0.9) during
February and March in East China (Fig. 7). Thisdatks more cloud cover over these sites.
However, moderate mean CF values between 0.3-0éwaticed over the northern areas of
the study domain. Kang et al. (2015) studied thagigpand temporal distributions of cloud
parameters regionally over China using the longrt&003-2013) data retrieved from Terra
and Aqua MODIS cloud products and found more clawds vegetated lands compared to
coastal regions of East China.

Similarly, on the spatial and temporal scales, higlues of CER were noted over north
and middle regions (e.g., Jinan, Nanjing, and Hef#h maximum values (17 um) during
June-August (summer) and minimum (12 pm) betweeceBer and February (winter)
over southern parts of the study domain, respdgtiatiributed to the strong influence of
dust and continental background aerosols (Figsartdl 7d). Fig. 6e shows the spatial
distribution of CTT with higher values over southmeggions of Fujian province, and lower at
the Northwest of Shandong province. Similarly, térporal variation indicates higher CTT

values (267 K) during September-November (autumd)lawer (247 K) from April to June
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(spring) months, indicate the presence of cold dso(x273 K) throughout the year in the
study area, which is confirmed from the studiesAtam et al. (2014). Kumar (2014) and
Sharif et al. (2015) pointed out an aerosol, astiga player acting with clouds, changes not
only the cloud properties (such as CF, CER, COT)atao affected the CTT and humidity
profiles. Further, medium to lower values of CTB@%30 hPa) was exhibited over the most
parts of East China (Fig. 6f), except East, Noathd Southern areas, where the mean CTP
was recorded with its maximum (700 hPa) particyladuring November and December.
Except for very small AOD over some areas, the @&€&eases with high cloud cover (CF),
following the other studies reported over Chinan@at al., 2014; Gunaseelan et al., 2014).
The highest WV value (5.5 cm) was recorded in 2096 and August 2003 at the South and
central areas of the study region, with the lowe&&tcm) during the winter months in the
North (Jinan), attributed to varying topographyasenal variation in humidity profile, and
meteorological factors (e.g., precipitation, tenapere, and wind speed).
3.4. Spatiotemporal correlations between AOD and cloud parameters

In this section, the relationship between MODISwt AOD and WV, and with cloud
parameters such as COT, CF, CER, CTP, and CT héostudy domain has been discussed
and presented individually through statistical etation analysis for the period 2000-2017
in the following sections.
3.4.1. AOD and water vapor

The spatial correlation between AOD and WV reve#hedpositive relationship in most

provinces over the study domain (Fig. 8); wherehs, negative spatial correlation was
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noticed over most areas in Anhui and Jiangsu poeganMeanwhile, the strong positive
correlations (0.6-0.8) were found in the northeartpf Fujian and southern Zhejiang
provinces. However, the relationship gradually vesekwith an increase in latitude. It has
been observed that the water-absorbing abilityegdior different types of aerosols, with the
dominance of sea salt aerosols in the South, asidathd soot particles in the remaining areas
of China. The positive relations shows that thénardhygroscopic nature of aerosols and the
negative relationship reveals that most of the ll@eaosols are commonly hydrophobic,
including dust particles without coating by sulfate other soluble inorganic and black
carbon aerosols, attributed to different anthropageegional aerosols present in the
atmosphere (Bhawar and Devara, 2010; Alam et 4R The hygroscopic nature of
aerosols, therefore, mainly depends upon the péatioixture of different types of particles
as well as on the meteorological parameter (Kaufriaal., 2005). Besides, the cloud
formation is also linked to hydrophilic aerosolsthe presence of a sufficient amount of
WV that will finally lead to changes in aerosol emauptake behavior and indirectly with
the variation in both direct and indirect radiatieecing (Quass et al., 2010).
3.4.2. AOD and cloud optical thickness

The spatial correlation between AOD and COT (Figsl8wed a positive relation in
the South of East China, where the AOD was commfmipd lower; while going towards
the northeast (urban regions of the study domdirgpes on increasing attributed to the
same factors as discussed in the previous secHomwever, the maximum negative

correlation was found between AOD and COT in masas of the study domain,
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especially in the Eastern parts of Zhejiang pro®inthe reason is that the regions are
proximity to the coastal zone and are subject #oas®l land breezes round the year (Guo et
al., 2015), which is in good agreement with theestigations of Tang et al. (2014) and
Kang et al. (2015) reported over East China. Theggested that environmental factors
(such as meteorology (moisture) and radiative fgy@resent in the atmosphere) are also
responsible key players, contributing to negatmeadation. Sheng et al. (2019) and Kumar
et al. (2018) reported that an increasing aerogoiber concentration from anthropogenic
sources is directly linked to variation in atmosphidwumidity profiles that lead to the
seasonal anomaly in the COT on the regional séalether possible reason is the presence
of absorbing aerosols in the atmosphere, whichesaasdecrease in COT; and results in a
negative correlation with AOD over Zhejiang prowen@ang et al., 2015).
3.4.3. AOD and cloud fraction

The spatial correlation between AOD and CF over shaly region for the period
2000-2017 is shown in Fig. 8. The decreasing thetdieen AOD and CF was found when
the AOD value has reached below 0.4 over the BHa&ieejiang. The results are consistent
and agreement with the investigations of Kang e{2015) and Sheng et al. (2019) over
China, Kumar (2014) over India, Adesina et al. @0dver South Africa, and Kumar et al.
(2018) over Kazakhstan. No apparent correlationse Vieund between AOD and CF for
most of the areas in Fujian and Jiangxi regionse hilaximum positive relationship
between AOD and CF was found in the areas of tliheon part of Shandong province

due to more aerosol particles from urban, industied domestic anthropogenic activities. It
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is also important to mention that the substantiatease in CF with AOD in those regions
having high aerosol concentration, which is rek§nhydrophobic, such as biomass burning
and dust aerosols (Kumar, 2014).

However, those areas which are under the influefdew atmospheric pressure have
noticed in more tendencies to create conditionsessary for cloud formation by
accumulating aerosol particles and WV cause caade aerosols tend to form CNN
(Bhawar and Devara, 2010). Hence, the maximum igesibrrelation was noticed between
the parameters AOD and CF in the southern Shandegign. Myhre et al. (2007) and
Kaufman et al. (2005) had identified a strong datien between CF, relative humidity,
and vertical velocity, indicating that the relatship is strongly affected by the
meteorological factors. However, the CF exhibitsemk negative correlation (Fig. 9) with
the potential temperature lapse rate, relative Hiyniand vertical shear of the horizontal
wind in the middle atmosphere. Overall, the sigaifit relationship between AOD and CF
over the entire study domain, except the low cati@h in the north is related to the impact
of meteorological factors interlink with the aerbsmansport, the type of land surface
(albedo), and the complexity of the study domaialéRrishnaiah et al., 2012).

3.4.4. AOD and cloud effective radius

The spatial correlation between CER and AOD degictegatively over a small area
(Fig. 8), and the rest are positively correlatedrdvast China. It is revealed that the positive
correlation occurred between AOD and CER only witenAOD is higher than 0.4, which

is an agreement with the findings of Tang et @01 and Kang et al. (2015) over China
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and Kumar et al. (2018) over Kazakhstan. Kaufmaal.e2005) had reported a reverse
tendency of CER versus AOD over the Atlantic Oceariding, Tang et al. (2014) also
noticed similar negative results for AOD and CERmthe open oceanic regions in the East
part of China. Besides, the maximum positive catreh coefficient was obtained mainly
from the southern Shandong province due to theseeaode aerosols resulting from the
transport of dust particles. However, the aerosoés dominated by fine particles in the
southern part of the study area, with a sufficeembunt of water vapor that would increase
the chance of patrticles hitting and blending, Iegdo the positive correlation between AOD
and CER. Furthermore, the positive correlation eetww AOD and CER (Fig. 9) was
observed mainly associated with different processes as microphysical and dynamical
effects that are likely counteracting the indireffect of aerosols on cloud droplets, which is
defined as the well-known “Twomey effect.” Yuare&t(2008) and Kumar et al. (2018) also
revealed positive correlations between AOD and GERr the study area, which they
interlinked with the effects of soluble organic fides and giant cloud condensation nuclei
(CCN). They added that such particles have thesteryto contribute the most to large AOD
but fewer total cloud droplets and thus lead tdhargCER.
3.4.5. AOD and cloud top temperature

The spatial correlation between AOD and CTT duthmgperiod of study for the entire
study domain is shown in Fig. 8. The CTT showedhaarse tendency concerning the AOD
parameter (negative correlation) in the Northemn pathe study area because the CTT was

found to remain insensitive for the changes in s@roumber concentration. This particular
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behavior of CTT may be possible because the aeramtting on clouds change their
properties like COT, CTT, and cloud cover. Howeviee, CTT showed a positive tendency
with AOD (Fig. 9) in the rest of the study regidikely due to large-scale meteorological
changes, including complex interplay among coneactctivities, dynamics of the PBL,
and cloud parameterizations in those regions (atah., 2008).
3.4.6. AOD and cloud top pressure

The spatial correlation between AOD and CTP over #tudy area during
2000-2017 is shown in Fig. 8f. A negative correlatbetween CTP and AOD was observed
over most parts of the study domain. Previous sgitly Alam et al. (2014) and Kumar et
al. (2018) have reported that, except for someoregiof lower AOD, CTP was mainly
found in reverse pattern with AOD in most of theas, especially in higher cloud altitude
regions. The same is resulted from the suppressicdhe precipitation by an increasing
cloud lifetime and thus, also affecting the cloutbedo and changing the CTP
(Balakrishnaiah et al., 2012). Kaufman et al. (9088d Lee and Penner (2011) have
reported that the CTP decreases with an increa8®0bf because an increasing CER leads
to decreasing CTP. The observation supports tre&tCh increases with an increase in
AOD, while CTP decreases with CF (Fig. 9). Koremle{2008) and Kumar et al. (2018)
suggested that all these vertical winds of theoregre strongly correlated with the changing
CTP and CF. The vertical wind velocity is the mwsportant meteorological parameter
influencing the cloud properties. All these vaonas suggest an association between

meteorology and aerosol in these regions.
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3.5. Linear trendsin aerosol and cloud parameters

To characterize the aerosol and clouds opticalnparers, the inter-annual (Fig. 10 and
Table 4) and seasonal (Table 5) variability on tseges and trend analysis were performed
during the entire study period over East China. AQD (2.03%), CF (0.42%), and CER
(0.06%) exhibited an increasing trend in all seaswamereas, the CER showed a converse in
DJF. The annual and seasonal (DJF, SON) perceimagease in AOD trends (positive
slope) is significant at 99% confidence level, dhd rest of the seasons showed 90%
confidence (Fig. 10 and Table 5). Furthermore naneiasing tendency in AOD is generally
attributed to the continuous increase in populatindustrialization, and source emissions
over the study area. The decrease (increase) in(CERwith AOD is following the classical
theory (Twomey, 1977). However, the COT and CTTrelases with AOD associated with
the fact that the CER increases with a decrea€d i, as illustrated by Myhre et al. (2007),
Gunaseelan et al. (2014) and Alam et al. (2014).

On the other hand, the decrease in annual tre@i'h (-0.59%), COT (-0.06%), and
CTT (-0.07%) is associated with the changes in awetegical condition and source
emissions at the study area. Meanwhile, the WV gahdhe significant test at a 99%
confidence level, decreasing witl®.35% per year, being the highest with 0.03% dudiing
(Tables 4, 5). The above is attributed to hygrogc@henomena, biomass burning, and
change in atmospheric dynamics, and is consistéhttihie observations on trends in CTT

and CTP. Though the trend of variations in thesarpaters is more/less considerable, in
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general rule, the meteorological conditions haw&ulstantial impact on the relationship
between AOD and WV (Balakrishnaiah et al., 2012).

The annual mean distribution of aerosol and cloadameters during 2000-2017
revealed distinct features with mean (xSD) AOD6930.48), COT (15.54+3.21), CF
(0.72+0.05), CER (14.65+1.03 micron), CTT (258.1583K) and CTP (609.84+109.6 hPa)
values, being highest in the year 2000 for COT438.CTP (680 hPa) and CTT (261 K).
The highest values of the CF approach to 0.7&h®year 2012, followed by 2015 (0.75) and
the lowest CF (0.66) in the year 2004. Further,db®iled statistical matrices are given in
Tables 4 and 5, presenting their mean, standardhti®y, slope, trend, and p-value on a
seasonal and annual basis for the entire studggefn increase in AOD over East China
corresponds to a decrease in CTP and an indirestase in COT values, following the
finding of Kang et al. (2015) and Tang et al. (20I#he same will have an impact on the
formation and growth of aerosols and clouds overdtudy region. However, CF increase
with AOD is relatively independent of aerosol cheahicomposition but is relevant to the

particle-size towards the CCN mechanism (Bhawarlewhra, 2010).

5. Summary of conclusions

Atmospheric aerosols are one of the key playefaenting the clouds mechanism and
radiative forcing in multiple ways. However, thde®f aerosols in modifying the clouds
has been one of the most intriguing questions & whorld of clouds and the study of
climate change. The spatial gradient of Aggf3howed an increase from the South to the

Northern parts of the study area. The maximum A@Bbated to large population density,
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enhanced anthropogenic activities, and dominanoearfse dust particles transported from
the North China region. Whereas the low AéggfInay be related to highly NDVI areas with
high precipitation rate, and favorable meteorolaeonditions resulted in the suspension of
particles. The higher concentration of aerosolsummer is due to the higher amount of
water vapor, higher temperature, and relative hugpid/hich are helpful to gas-to-particle
conversion mechanism. Furthermore, there are signif increasing trends in AOD values
over Shandong, due to increasing urban activiitesl use of fossil fuels and biomass
burning emissions

The spatial correlations of AOD with cloud paramgterovides a better understanding
of aerosol-cloud properties relation based on thalysis of positive and negative
correlation values over the study domain. In thesent study, the spatial correlation
between AOD and WV was found negative over mostsaire Anhui and Jiangsu, cause the
water-absorbing ability of different types of aeaissis unusual. We also found that the
correlation between AOD and CER is positive overstmaf the study sites, due to the
coarse-mode aerosols resulting from dust and bgrnpanticles over the north of the study
domain. Another reason is that sufficient waterorapould increase the chance of particles
hitting and blending, leading to a positive cortiela between AOD and CER. And then, the
growth of CER facilitates the formation of CNN, di#ag to a positive relationship between
AOD and CF over most of the study area. The spatiaklations between AOD and CTP,

CTT are similar; in general, they have noticed gatige correlation. The reason is that an
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increasing CER leads to decreasing CTP, and CT€ feemd to remain insensitive for the
changes in aerosol number concentration.

The linear trend analysis conducted over the anmeahn values of different aerosol and
cloud parameters showed an increasing trend in ACHR, and CF and decreasing patterns
of WV, CF, CTT, and CTP. Over the northern regi¢8handong province), the positive
correlation between CER, AOD, and CTT was foundrfarst of the years attributed to
meteorological changes; whereas, the negativeior$dtip is evident over the coastal
regions.

Appendix A. Supplementary data
Supplementary data to this article can be found inenl at

http://dx.doi.org/10.1016/].atmoSsenviron.xXxxx.Xxxxx
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Table 1. Geographical information about the selected regafrstudy in East China.

, _ , _ Altitude _ Atmospheric
Region/Capital _ Latitude Longitude Population Area
_ Province ASL . 5 pressure
city (N) (B) (~million)  (km")
(m) (KPa)
Jinan (JN) Shandong  36°40 116°59 51 6.3 8,177  99.85
Hefei (HF) Anhui 31°52 117°17 30 7.3 11,408 100.09
Nanjing (NJ) Jiangsu 32°03 118°46 9 6.6 6,501 100.4
_ Shanghai
Shanghai (SH) city 31°14 121°29 5 14.5 6,340 100.53
5 Hangzhou (HZ)  Zhejiang 30°16 120°10 42 7.4 16,596 100.05
6 Nanchang (NC)  Jiangxi 28°20 115°583 47 5.2 7,372 99.91
7 Fuzhou (FZ) Fujian 26°05 119°18 84 6.9 12,153 99.64
8 Xiamen (XM) Fujian 24°27 118°06 63 2.2 1569 99.91

ASL-Above Sea Level. The population provided iscading to the National Bureau of Statistics of Beople's
Republic of China by the end of 2016.



Table2. Mean variations of AOE}, (+ SD) over the selected cities in East China.

Month/ Jinan Hefei Nanjing Shanghai Hangzhou Nanchang Fuzhou Xiamen

Season (IN) (HF) (NJ) (SH) (HZ2) (NC) (F2) (XM)

Jan 0.80+0.31 0.69+0.18 0.69+0.16  0.64+0.14  0.4630. 0.72+0.28 0.22+0.09  0.29+0.08
Feb 0.93+0.28 0.77+0.21 0.75+0.20 0.66+0.19  0.44#0. 0.67+0.29  0.23+0.07 0.30+0.11
Mar 0.78+0.12 0.69+0.15 0.69+0.13 0.60+0.10 0.4880. 0.56+0.10 0.34+0.10 0.37+0.14
Apr 0.66+0.09 0.56+0.09 0.57+0.07 0.55+0.12  0.4620. 0.59+0.16 0.36+0.11  0.37+0.17
May 0.58+0.19 0.62+0.14 0.63+0.11  0.59+0.14 0.4530. 0.53+0.12 0.28+0.21 0.34%0.12
Jun 1.25+0.22 1.20+0.41 1.24+0.32 1.01+0.43 0.78%0. 0.71+0.41  0.2840.11  0.26+0.19
Jul 1.29+0.38 0.62+0.31 0.75+0.27 0.55+0.26  0.3830. 0.38+0.19 0.20+0.07  0.25%0.12
Aug 0.94+0.31 0.63+0.27 0.70+0.28 0.57+0.35 0.4580. 0.54+0.26 0.20+0.06  0.27+0.33
Sep 0.7440.22  0.50+0.18 0.55+0.21 0.46+0.20 0.52#0. 0.52+0.17 0.23+0.06  0.32+0.24
Oct 0.82+0.22 0.63+0.15 0.64+0.15 0.48+0.11 0.4780. 0.55+0.19 0.25+0.09  0.28+0.07
Nov 0.64+0.14 0.55+0.13 0.59+0.08 0.55+0.12  0.3930. 0.53+0.19 0.22+0.11  0.23%+0.05
Dec 0.60+0.16 0.53+0.16 0.57+0.19 0.52+0.14  0.4020. 0.51+0.13  0.19+0.12  0.22+0.09
Winter 0.78+0.30 0.66+0.21 0.67+0.20 0.61+0.17 @OIB6  0.63+0.26  0.21+0.10 0.27+0.10
Spring 0.67+0.16 0.62+0.14 0.63+0.12 0.58+0.12 60462 0.56+0.13 0.33+0.16 0.32+0.16
Summer 1.16+0.35 0.82+0.44 0.90+0.39 0.71+0.42 M®b 0.54+0.33 0.22+0.09  0.20+0.23
Autumn 0.73+0.21 0.56+0.17 0.59+0.16 0.50+0.16 HUMH9 0.53+0.19 0.24+0.09 0.27+0.15
Annual 0.84+0.33 0.67+0.28 0.70+0.26  0.60+0.26  #0¥9 0.57+0.24 0.25+0.12  0.27+0.17




Table 3. Temporal changes in aerosol and cloud properties@@2006-2017 over East

China.

Month/ AOD wv COoT CF CER CTT CTP

Season  (unit less) (cm) (unit less) (unit less) (um) (°K) (hPa)

Jan 0.72+0.48 4.72+0.29 18.08+3.43 0.77+0.20 13- 257.60+3.96  695.37+132.25
Feb 0.76+0.49 1.20+0.36 18.70+3.06 0.78+0.20 1205 257.04+4.28  667.14+130.49
Mar 0.72+0.33 1.39+0.39 16.25+1.72 0.72+0.22 142138 256.32+4.88  616.92+141.58
Apr 0.64+0.33 1.94+0.59 16.00+1.75 0.73+0.19 142366 253.73+4.75  555.75+139.57
May 0.59+0.36 2.76+0.75 15.83+1.37 0.74+0.19 141995 253.4244.49  517.26+130.73
Jun 1.08+0.60 3.74+0.85 14.93+0.83 0.79+0.15 15758 253.96+4.55  467.22+113.81
Jul 0.75+0.63 4.79+0.64 12.16+0.89 0.71+0.18 16116 257.11+5.52  490.83+131.46
Aug 0.64+0.50 4.72+0.67 12.61+1.53 0.704£0.18 16118% 260.28+4.97  553.37+129.25
Sep 0.58+0.47 3.65+0.77 14.20+1.20 0.67+0.18 15178 262.67+4.50  639.07+130.61
Oct 0.64+0.38 2.38+0.61 13.03+2.80 0.63+0.21 142733 263.39+4.32  691.91+137.26
Nov 0.55+0.39 1.57+0.47 17.11+3.88 0.65+0.24 14224 262.73+4.35  702.42+139.79
Dec 0.58+0.47 1.13+0.29 17.57+3.74 0.72+0.22 132801 259.54+3.90  720.76+135.46
Winter 0.69+0.49 2.35+0.32 18.12+3.45 0.75+0.21 4182.16 258.06+4.18  694.42+134.47
Spring 0.65+0.34 2.03+0.82 16.03+£1.63 0.73+0.20  50#2.08 254.49+4.88  563.31+143.28
Summer 0.82+0.61 4.42+0.86 13.23+1.66 0.73+0.17 16.02+1.54257.12+5.65  503.81+130.40
Autumn  0.60+0.42 2.53+1.06 14.78+3.32 0.65+0.21 7142.12 262.93+4.40 677.80+138.64
Annual 0.69+0.48 2.83+1.44 15.54+3.21 0.72+0.05 64941.03 258.15+3.58  609.84+109.60




Table 4. The detailed statistics obtained from the linezgression fitting for different
aerosol and cloud parameters observed over thee esttidy domain from 2000-2017. The
slope corresponds to the linear annual trend wighsign indicates negative or positive.
Whereas the p-values witld.05 and 0.05<p<0.1 represent data significan®% &nd 90%
confidence levels indicated with bold and italespectively. The rest is the least significant.

Parameter  Unit Mean (zSD)  Slope  Offset p-value erhannual Percentage

variability = change in
trend

AOD Unit less 0.69+0.48 0.014 -26.269 0.003 0.695 2.03

wv cm 2.83+1.44 -0.010 22.936 0.046 0.508 -0.35

COoT Unitless  15.54+3.21 -0.009 18.364 0.025 0.206 -0.06

CF Unit less 0.72+0.05 0.003 -4.902 0.011 0.069 042

CER micron 14.65+1.03 0.009 -3.626 0.483 0.070 0.06

CTT K 258.15+3.58 -0.174 607.756 0.012 0.014 -0.07

CTP hPa 609.84+109.6 -3.615 7868.794 0.002 0.180 -0.59

Table 5. Seasonal trends (ye8robserved between AOD and cloud parameters during
2000-2017 over East China. The p-values withO5 and 0.05<p<0.1 represent data
significant at 99% and 90% confidence levels ingidavith bold and italic, respectively;
whereas, the rest are least significant.

Parameter DJF MAM JIA SON

Trend p-value Trend p-value Trend  p-value Trend ale
AOD 0.020 0.003 0.003 0.298 0.009 0.365 0.011 0.027
wv -0.011 0.003 -0.020 156e4 -0.036 5.6%4 -0.017 0.101
CoT -0.049 0.691 0.038 0.428 0.004 0.852 0.021 .83
CF 0.001 0.653 0.002 0.260 0.002 0.454 0.004 0.127
CER 0.052 0.043 -0.023 0.338 -0.040 0.008 -0.006 0.772
CTT -0.073 0.323 -0.043 0.653 -0.005 0.937 -0.0980.925

CTP -1.234 0.381 -1.548 0.273 0.022 0.987 -2.7720.053
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Fig. 1. (a) Theterrain map representing elevation (in m) of East Chinausing the DEM data
The province names were written inside the panel and the location of stations (see Table 1)
considered in this study are pointed with astar symbol. Spatial changes of (b) NDVI and (c)
precipitation rate (mm/h) retrieved from the MODIS and TRMM satellites, respectively
observed over East China.
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Fig. 2. The 18-year (2000-2017) averaged spatial variations of (a) AODssp and
(b) AE470-660 Observed over East China
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Fig. 3. Spatia distributions of seasonal mean changesin (a-d) AODssp and (e-h) AE470-660
retrieved from the MODIS for the study period over the study domain. The panels
corresponds to different seasons with (a, €) winter (DJF), (b, f) spring (MAM), (c, Q)
summer (JJA), and (d, h) autumn (SON) seasons. The readers are advised to follow the
similar seasonal sequence in the rest of figures.
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tendenciesin (a, ¢) AODssp and (b, d) AE470-660 Over East China.
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Fig. 6. Spatia variations of annual mean WV and cloud parameters retrieved from the
MODIS Terra satellite during 2000-2017. The panels from left to right represent (top
panels) WV (in cm) and COT (unit less), (middle panels) CF (unit less) and CER (in
micron), and (bottom panels) CTT (in K) and CTP (in hPa).
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Fig. 9. Density scatter diagrams to examine the relationship between AODssp and WV,
and cloud parameters from all data points during the study period over East China. The
number of samples used in the analysis is shown in al the panels. The corresponding
statistics obtained from the regression analysis are given in Table S1 of SM.
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Resear ch Highlights

» Aerosol and cloud properties exhibited substantial spatial and temporal variabilitiesin the
recent years over East China.

» Significant increasing (decreasing) trend in AOD (CTT and CTP) was found over the
Shandong Province in the North of the study domain.

» Moderate to high positive correlations were noticed between AOD and CER attributed to
the dynamics played by the meteorol ogy.
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