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Abstract
It remains a challenge for climate models to correctly capture the relationship between precipitation and ENSO. This study
examines the linkage between the simulated precipitation climatology and ENSO-related precipitation anomaly during boreal
winter based on the multi-model ensemble from the AtmosphericModel Intercomparison Project Phase 5 (AMIP5) and perturbed
parameter ensemble (PPE) with the Beijing Climate Center (BCC) atmospheric model. The AMIP5 models have large biases in
simulating the tropical precipitation anomaly during El Niño, such as the shifts of the Inter-Tropical Convergence Zone (ITCZ)
and South Pacific Convergence Zone (SPCZ). The inter-model differences show that the precipitation change in response to sea
surface temperature (SST) change increases with enhanced precipitation climatology. The ENSO-related precipitation anomaly
can also be related to the spatial distribution of the mean-state precipitation. The simulated ITCZ/SPCZ displacements are
significantly correlated with the spatial precipitation-SST relationship in the mean state. Models with stronger mean-state
precipitation-SST relationship also produce stronger SPCZ/ITCZ displacements. The mean-state tropical precipitation also has
strong impacts on the ENSO-related precipitation anomalies over East Asia. In the BCC PPE, the connection between the mean-
state precipitation and ENSO-related precipitation anomaly is overall consistent with that in AMIP5. Parameters associated with
the low-cloud and deep convection processes are the most influential ones for the precipitation simulations in BCC. Compared
with the version in AMIP5, the new BCC model can better simulate the precipitation climatology and the relationship between
ENSO and precipitation over southern China. These results have important implications for model development andmodel-based
climate predictions.

1 Introduction

General circulation models (GCMs) have been widely applied
in climate simulations, predictions, and projections. Although

GCMs are able to capture salient features in the climate sys-
tem, different models often produce large spread in the pro-
jections of future climate at both regional and global scales
(Cubasch et al. 2001; Jackson et al. 2008; Brown et al. 2012;
Lee and Wang 2014; Lintner et al. 2016). The inter-model
diversities are largely contributed by uncertainties in the rep-
resentations of model dynamical cores, physical parameteri-
zations, and tunable model parameters (Gilmore et al. 2004;
Hou et al. 2012; Yang et al. 2013, 2015a; Zhao et al. 2013;
Guo et al. 2014, 2015; Boyle et al. 2015; Qian et al. 2015;
Posselt et al. 2016). Ensemble strategy by using multiple
models or perturbed parameter values has been effectively
applied to assess the model uncertainties of different sources
(Giorgi and Mearns 2002; Lopez et al. 2006; Murphy et al.
2014; Collins et al. 2011; Hawkins and Sutton 2009; Yang
et al. 2012; Yan et al. 2015).

Our confidence in the future climate projections highly
relies on climate models’ ability in reproducing current
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climate (Grose et al. 2014; Li et al. 2017). Numerous efforts
have been made by different individual institutes to improve
the simulation of the mean-state climate (Watanabe et al.
2010; Hurrell et al. 2013; Wu et al. 2010; Hourdin et al.
2017). However, systematic limitations still exist in the
current-generation GCMs, including those participating the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
(Taylor et al. 2012). The majority of the CMIP5 models share
many common biases, such as the double Inter-Tropical
Convergence Zones (ITCZs), which are usually accompanied
by a near-zonal orientation of the South Pacific Convergence
Zone (SPCZ) (Brown et al. 2013; Li and Xie 2014). Most
models still have difficulties in realistically simulating the
East Asian summer monsoon rain belt (Huang et al. 2013;
Sperber et al. 2013; Song and Zhou 2014b). In addition to
the mean state, it is also important to validate the simulated
climate variability (Vincent et al. 2011; Song and Zhou 2014a;
Yang et al. 2015b), which is a key element for climate predic-
tion and projection.

The El Niño–Southern Oscillation (ENSO) is the most sig-
nificant interannual mode in the tropics and has pronounced
impacts on the global climate system (Neelin et al. 1998;
Wallace et al. 1998; McPhaden et al. 2006; Clarke 2008). Its
sea surface temperature (SST) variations modulate the Walker
circulation and tropical convection (Lindzen and Nigam 1987;
Chung and Power 2015), which can further affect the climate
over extratropical regions (Ropelewski and Halpert 1987; Wu
and Wang 2002; Wang and Zhang 2002; Wang et al. 2000,
2008; Xie et al. 2009; He and Wang 2013; Zhou et al. 2014;
Zhang et al. 2016; Yang et al. 2018). Many previous studies
have investigated the atmospheric responses to ENSO simu-
lated by different GCMs (Choi et al. 2015; Gong et al. 2015;
Murphy et al. 2015). Compared with CMIP3, the CMIP5
coupled GCMs (CGCMs) can generally better reproduce the
precipitation changes during El Niño, such as the displace-
ments of precipitation over ITCZ and SPCZ (Brown et al.
2013; Bellenger et al. 2014; Kim et al. 2014; Ham and Kug
2015). However, the CMIP5 models still exhibit biases evi-
dent in the ENSO-related precipitation. For instance, the area
with positive precipitation anomaly extends further west by
about 20° relative to that in observation during El Niño (Kug
et al. 2012; Zhang and Sun 2014; Ham and Kug 2015). In
some CMIP5 models, the year-to-year meridional shift of
SPCZ is remarkably underestimated (Brown et al. 2013).
Such biases might affect the CGCM-based seasonal predic-
tions (Yang et al. 2014; Li et al. 2016; Lu et al. 2017).

The climatological mean state can modulate the simulated
climate variability to a large degree (e.g., Sperber and Palmer
1996; Kang et al. 2002; Zhang et al. 2012; Annamalai and Liu
2005;Watanabe et al. 2010; Brown et al. 2014; Ham and Kug
2014; Li et al. 2017). Using the Beijing Climate Center (BCC)
atmospheric GCM (AGCM), Yang et al. (2015b) revealed a
strong connection between the simulated mean state and

interannual variability of the Asian summer monsoon
precipitation when key physical parameters were perturbed.
Ham and Kug (2015) showed, that in the CMIP5 CGCMs, the
ENSO-related precipitation simulation is related to the simu-
lated mean state, with wetter climatology over the central
Pacific leading to a west shift of the positive precipitation
anomaly. Previous studies also revealed the strong effects of
the mean bias of precipitation on future projections (Li et al.
2016a, b).

Previous studies have evaluated the ENSO-related precip-
itation simulations in both AGCMs and CGCMs (e.g., Zhang
et al. 2012; Yang et al. 2015b; Ham and Kug 2015). However,
the reasons for the bias in precipitation anomaly and its rela-
tionship with the simulated climatology are still unclear.
Compared with AGCMs, the precipitation biases in CGCMs
are strongly coupled with those in SST (Zhang and Sun 2014;
Ham and Kug 2015; Dai and Arkin 2017), which introduces
additional difficulties to understand those biases. In this study,
simulations of 18 AGCMs from the Atmospheric Model
Intercomparison Project Phase 5 (AMIP5; from CMIP5) are
used to investigate whether the biases of the ENSO-related
precipitation anomaly are related to the biases in the mean-
state precipitation. Moreover, we apply the perturbed param-
eter ensemble (PPE) with the BCC AGCM to quantify the
sensitivity of precipitation climatology and anomaly to differ-
ent parameters associated with various physical processes,
which can provide insights for further model development.

The model and observational datasets and applied method-
ology are described in Section 2. In Section 3, we use the
multi-model ensemble from AMIP5 and PPE using the BCC
AGCM to examine the connection between the simulated pre-
cipitation climatology and ENSO-related precipitation anom-
aly during boreal winter when El Niño is at its peak phase.
Results show that the simulated precipitation anomaly can be
related to the mean-state precipitation in terms of both mag-
nitude and spatial characteristics. A summary is given in
Section 4 along with discussions.

2 Models and datasets

2.1 Observations

We use the monthly precipitation data from two satellite pro-
duces, i.e., the Global Precipitation Climatology Project
(GPCP) (Adler et al. 2003) and Climate Prediction Center
Merged Analysis of Precipitation (CMAP) (Xie and Arkin
1997), to evaluate the simulated precipitation climatology
and ENSO-related precipitation anomaly. The two datasets
have a grid spacing of 2.5°. The datasets can be freely
downloaded from https://www.esrl.noaa.gov/psd/data/
gridded/data.gpcp.html. Monthly SST fields are derived
from the Hadley Centre Sea Ice and Sea Surface
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Temperature data set (HadiSST) version 1.1 at 1° resolution
(available at: https://www.metoffice.gov.uk/hadobs/hadisst/).

2.2 AMIP5 models

The simulated precipitation data from 18 AMIP5 models are
applied in this study (https://esgf-node.llnl.gov/projects/esgf-
llnl/; Taylor et al. 2012). Precipitation climatology and ENSO-
related precipitation anomaly during boreal winter are calcu-
lated based on the results of 1980–2004 from the first member
of each model. Detailed information of the used AMIP5
models is given in Table 1. For each year, boreal winter means
December of that year and January–February of the next year
(i.e., December–January–February, DJF). The Niño index is
defined as the 3-month running mean of SSTanomalies in the
Niño 3.4 region (i.e., 5°N–5°S, 120°–170°W), (http://origin.
cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php). Years with the Niño index above + 0.5 °C in
DJF are identified as El Niño years. During the analysis
period, there are seven El Niño years, i.e., 1982, 1987, 1991,
1994, 1997, 2002, and 2004. Here, the ENSO-related anomaly
(e.g., in precipitation or SST) means the average of anomalies
in all the El Niño years within the analyses period.

2.3 BCC PPE experiments

In addition to the AMIP5 results, we also examine the con-
nection between the simulated precipitation climatology and

precipitation anomaly in the PPE using the atmospheric model
of BCC-CSM1.1 m (Wu et al. 2010), which is among the
AMIP5 models applied in this study (Table 1). We explore
the sensitivity of precipitation to eight physical parameters
associated with the cloud and precipitation processes
(Table 2). A hundred parameter sets were generated by the
Latin hypercube sampling method (McKay et al. 1979; Stein
1987), and each set was employed to conduct the BCC
AGCM experiment from January 1, 2000, to December 31,
2008, with the first half year discarded as spin-up. Thus, a total
of 100 experiments covering 8 boreal winters (i.e., 2000-
2007) are available for the sensitivity analysis, with three win-
ters in El Niño years (i.e., 2002, 2004, and 2006). For more
details about the model configuration and parameter sampling,
please refer to Yang et al. (2015b).

3 Results

3.1 Precipitation simulation in AMIP5

3.1.1 Spatial patterns of precipitation climatology
and anomaly

The AMIP5 models with prescribed SST can generally cap-
ture the observed precipitation pattern in DJF in terms of both
climatology and ENSO-related anomaly (Fig. 1). High SSTs
(i.e., above 29 °C) in the mean state (Fig. 1a) are mainly

Table 1 Model names and host institutions of AMIP5 models used in this study

Model Institute

ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation and Bureau of Meteorology, Australia

CCSM4 National Center for Atmospheric Research, USA

CESM1-CAM5 National Center for Atmospheric Research, USA

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy

CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique,
France

CSIRO-Mk3.6 Commonwealth Scientific and Industrial Research Organisation, Australia

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University, China

FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, China

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA

GISS-E2-R NASA Goddard Institute for Space Studies, U

HadGEM2-A Met Office Hadley Centre, UK

INM-CM4 Institute for Numerical Mathematics, Russia

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology, Japan

MPI-ESM-LR Max Planck Institute for Meteorology, Germany

MPI-ESM-MR Max Planck Institute for Meteorology, Germany

BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration, China

BCC_CSM1.1 m Beijing Climate Center, China Meteorological Administration, China
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Table 2 Descriptions and investigated ranges of parameters in BCC-CSM1.1 m AGCM

Parameter Description Default Range

Qic Autoconversion size threshold for ice (m) 4 × 10−4 [1 × 10−4, 5 × 10−4]

Ke_strat Evaporation efficiency for stratiform precipitation [(kg m−2 s−1)−1/2 s−1] 3 × 10−6 [1 × 10−6, 20 × 10−6]

RH_low Threshold RH for low stable clouds (−) 0.9 [0.8, 0.99]

RH_high Threshold RH for high stable clouds (−) 0.65 [0.65, 0.85]

C0_shal Precipitation efficiency for shallow convection (m−1) 0.8 × 10−4 [0.5 × 10−4, 3 × 10−4]

C0_deep Precipitation efficiency for deep convection (m−1) 3 × 10−3 [1 × 10−3, 6 × 10−3]

Ke_conv Evaporation efficiency for deep convective precipitation [(kg m−2 s−1) −1/2 s−1] 1 × 10−6 [0.5 × 10−6, 10 × 10−6]

β Downdraft coefficient for deep convection (−) 2 [1, 3]

Fig. 1 Spatial distributions of a, c climatological mean states and b, d
ENSO-related anomalies (defined in Section 2.2) for a, b SST and c, d
precipi ta t ion dur ing DJF (1980–2004) from observat ion

(HadISST&CMAP). Climatological mean precipitation and ENSO-
related precipitation anomalies from ensemble mean of the 18 AMIP5
models are shown in e and f, respectively
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located over the equatorial western Pacific (EWP) and oceans
around the Maritime Continent. Areas with warm surface ex-
tend southeastward to the southern Pacific. The precipitation
pattern in observation (Fig. 1c) is consistent with the SST
pattern, with strong rainfall over ITCZ, SPCZ, and the tropical
Indian Ocean. The SST distribution during El Niño (Fig. 1b)
features above-normal values over the equatorial central and
eastern Pacific (ECP and EEP, respectively) and below-
normal values over EWP and the mid-latitude Pacific.
Increased SST is also seen over the tropical Indian Ocean.
Correspondingly, precipitation is increased over ECP and
EEP but decreased to the west during El Niño (Fig. 1d). The
precipitation response indicates a shift of strong rainfall center
from west to east in ITCZ (e.g., Ham and Kug 2015). The
SPCZ rainfall exhibits a northeastward movement during El
Niño (e.g., Vincent et al. 2011). Although the AMIP5
ensemble-mean results can generally reproduce the precipita-
tion climatology and anomaly (Fig. 1e, f), evident biases can
still be seen, such as that in the mean-state SPCZ distribution
(Fig. 1c vs. Fig. 1e). The simulated precipitation responses
during El Niño are too weak over the Maritime Continent
and tropical Indian Ocean (Fig. 1d vs. Fig. 1f).

We further compare the simulated precipitation anomalies
in each of the AMIP5models against observation (Fig. 2). The
different models share some common biases although their
results are different in many aspects. Nearly all the models
produce positive biases of precipitation anomalies over the
Maritime Continent. Large errors exist in SPCZ but with dif-
ferent individual models having their own bias patterns, indi-
cating a large inter-model spread in the representation of the
SPCZ shift during El Niño.

3.1.2 Linkage between precipitation climatology
and anomaly

Previous studies have revealed that the climatological mean
state can modulate the simulated climate variability to a large
degree (e.g., Sperber and Palmer 1996; Kang et al. 2002;
Zhang et al. 2012; Brown et al. 2014; Ham and Kug 2014).
Figure 3 shows the spatial pattern of the relationship (at each
grid point) between the simulated precipitation anomaly and
precipitation climatology (i.e. regression coefficient between
them) among different AMIP5 models. Apparently, except for
over the Maritime Continent, the regression pattern largely
resembles that of SST anomaly (Fig. 1b). Thus, the positive
(negative) precipitation anomaly in response to positive
(negative) SSTanomaly increases with enhanced precipitation
climatology, suggesting that the latter is contributed mostly by
the increased rainfall in wet years, which amplifies the dis-
crepancy among different years.

The ENSO-related precipitation anomaly could also be, at
least in part, related to the spatial distribution of the mean-state
precipitation because both of them can be explained by the

changes in SST. As shown in Fig. 1, the shifts in SPCZ and
ITCZ during El Niño closely follow the movement of high
SSTs. Here, we use the difference of precipitation anomalies
between region B and region A (representing the eastern and
western SPCZ, respectively, Fig. 1d) to define the extent of the
SPCZ displacement. The spatial precipitation-SST relation-
ship in the mean state is loosely calculated as the regression
of precipitation against SST over a limited region covering
SPCZ (i.e., 30°S–20°N and 120°E–140°W with SST above
27 °C). The SPCZ displacement and mean-state precipitation-
SST relationship in different models are compared (Fig. 4(a)).
As shown, the two aspects are strongly interrelated among
different models (colored markers), with a correlation coeffi-
cient of 0.86 that is statistically significant at 99% confidence
level. The biases in the mean-state precipitation-SST relation-
ship well correspond to the biases in the SPCZ displacement,
despite the uncertainty in the two observational datasets (black
markers). For example, all the models with an underestimated
mean-state relationship (markers in the left-bottom corner in
Fig. 4(a)) produce a too weak SPCZ displacement, which can
also be seen in Fig. 2. On the contrary, the two models (BCC-
CSM1.1 and FGOALS-g2) with an overestimated mean-state
relationship produce a too strong shift of SPCZ. Those models
with relatively small biases in the mean-state relationship
show a comparable extent of the SPCZ displacement with that
in observation.

Similar analyses can be applied for the movement of ITCZ
(Fig. 4(b), (c)). Here, we use the difference of precipitation
anomalies between region D (F) and region C (E) to represent
the eastward displacement of ITCZ (equatorward displace-
ment of ITCZ over the eastern Pacific). Note that the spatial
precipitation-SST relationships in the mean state are based on
different regions (see the caption of Fig. 4) from that for the
SPCZ analysis. Both the eastward and equatorward displace-
ments of ITCZ are highly related to the mean-state precipita-
tion-SST relationship. Manymodels overestimate the equator-
ward displacement of ITCZ (Fig. 4(c)), corresponding to the
overestimated mean-state relationship. Regarding the east-
ward displacement of ITCZ, there exists a large uncertainty
in the observations (Fig. 4(b)). However, this does not affect
the inter-model relationship; the correlation between the
mean-state relationship and the eastward displacement of
ITCZ is statistically significant at 99% confidence level.
Similar results can be found when focusing on the relationship
between precipitation anomaly and precipitation climatology
for each individual El Niño year (not shown).

3.1.3 Precipitation anomalies over East Asia and North
America

As revealed by previous studies (Wang et al. 2000; Yang et al.
2018; Zhou et al. 2014), ENSO has a significant impact on the
precipitation over East Asia and North America. The 18
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models are classified into three groups (each group with 6
members) based on their skills in simulating the mean-state

spatial pattern of precipitation over the tropical Pacific, and
the spatial patterns of ENSO-related precipitation anomalies

Fig. 3 Spatial distribution of
ENSO-related precipitation
anomaly regressed against pre-
cipitation climatology across
model members in AMIP5. Areas
where the relationship is statisti-
cally significant at 95% (90%)
confidence level are masked by
crosses (dots)

Fig. 2 Spatial distributions of simulated biases (relative to CMAP precipitation) of ENSO-related precipitation anomalies during DJF (1980–2004) in
each of the AMIP5 models and their ensemble mean

B. Yang et al.



averaged in the first (i.e., low-skill) and third (i.e., high-skill)
groups are given in Fig. 5. Compared with observation (Fig.
1d), the low-skill models underestimate and overestimate the
precipitation anomalies over land regions in East Asia and
North America, respectively (Fig. 5(a)). In contrast, the
models with improved mean-state precipitation agree more
with observation in terms of the precipitation anomalies over
these land regions (Fig. 5(b)). Further analyses indicate that
the model skills in simulating the interannual variation of win-
tertime precipitation over southern China (i.e., temporal cor-
relation coefficient between simulation and observation) are
positively correlated (statistically significant at 95% confi-
dence level) with the model skills in simulating the mean-
state tropical precipitation (Fig. 6). Note that the East Asian
precipitation during winter can be strongly modulated by the
simulated subtropical jet stream (Huang et al. 2019; Seager
et al. 2005; Yang et al. 2019), which might also be sensitive to
the precipitation simulation in the tropics.

3.2 Precipitation climatology and anomaly in BCC PPE

3.2.1 Parameter impacts on precipitation simulation

The precipitation differences among different AMIP5 mem-
bers can be attributed to their discrepancies in dynamical
cores, resolutions, and physical parameterizations. In addition,
parameter uncertainty in each individual model may also be
important for the simulated precipitation climatology and
anomaly (Yang et al. 2015b). In this section, we examine
whether the above relationship between the simulated precip-
itation climatology and anomaly still exists in the PPE simu-
lations using the BCC AGCM (i.e. atmospheric component of
BCC-CSM1.1 m), and which processes are important for such
relationship.

Compared with during 1980–2004 (Fig. 1b), the ENSO-
related SST pattern during 2000–2007 is more like a Centre-
Pacific El Niño type (Fig. 7a). The precipitation anomaly and

Fig. 4 Scatter plots for spatial precipitation-SST relationship in the mean
state (x-axis) vs. ENSO-related displacement (y-axis) in (a) SPCZ and (b,
c) ITCZ (b: eastward displacement; c: equatorward displacement) during
DJF (1980-2004) in observations (black markers) and different AMIP5
models (colored markers). The mean-state spatial precipitation-SST rela-
tionship is represented by the regression of precipitation against SST (mm
day−1 °C−1) over oceans with SST above 27 °C in 30°S–20°N and

120°E–140°W in (a), above 25 °C in 30°S–20°N and 50°E–100°W in
(b), and above 20 °C in 30°S–20°N and 130°W–80°W in (c). The dis-
placements in precipitation (mm day−1) in (a), (b), and (c) are defined as
the difference in precipitation anomalies between regions B and A, D and
C, and F and E (see Fig. 1d), respectively. In each panel, the correlation
coefficient between the two variables is given at the top-right corner
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mean-state precipitation magnitude are significantly positive-
ly correlated over ECP (Fig. 7b), indicating that over areas
with positive SST anomaly, the increased precipitation

anomaly corresponds to enhanced precipitation climatology.
The precipitation climatology and precipitation anomaly are
negatively correlated over NWP, SPCZ, and higher-latitude
regions in the Pacific, corresponding to the negative SST
anomaly there. These results suggest that the precipitation
changes due to parameter tuning in BCC are more evident in
wet years than in dry years, which is similar to the AMIP5
results (Fig. 3).

However, different from that in AMIP5, the correlation
between precipitation anomaly and the spatial precipitation-
SST relationship in the mean state is weak in the BCC PPE
(Fig. 8 vs. Fig. 4). The values of each parameter are used to
split the 100 PPE members into five groups, and the differ-
ences between the fifth (i.e., high-value of parameter) and first
(low-value of parameter) groups represent the main effects of
that parameter. The most influential parameters for precipita-
tion simulations are RH_low, C0_deep, and Ke_conv, which
are associated with the formation of low-level cloud and
cloud-rain conversion and rain evaporation in deep convec-
tion, respectively. Larger values of RH_low (red markers in
Fig. 8(a)) or Ke_conv (green markers in Fig. 8(a)) lead to
stronger mean-state precipitation-SST relationship and inten-
sified SPCZ displacement. Differently, larger values of
C0_deep (blue markers) cause stronger mean-state

Fig. 5 Spatial distributions of
ENSO-related precipitation
anomalies from ensemble mean
of the six models with the (a)
lowest and (b) highest skills in
simulating the mean-state spatial
pattern of precipitation over the
tropical Pacific (30°S–20°N and
135°E–105°W)

Fig. 6 Scatter plots for model skills in simulating the mean-state spatial
pattern of precipitation over the tropical Pacific (x-axis) vs. model skills in
simulating the interannual variation of precipitation over southern China
(21°N–30°N and 110°E–123°W) during DJF (1980–2004). The correla-
tion coefficient between the two skills is given at the top-right corner
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Fig. 7 a ENSO-related SST
anomalies from 2000 to 2007. b
Same as Fig. 3 but for the results
from 2000 to 2007 in the BCC
PPE

Fig. 8 Same as Fig. 4 but for the results using BCC PPE from 2000 to 2007. The triangle markers in each panel represent the averages from the
experiments with low (L) and high (H) values of three influential parameters indicated in the bottom-right corner
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relationship but slightly weakened SPCZ displacement. These
contrasting effects partly explain the weak correlation be-
tween the precipitation anomaly and mean-state relationship
when simultaneously perturbing multiple parameters. The
correlation between the precipitation anomaly and mean-
state relationship is also weak for the movement of ITCZ
(Fig. 8(b), (c)).

To understand the “conflicting” results in AMIP5 and in
the BCC PPE, we further explore the spatial characteristics of
the impacts of the above three parameters on precipitation
(Fig. 9). We find that increasing the value of RH_low leads
to decreases in the mean-state precipitation over most areas
(Fig. 9(a)) except for over SPCZ. This is because larger
RH_low suppresses the stratiform process (Qian et al. 2015)
but might enhance deep convection in particular regions.
Larger values of C0_deep and Ke_conv indicate stronger rain
generation and evaporation, respectively, which should have
opposite effects on the precipitation magnitude. However, the
mean-state precipitation exhibits similar responses to these
two parameters (Fig. 9(d), (g)). This is likely because their
impacts are respectively more important over wet and dry
regions (Yang et al. 2015a), leading to similar teleconnection
patterns in the tropics (Yang et al. 2015b). Larger RH_low or
Ke_conv results in increased precipitation anomaly over the
eastern SPCZ (i.e., intensified SPCZ displacement; Fig. 9(b),
(h)), corresponding to the intensified SPCZ and stronger spa-
tial precipitation-SST relationship in the mean state. The im-
pact ofC0_deep on precipitation anomaly is more complicated

(Fig. 9(e)). When focusing on each individual parameter, the
relationships between the precipitation climatology and pre-
cipitation anomaly (right panels in Fig. 9) are overall consis-
tent with that based on all the PPE members (Fig. 7b).

We can see that the sensitivities of the mean-state precipi-
tation to parameters exhibit high space dependence (left
panels in Fig. 9). In ITCZ, larger RH_low leads to reduced
precipitation and thus weakened spatial precipitation-SST re-
lationship there as well. Meanwhile, in SPCZ, the
precipitation-SST relationship is stronger, which is associated
with the enhanced precipitation magnitude. As a result, the
changes in the mean-state precipitation-SST relationship are
small when averaged over a very large domain (see Fig. 8),
which is different from that in AMIP5. Based on the BCC PPE
experiments, we calculate the spatial precipitation-SST rela-
tionship in the mean state over a relatively smaller area (i.e.,
running region) centered at each grid point (Fig. 10a). We can
find that over most areas in the tropics, the precipitation
change due to SST anomaly is highly correlated with the spa-
tial precipitation-SST relationship in the mean state, which is
overall consistent with the results in AMIP5 (Fig. 10b). We
find changing the scope of running region has only a very
weak impact on the results.

3.2.2 Precipitation simulation in updated BCC model

As shown earlier, the standard BCC-CSM1.1 m has difficul-
ties in realistically simulating the precipitation anomaly during

Fig. 9 Sensitivities of (a, d, g) precipitation climatology (mm day−1) and
(b, e, h) ENSO-related precipitation anomaly (mm day−1), as well as (c, f,
i) their ratio (i.e., anomaly divided by climatology) to the parameters (a–c)

RH_low, (d–f) C0_deep, and (g–i) Ke_conv. Areas with the response of
precipitation climatology below 0.1 mm day−1 are masked out in (c, f, i)
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El Niño (Figs. 2 and 4). During the past several years, the
BCC model has been updated for participating the upcoming
CMIP6 (AMIP6) project. Several new features including the
re-estimated physical parameter values (Yang et al. 2015b;
Wu et al. 2019) have been implemented in the updated model.
Currently, the model has three sub-versions with different hor-
izontal resolutions, i.e., BCC-CSM2-LR, BCC-CSM2-MR,
and BCC-CSM2-HR. The resolutions applied in the former
two are corresponding to that in BCC-CSM1.1 and BCC-
CSM1.1 m in AMIP5, respectively.

In BCC-CSM2-MR, the simulated precipitation climatolo-
gy is remarkably improved compared with that in BCC-
CSM1.1 m (Fig. 11). For example, the underestimated precip-
itation over the Maritime Continent and northwestern Pacific,
as well as the overestimated precipitation over EEP and the
western Indian Ocean in BCC-CSM1.1 m (Fig. 11a), has been
mitigated in BCC-CSM2-MR (Fig. 11b vs. Fig. 11a). The
updated model can also better simulate the impacts of ENSO
on the interannual variation of precipitation over southern
China (Fig. 12). In observation (Fig. 12a), precipitation over

Fig. 10 Spatial distribution of the
ENSO-related precipitation sensi-
tivity (i.e., precipitation anomaly
divided by SST anomaly)
regressed on the mean-state spa-
tial precipitation-SST relationship
across members in the a BCC
PPE and b AMIP5. The mean-
state relationship is calculated
based on the results within a 7.5°
(in latitude) × 275° (in longitude)
running region centered at each
point. Areas masked by crosses
(dots) indicate that the correlation
between precipitation anomaly
and mean-state relationship is
statistically significant at 95%
(90%) confidence level. Areas
with the SST anomaly below 0.1
°C are masked out

Fig. 11 Spatial distributions of
climatological mean precipitation
during DJF (1980-2004) from a
BCC-CSM1.1 m minus observa-
tion (i.e., CMAP) and b BCC-
CSM2-MR minus BCC-CSM1.1
m
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southern China has a strong relationship with SST over EEP
and ECP. Such relationship is largely underestimated in BCC-
CSM1.1 m (Fig. 12b). Similar bias pattern can also be seen in
the current BCC dynamical prediction system based on the
coupled version of BCC-CSM1.1 m (Lu et al. 2017),
highlighting the importance of improving the atmosphere
model for climate predictions using coupled models. In con-
trast to BCC-CSM1.1m, the updated model can better capture
the remote connection between precipitation and SST (Fig.
12c).

4 Summary and discussions

In this study, we investigated the linkage between the simu-
lated precipitation climatology and ENSO-related precipita-
tion anomaly during boreal winter. Experiments from two
ensembles, i.e., the AMIP5 multi-model ensemble and the
BCC AGCM PPE, were used for the analyses.

During El Niño, forced by the anomalous SST, ITCZ shifts
eastward and equatorward and SPCZ shifts northeastward.
The AMIP5 models can generally capture the observed pre-
cipitation pattern in terms of both climatology and ENSO-
related anomaly. However, the models still have evident
biases, such as the too weak precipitation anomalies over the
Maritime Continent and tropical Indian Ocean during El Niño.
The inter-model differences suggest that for most areas, the
positive (negative) precipitation anomaly in response to posi-
tive (negative) SST anomaly increases with enhanced precip-
itation climatology. This implies that the increased mean-state
precipitation is mostly contributed by the increased rainfall in
wet years with above-normal SST, which amplifies the dis-
crepancy between wet and dry years.

The ENSO-related precipitation anomaly could also be re-
lated to the spatial distribution of the mean-state precipitation
because both of them can be explained by the changes in SST.
As the results show, the SPCZ displacement and the spatial
precipitation-SST relationship in the mean state are strongly
interrelated among different models, with a correlation

Fig. 12 Spatial distributions of
SST regressed on the DJF
precipitation over southern China
across years from 1980 to 2004 in
a observation, b BCC-CSM1.1
m, and c BCC-CSM2-MR
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coefficient of 0.86 between them that is statistically significant
at 99% confidence level. Moreover, the bias in the mean-state
precipitation-SST relationship corresponds well to the bias in
the SPCZ displacement, i.e., the models with underestimated
(overestimated) mean-state relationship also underestimate
(overestimate) the SPCZ displacement. The simulated ITCZ
displacement is also highly correlated with the simulated spa-
tial precipitation-SST relationship in the mean state.

The simulations of the ENSO-related precipitation anoma-
lies over East Asia are also related to the simulated mean-state
tropical precipitation. The model skills in simulating the inter-
annual variation of wintertime precipitation over southern
China are significantly dependent on the simulated mean-
state tropical precipitation.

Parameter uncertainties are important for precipitation sim-
ulations in each individual model. In the BCC PPE, the pre-
cipitation anomaly and precipitation climatology are signifi-
cantly positively (negatively) correlated with each other over
areas with positive (negative) SSTanomaly. This suggests that
the precipitation changes due to parameter tuning in BCC are
more evident in wet years than in dry years, which is consis-
tent with the AMIP5 results. The mean-state precipitation in
BCC is mostly sensitive to the parameters associated with
low-cloud and deep convection processes, but other processes
such as those associated with boundary-layer mixing might
also be important, which are not investigated here. Similar to
the AMIP5 results, the ENSO-related precipitation anomaly is
highly related to the spatial precipitation-SST relationship in
the mean state. During the past several years, the BCC model
has been updated including using the re-estimated physical
parameter values. Compared with the version in AMIP5, the
new BCC model can better simulate the precipitation clima-
tology and the relationship between ENSO and precipitation
over southern China.

This study reveals the strong connection between the
ENSO-related precipitation anomaly and the mean-state pre-
cipitation magnitude and spatial pattern, which has important
implications for simultaneously improving the climate mean
state and variability simulations and for climate predictions
based on dynamical model systems. However, given the large
uncertainty in observation, more reliable datasets or metrics
are needed for quantitatively evaluating the model results.
This study mainly focuses on the AGCM results. When
coupled to ocean models, the intrinsic biases of AGCMs can
influence the simulated ocean features that can in turn affect
the atmospheric responses, which deserves further
investigations.
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