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ABSTRACT

This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with
different initial condition perturbations in the Yangtze and Huai River basin (YHRB) of East China. The scale-dependent
error  growth  (ensemble  variability)  and  associated  impact  on  precipitation  forecasts  (precipitation  uncertainties)  were
quantitatively explored for  13 warm-season convective events  that  were categorized in terms of  strong forcing and weak
forcing.  The  forecast  error  growth  in  the  strong-forcing  regime  shows  a  stepwise  increase  with  increasing  spatial  scale,
while the error growth shows a larger temporal variability with an afternoon peak appearing at smaller scales under weak
forcing. This leads to the dissimilarity of precipitation uncertainty and shows a strong correlation between error growth and
precipitation across spatial scales. The lateral boundary condition errors exert a quasi-linear increase on error growth with
time  at  the  larger  scale,  suggesting  that  the  large-scale  flow could  govern  the  magnitude  of  error  growth  and  associated
precipitation uncertainties, especially for the strong-forcing regime. Further comparisons between scale-based initial error
sensitivity  experiments  show  evident  scale  interaction  including  upscale  transfer  of  small-scale  errors  and  downscale
cascade  of  larger-scale  errors.  Specifically,  small-scale  errors  are  found to  be  more  sensitive  in  the  weak-forcing  regime
than  those  under  strong  forcing.  Meanwhile,  larger-scale  initial  errors  are  responsible  for  the  error  growth  after  4  h  and
produce  the  precipitation  uncertainties  at  the  meso-β-scale.  Consequently,  these  results  can  be  used  to  explain  under-
dispersion issues in convective-scale ensemble forecasts and provide feedback for ensemble design over the YHRB.
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Article Highlights:

•  The  warm-season  convective  events  in  the  Yangtze  and  Huai  river  basin  can  be  categorized  into  strong-forcing  and
weak-forcing regimes with respect to different forcing types.

•  Error  growth  dynamics  and  the  associated  impact  on  precipitation  are  both  regime-  and  scale-dependent,  showing
different practical predictability across convective regimes.

•  The scale  interaction in  terms of  error  growth (upscale  transfer  and downscale  cascade)  is  evident  for  both convective
regimes.

 

 
 

1.    Introduction

Warm-season  extreme  rainfall  and  associated  flash

floods in the Yangtze and Huai River basin (YHRB) of East
China  are  recurring  threats  to  lives  and  property  (Ding,
1993; Sun  and  Zhang,  2012; Luo  et  al.,  2013, 2014; Luo
and Chen, 2015). The numerical weather prediction of these
events remains a challenge because the forecast accuracy can-
not  be  improved  by  simply  increasing  model  resolution
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(Mass  et  al.,  2002; Walser  et  al.,  2004; Lean  et  al.,  2008).
An  approach  to  deal  with  this  issue  is  to  use  convective-
scale  ensemble  forecast  systems,  which  offers  a  practical
way to estimate forecast uncertainties and produce probabil-
istic forecasts as well (Toth and Kalnay, 1997; Raynaud and
Bouttier, 2016).

To  understand  the  performance  of  convective-scale
ensemble  forecasts,  it  is  necessary  to  investigate  the  fore-
cast  error  growth  (Johnson  et  al.,  2014)  of  dynamic  vari-
ables  (horizontal  wind,  temperature,  and  water  vapor  mix-
ing ratio) caused by the initial-state errors, which also helps
the  design  of  ensemble  forecast  systems  and  the  explana-
tion  of  warm-season  convection  (Melhauser  and  Zhang,
2012; Chen  et  al.,  2018).  For  understanding  the  atmo-
spheric  predictability,  the  nature  of  the  underlying  domin-
ant  scale-interactions  needs  to  be  assessed  (Bierdel  et  al.,
2017).  Studies  of  error  growth  dynamics  at  the  convective
scale  have  shown  that  moist  instability  and  latent  heat
release  are  the  predominant  mechanisms  for  promoting
rapid  nonlinear  error  growth  (Zhang  et  al.,  2003, 2006,
2007; Tan et  al.,  2004; Hohenegger et  al.,  2006; Hoheneg-
ger and Schär, 2007), thereby explaining atmospheric predict-
ability  at  the  mesoscale.  In  convective-scale  forecasts,
small-scale and small-amplitude initial errors were found to
grow quickly in the convective area, transfer to larger scales
(upscale)  and  subsequently  contaminate  larger-scale  fore-
casts (Tan et  al.,  2004; Zhang et  al.,  2007; Selz and Craig,
2015);  this  theory  is  summarized  as  the  three-stage  model
for  atmospheric  error  growth  (Fig.  1). Sun  and  Zhang
(2016) further  highlighted  butterfly  effects  (i.e.,  upscale
growth of small-scale initial errors) on both intrinsic and prac-
tical limits at the meso and convective scales. On the other
hand, larger-scale initial errors generally lead to greater fore-
cast  divergence  of  heavy-rainfall  systems  (Bei  and  Zhang,
2007)  and  dominate  forecast  accuracy  (Sun  and  Zhang,
2016).  The  importance  of  large-scale  errors  is  also  con-
firmed by many other  studies  (Durran and Gingrich,  2014;
Durran and Weyn, 2016; Weyn and Durran, 2017). Consider-
ing  the  presence  of  flow-dependent  multiscale  perturba-
tions derived from ensemble data assimilation, Johnson and
Wang (2016) found that the small-scale perturbations could
influence  precipitation  forecasts  after  an  approximate  5-h
lead  time.  Overall,  the  scale  interaction  in  terms  of  error
growth  within  convective-scale  forecasts  requires  further
examination  (Bierdel  et  al.,  2017; Bachmann  et  al.,  2019,

2020; Selz et al., 2019; Zhang, 2019).
The initial errors affect the precipitation forecast error,

which in turn influences the error growth through moisture
dynamics (Bei and Zhang, 2014; Klasa et al., 2019; Zhang,
2019). Nielsen  and  Schumacher  (2016) identified  the  need
to investigate the evolution of precipitation uncertainty due
to  forecast  error  growth.  To  this  end,  a  spectral  metric  to
assess  the  spatial  predictability  of  precipitation  was  pro-
posed; namely, the decorrelation scale (Surcel et al., 2015).
Bachmann  et  al.  (2019, 2020) employed  the  decorrelation
scale to measure the predictability limit  with respect to the
effects  of  terrain  and  radar  data  assimilation. Wu  et  al.
(2020) used  the  power  ratio  of  the  decorrelation  scale  to
quantify the scale-dependent  impact  of  initial  errors  on the
precipitation forecast in a warm-sector heavy rainfall event.
In short, the metric provides a quantitative way to establish
and measure the relationship between the error growth and
precipitation forecast.

The error growth of dynamic variable and precipitation
forecast uncertainties measures the predictability of convect-
ive  events  and depends  on  the  strengths  of  large-scale  for-
cing, which is generally categorized into strong- and weak-for-
cing regimes (Done et al., 2006; Keil and Craig, 2011; Done
et al., 2012; Flack et al., 2016; Keil et al., 2019). General res-
ults show that for events dominated by strong large-scale for-
cing, the large-scale initial errors play a more important role
than  that  controlled  by  local  instabilities  (Johnson  et  al.,
2014; Surcel et al., 2015). In a more recent study, Selz et al.
(2019) highlighted the importance of identifying the up- or
downscale impact of associated errors across scales on meso-
scale flow for different convective regimes.

Although  convective-scale  predictability  is  believed  to
be highly regime-dependent, there have been few related stud-
ies on it, particularly for different convective regimes in the
YHRB (Luo and Chen, 2015; Chen et al., 2018). Many stud-
ies  have  revealed  the  complexity  of  warm-season  extreme
rainfall  events  in  this  area  (Zhao  et  al.,  2007; Sun  and
Zhang, 2012; Zhang and Zhang, 2012; Fu et al., 2013; Luo
et  al.,  2013; Zhang  et  al.,  2019),  and  it  is  therefore  neces-
sary to investigate the error growth (defined as ensemble vari-
ability) dynamics and associated impact on precipitation fore-
casts (precipitation uncertainties) in both strong- and weak-
forcing  regimes  for  the  YHRB.  Furthermore,  as  our  ulti-
mate  goal  is  to  construct  an  optimal  convective-scale
ensemble forecast system for the YHRB region, the sensitiv-

 

 

Fig. 1. Summary of the three-stage conceptual error growth model [Reprinted from (Zhang et al., 2007)].
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ity of errors at different scales is also of interest (Weyn and
Durran,  2019),  especially  for  the  realistic  flow-dependent
errors  derived  from  an  ensemble  data  assimilation  system
(Johnson and Wang,  2016; Flora  et  al.,  2018).  What  is  the
evolution mechanism of errors at different scales within con-
vective-scale forecasts,  and how do they interact with each
other to regulate the spread performance and further impact
the  predictability  of  convective  weather?  Although  these
issues  are  of  great  worth  to  ensemble  design,  few  studies
have focused on them.

To  deal  with  the  above  concerns,  we  design  several
ensembles of convective-scale simulations using an Observa-
tion System Simulation Experiment (OSSE) setup to investig-
ate the regime-dependent error growth for 13 warm-season
convective  events.  The  objectives  of  this  study  are:  (1)  to
explore  the  error  growth  characteristics  within  12-h  fore-
cast  range  in  both  strong-  and  weak-forcing  regimes  over
the  YHRB  and  identify  possible  differences  between  the
two subsets; (2) to understand the impact of error growth on
precipitation forecasts across spatial scales; and (3) to invest-
igate  the  sensitivity  of  lateral  boundary  and  realistic  flow-
dependent  initial  condition  (IC)  errors  at  different  scales.
The results of this investigation provide insights into under-
standing  the  impacts  of  realistic  flow-dependent  perturba-
tions  implemented  in  convective-scale  ensemble  forecasts,
particularly  those  related  to  under-dispersion  issues  in  cur-
rent  convective-scale  ensemble  forecasts  (Tennant,  2015;
Sun and Zhang, 2016), and offer further suggestions for the
improvement of an optimal convective-scale ensemble fore-
cast for the YHRB.

The  rest  of  this  paper  is  organized  as  follows:  The
model and ensemble design approaches are described in sec-
tion 2, along with details of analysis methods and the cases
examined.  Results  from synthetic  analysis  and typical  case
studies are presented in sections 3 and 4. Section 5 provides
a summary and discussion.

2.    Methods and experiments

2.1.    Model configuration

The Advanced Research core of the Weather Research
and Forecasting (WRF) model, version 3.7.1 (Skamarock et
al., 2008), is utilized as the numerical model. A one-way nes-
ted framework is designed with 180 × 180 and 258 × 258 hori-
zontal  grid  points  for  18-  and  3-km  grid  spacing,  respect-
ively (Fig. 2). There are 41 terrain-following hydrostatic-pres-
sure vertical levels and a model top of 10 hPa in both outer
and inner domains.

The  ICs  and  lateral  boundary  conditions  (LBCs)  are
derived  from  the  U.S.  National  Centers  for  Environmental
Prediction  Global  Forecast  System  (GFS)  operational  ana-
lysis  data.  The  physical  parameterization  schemes  include
the WSM6 microphysics scheme (Hong and Lim, 2006), Yon-
sei  University  boundary  layer  scheme  (Hong  et  al.,  2006),
RRTM  longwave  radiation  scheme  (Mlawer  et  al.,  1997),
and  Goddard  shortwave  radiation  scheme  (Chou  and
Suarez,  1999).  Additionally,  the  Grell-3  cumulus  scheme
(Grell and Dévényi, 2002) is used in the inner domain.

2.2.    OSSE framework and ensemble generation

Following Zhuang et al. (2020), an ensemble data assimil-
ation and forecast system (Wang et al., 2013) is constructed
(Fig.  3)  to  generate  flow-dependent  IC  and  LBC perturba-
tions. The Ensemble Square Root Filter approach proposed
by Whitaker and Hamill (2002) is employed as the data assim-
ilation  method.  For  the  present  study,  the  system  is  modi-
fied to run in an OSSE setup to remove model uncertainties
(Yussouf and Stensrud, 2012; Gasperoni et al., 2013; John-
son and Wang, 2016; Madaus and Hakim, 2017).

To create a “true” atmospheric state, we first perform a
36-h  nature  run  initialized  from  the  GFS  analysis  24  h
before  the  analysis  time  for  each  case  with  a  3-km resolu-
tion  covering  the  outer  domain  (Fig.  2a).  The  mesoscale

 

 

Fig.  2.  (a)  Model  domain  configuration:  the  black  square  indicates  the  outer  domain  (18-km  resolution);  the  red
square indicates the inner domain (3-km resolution); black dots show the distribution of simulated sounding datasets;
blue circles show locations of the seven radar sites. (b) Terrain height within the inner domain, the Dabie Mountains
(31°N, 116°E), Huang Mountains (30°N, 117.5°E), and Mu-fu Mountains (29°N, 115°E).
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sounding datasets are then generated at randomly chosen loca-
tions  within  China’s  mainland  (Fig.  2a)  and  interpolated
from the “true” run with observation errors of 2.5 m s−1, 1.2
K,  and  0.005  kg  kg−1 for  wind  velocity,  temperature,  and
water vapor, respectively (Snook et al., 2015). For the inner
domain,  the  “true ”  run  is  interpolated  to  seven  real  CIN-
RAD-SA radars (Zhu and Zhu, 2004) (Fig. 2b) with observa-
tion  errors  of  2  m  s−1 and  5  dBZ  for  radial  velocity  and
reflectivity (Johnson et al., 2015).

We  then  generate  the  initial  ensemble  in  the  outer
domain, by adding analysis perturbations from the first 30-
member European Centre for Medium-Range Weather Fore-
casts global ensemble prediction products (Hagedorn et al.,
2008; Hagedorn  et  al.,  2012)  to  temperature,  horizontal
wind,  and  water  vapor  mixing  ratio  in  the  ICs  and  LBCs.
After that, the mesoscale sounding data assimilation for the
outer  domain  is  initialized  at  0000  or  1200  UTC  (0008  or
2000 LST) for each case (Table 1) over a 24-h period with
3-h  intervals.  For  the  inner  domain,  the  initial  ensemble  is
obtained  by  downscaling  the  analysis  states  at  the  seventh
assimilation  cycle  in  the  outer  domain  using  the  WRF
“ndown” tool (Daniels et al., 2016). The radar data (includ-

ing reflectivity and radial velocity) are then assimilated for
3-h  with  10-min  intervals  in  the  inner  domain,  while  the
outer domain provides larger-scale LBC perturbations every
15-min during the assimilation cycles.

The horizontal and vertical covariance localization radii
for the outer domain are 120 km and 6 km, and the corres-
ponding values in the inner domain are 20 and 5 km (Wang
et  al.,  2013; Snook et  al.,  2015),  respectively.  To maintain
spread within the assimilation cycles, a multiplicative covari-
ance inflation of 1.15 (Anderson and Anderson, 1999; Tong
and  Xue,  2005)  and  a  relaxation  inflation  of  0.5  to  prior
ensemble variability (Zhang et al.,  2004) are applied to the
outer and inner domains.

The control experiment (CTRL) uses the first 20 mem-
bers  of  the  ensemble  analysis  in  the  inner  domain  and  the
LBC  perturbations  are  provided  by  the  outer  domain
ensemble  forecasts  and  perform  12-h  convective-scale
ensemble forecasts (Fig. 3). Several sensitivity experiments
(IC_MULTI,  IC_SMALL,  IC_TRANS,  and  IC_LARGE)
are conducted to further clarify the scale-based sensitivity of
errors. These experiments employ the same LBCs from the
ensemble mean analysis of the outer domain (no LBC perturb-
ations)  and  differ  in  initial  perturbations  that  are  construc-
ted in three steps: (i) subtract the ensemble mean from each
analysis state to obtain intermediate perturbations; (ii) scale
each perturbed variable by retaining information at determ-
ined  spatial  scales;  and  (iii)  add  the  scaled  perturbations
back  to  the  ensemble  mean  (Table  2).  Specifically,
IC_MULTI  uses  the  same  IC  perturbations  as  CTRL  with
LBC perturbations excluded to investigate the sensitivity of
larger-scale LBC errors. By retaining the small-scale compon-
ents  of  the  flow-dependent  IC  perturbations,  the  up-amp-
litude and upscale processes of small-scale initial errors and
the  associated  impact  on  precipitation  can  be  isolated  and
examined via IC_SMALL. By retaining the larger-scale com-
ponents of the IC perturbations, the evolution and the associ-
ated impact of larger-scale initial errors on precipitation can
be isolated and examined via IC_LARGE. The definition of
scale range is specified in section 2.3.

Table 1.   Summary of cases.

Number Start time Subset

1 0000 UTC 23 June 2013 Weak forcing
2 0000 UTC 5 July 2013 Weak forcing
3 1200 UTC 6 July 2013 Strong forcing
4 0000 UTC 7 July 2013 Weak forcing
5 0000 UTC 21 July 2013 Weak forcing
6 0000 UTC 22 July 2013 Weak forcing
7 0000 UTC 1 June 2014 Strong forcing
8 0000 UTC 15 June 2014 Strong forcing
9 0000 UTC 25 June 2014 Strong forcing
10 0000 UTC 26 June 2014 Weak forcing
11 1200 UTC 1 July 2014 Strong forcing
12 0000 UTC 12 July 2014 Weak forcing
13 1200 UTC 24 July 2014 Strong forcing

 

 

Fig. 3.  Schematic of the ensemble data assimilation configuration. The outer-domain ensemble data assimilation is
initialized at 0000 or 1200 UTC for each case, while the inner domain ensemble data assimilation is initialized 21 h
after the outer domain initialization using the outer-nest ensemble for both the initial and boundary conditions. “Obs”
indicates observations.
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2.3.    Representation of scale-dependent error growth

The  forecast  error  is  quantified  using  the  difference
total energy (DTE; Zhang et al., 2007): 

DTE(λ)i, j,k,t,m =
1
2

[
u (λ)′i, j,k,t,m

2
+v (λ)′i, j,k,t,m

2
+

Cp

Tr
t (λ)′i, j,k,t,m

2
]
,

(1)

u′ v′ t′

Cp = 1004.9 J kg−1K−1 Tr = 270 K

where , , and  are the differences of zonal wind, meridi-
onal wind, and temperature from the ensemble mean, respect-
ively  (  and ).  The  sub-
scripts i, j, k, t, m,  and λ represent  the x-direction, y-direc-
tion, vertical level, forecast time, ensemble member, and the
spatial scale.

To measure the scale-dependent error growth, we clas-
sify the spatial  scale into three scale ranges (Zhuang et  al.,
2020):  small  scale  (36  km ≥ wavelength);  transition  scale
(120  km ≥ wavelength  >  36  km);  and  larger  scale
(wavelength > 120 km). To obtain variable fields at differ-
ent scales, the discrete cosine transform (DCT) (Denis et al.,
2002; Surcel et al.,  2015; Wu et al.,  2020) method is used.
Compared to traditional Fourier transform methods, DCT is
able to avoid discontinuity problems at domain boundaries.

We also introduce a vertical function (Nielsen and Schu-
macher,  2016)  to  calculate  the  two-dimensional  root-mean
vertically integrated DTE (RMDTE). To compare the error
growth  between  different  convective  regimes,  the  normal-
ized  root-mean  vertically  integrated  DTE  (NRMDTE)
(Nielsen and Schumacher, 2016; Klasa et al., 2019) at differ-
ent scales is calculated to eliminate the variability independ-
ent  of  the  magnitude  of  the  total  background  flow
(Appendix A).

2.4.    Representation of spatial precipitation uncertainty

To evaluate spatial precipitation uncertainties, the decor-
relation  scale  method  proposed  by Surcel  et  al.  (2015) is
applied.  As described in  that  study,  complete  decorrelation
of ensemble forecasts can be considered as a lack of precipita-
tion predictability  by the  ensemble  at  a  given scale λ0.  For
the scale λ ≤ λ0, there is no precipitation predictability. For
the scale λ ≥ λ0,  the precipitation fields of ensemble mem-
bers  are  correlated,  indicative  of  some  predictability.  The
power ratio is used to quantitatively assess the precipitation
uncertainty (Wu et al., 2020): 

R (λ) =

∑n

m=1
Var(pm (λ))

Var
(∑n

m=1
pm (λ)

) , (2)

Var(pm (λ))
pm(m = 1, . . . ,n) R (λ)

R (λ)

R (λ)

where  is  the  variance  of  the  precipitation  field
 at spatial scale λ.  The value of  varies

from 1 / n to 1, with a larger value corresponding to higher
uncertainty  and  lower  precipitation  predictability.  In  gen-
eral, a threshold value of  = 1 means the complete loss
of predictability at scale λ, while in this study, the threshold
is set to 0.9 to eliminate noise without introducing any signi-
ficant bias (Judt, 2018; Wu et al., 2020). Quantitative investig-
ations of precipitation uncertainty are then conducted by com-
paring  for different ensemble designs at different fore-
cast lead times.

2.5.    Case selection

τc

Thirteen mei-yu-season heavy-rainfall events (June and
July  2013–2014)  (Liu  et  al.,  2012; Sun  and  Zhang,  2012;
Luo and Chen, 2015) over the YHRB are selected, ranging
from local  self-organized convective events to synoptically
driven mei-yu-front events. Based on the convective adjust-
ment timescale  (Appendix B) calculated with the determin-
istic  forecast  in  the  inner  domain  (initialized  with  the
ensemble mean analysis), all 13 cases are quantitatively classi-
fied into two categories based on the convective adjustment
timescale. The typical 6-h (Zimmer et al., 2011; Keil et al.,
2014) threshold is used to distinguish strong-forcing events
from weak-forcing events (Table 1).

τc

τc

Figure  4a shows  the  evolution  of  with  correspond-
ing  convective  available  potential  energy  (CAPE; Fig.  4b)
for cases in each subset. Note that  for the weak-forcing sub-
set is markedly higher than that of the strong-forcing subset
with  a  more  remarkable  semidiurnal  cycle  of  CAPE. Fig-
ures 5c and d show the frequency of 1-h precipitation exceed-
ing  0.5  mm  h−1 in  both  strong-  and  weak-forcing  regimes
for the true state. The strong-forcing events exhibit a southw-
est–northeast  frequency  belt  along  the  mei-yu  front  (Fig.
5c), which is consistent with the frontal rainfall events (Sun
and  Zhang,  2012).  The  weak-forcing  events  exhibit  a
scattered  pattern  near  the  Dabie  Mountains,  Huang  Moun-
tains,  and  Mu-fu  Mountains  (Chen  et  al.,  2016),  with  fre-
quency maxima 1°–3° to the south of the northeast–southw-
est-oriented  weak  mei-yu  front  (Fig.  5d).  The  wind  fields
also differ between strong- and weak-forcing regimes, with
the  strong-forcing  cases  having  stronger  wind  speed  (Fig.
4c)  and  cyclonic  shear  (Fig.  5a)  while  the  weak-forcing
cases are generally characterized by weaker large-scale advec-
tion  (Fig.  4d and Fig.  5b)  in  which  the  CAPE  is  higher
(Figs.  4a).  These  environmental  features  are  in  accordance
with Klasa et  al.  (2019),  as they also found stronger large-
scale advection and lower CAPE for strong-forcing events,

Table 2.   Summary of IC perturbations and LBC perturbations used in the ensemble experiments.

Experiment IC perturbations LBC perturbations

CTRL Flow-dependent_3 km Flow-dependent_18 km
IC_MULTI Flow-dependent_3 km None
IC_SMALL Filtered information < 36 km from Flow-dependent_3 km None
IC_TRANS Filtered in formation > 36 km and < 120 km from Flow-dependent_3 km None
IC_LARGE Filtered information > 120 km from Flow-dependent_3 km None
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τcsupporting our application of .

3.    Regime-dependent  error  growth  and
associated impact on precipitation

In this section, error growth across convective regimes
and its  associated impact  on precipitation are  examined by
assessing the NRMDTE of CTRL and the corresponding evol-
ution  of  precipitation  uncertainties  (R)  for  the  strong-  and
weak-forcing regimes.

3.1.    Spatiotemporal characteristics of total error growth

Figure  6 shows  the  temporal  evolution  of  total  NRM-
DTEs  for  both  strong-forcing  (Fig.  6a)  and  weak-forcing
(Fig.  6e)  regimes.  In  the  strong-forcing  regime,  the  mean

total  NRMDTE  manifests  a  moderate  evolution,  while  in
the  weak-forcing  regime  it  shows  a  larger  variation  with  a
maximum in the afternoon (4–8 h), the variation of which is
in accordance with the daytime phase diurnal peak of convec-
tion in the YHRB (Sun and Zhang, 2012).

Figures 7 and 8 give the total NRMDTEs and ensemble
mean  precipitation  (time–longitude  and  time–latitude  dia-
grams)  averaged  over  cases  in  each  subset.  The  events
under  strong  forcing  exhibit  a  strong  easterly  progression
(Fig.  7a, Fig.  8a),  while  a  relatively  stationary  feature  for
both variables  appears  in  the weak-forcing regime (Fig.  7e
and Fig.  8e).  These results  indicate that  forecast  errors  can
be transported to a broad area covered by the influence of a
strong frontal  system during the strong-forcing regime, but
the errors are often restricted to a smaller area in the weak-for-

 

 

τcFig. 4. The (a) convective-adjustment time scale  (units: h) and (b) CAPE (units: J kg−1) averaged over areas with
rainfall higher than 0.5 mm h−1. The black line in (a) is the 6 h threshold for regime classification. The dashed lines
indicate  each  case  while  the  thick  solid  lines  represent  average  value  for  each  subset. (c,  d)  Wind  rose  variation
between  1000  and  100  hPa  for  (c)  strong-forcing  and  (d)  weak-forcing  cases.  The  concentric  rings  show  the
frequency of wind direction and the colors indicate the magnitude of wind speed.

898 CONVECTIVE-SCALE PREDICTABILITY IN EAST CHINA VOLUME 37

 

  



cing regime.  In  addition,  the NRMDTE (Fig.  8e)  increases
with forecast lead time toward lower latitudes in the weak-for-
cing  regime.  It  is  speculated  that  this  southward  motion  is
associated  with  the  small-scale  convection  (e.g.,  isolated
storms,  squall  lines,  or  multicell  storms)  triggered by local
factors  in  the  southern  region.  Overall,  these  results  indic-
ate that forecast errors often closely follow the precipitation
system.

3.2.    Spatiotemporal  characteristics  of  error  growth  at
different scales

We  further  analyze  error  growth  at  and  across  spatial

scales.  In  general,  the  trends  of  NRMDTEs  for  different
cases are generally consistent with each other for each sub-
set  (gray  lines  in Fig.  6),  confirming  our  classification  of
cases. Similar to Zhang et al. (2007), we conclude the scale-
dependent error growth into three stages for the strong- and
weak-forcing  subsets,  respectively.  In  the  strong-forcing
regime,  a  “stepwise” increase with increasing spatial  scale
that is similar to the three-stage conceptual model proposed
in Zhang  et  al.  (2007) is  observed.  Stage  1  corresponds  to
rapid up-amplitude growth and saturation that is defined as
the  point  at  which  the  NRMDTE  reaches  its  maximum
value (Zhang, 2019) of small-scale errors around the first 2 h

 

 

Fig.  5.  (a,  b)  Ensemble-mean  850-hPa  wind  vector  (units:  m s−1)  and  equivalent  potential  temperature  (blue  solid
contours lines, 344–348 K, 2 K interval, indicating the location of the mei-yu front) averaged over cases for the (a)
strong-  and (b)  weak-forcing regime calculated from the outer  domain ensemble.  The red boxes indicate  the inner
domain.  (c,  d)  Precipitation frequency computed from the observed hourly precipitation exceeding 0.5 mm h−1 for
the (c) strong- and (d) weak-forcing regime. The black triangles indicate the mountains shown in Fig. 2.
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(Figs. 6b, 7b and 8b). This result indicates the rapid predictab-

ility  loss  at  the  relevant  scales  (Lorenz,  1969; Judt,  2018).

At  Stage  2,  transition-scale  NRMDTE  remains  increasing

and  slightly  spread  beyond  the  convective  zones  (Figs.  7c

 

 

Fig. 6. Time series of the 12-h NRMDTE of CTRL at different scales for (a–d) strong- and (e–h) weak-forcing cases: (a, e)
total NRMDTE; (b, f) small-scale NRMDTE; (c, g) transition-scale NRMDTE; (d, h) large-scale NRMDTE. The thick black
curves represent the NRMDTEs averaged over cases of each subset while the dashed gray curves represent the NRMDTEs
for each case. S1–S3 indicates the error growth stages for each subset.

 

 

Fig. 7.  Hovmöller (meridionally averaged mean NRMDTE at different scales, time–longitude) diagrams for the NRMDTE
of CTRL averaged over cases for the (a–d) strong- and (e–h) weak-forcing regime: (a, e) total NRMDTE; (b, f) small-scale
NRMDTE; (c, g) transition-scale NRMDTE; (d, h) larger-scale NRMDTE. Black contours (0.2–1.6 mm, contoured every 0.2
mm)  indicate  the  ensemble  mean  0.5  h  accumulated  precipitation  and  the  shading  denotes  regions  with  precipitation
exceeding 0.6 mm.
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and 8c),  which  is  attributable  to  an  upscale  transfer  of
small-scale  errors.  During  Stage  3,  transition-scale  NRM-
DTE  saturates  at  around  6  h  while  larger-scale  NRMDTE
remains a slight increase (Figs. 6d, 7d and 8d), which may
gradually influence mesoscale predictability from the initial
higher-latitude areas where the mei-yu front formed, demon-
strating  an  interaction  between  the  convective  and  larger
scales (Nielsen and Schumacher, 2016).

In the weak-forcing regime, small-scale errors (Figs. 6f,
7f and 8f)  experience  a  rapid  up-amplitude  growth  similar
to that under strong forcing during the first 2 h (Stage 1) but
remain a steeper and longer increase during 2–8 h (Stage 2),
demonstrating lower predictability than that under strong for-
cing  (Keil  et  al.,  2014; Zhuang  et  al.,  2019).  Transition-
scale errors (Figs. 6g, 7g and 8g) experience an evolution sim-
ilar to but slightly smoother than that of small-scale errors dur-
ing the same period. Such evolutions of the NRMDTEs for
the small and transition scales are likely driven by the convec-
tion  diurnal  peak,  in  which  convective  events  usually
strengthen  during  the  afternoon  due  to  solar  heating.  After
8  h  (Stage  3),  small-  and  transition-scale  NRMDTEs  both
exhibit reduction, albeit with a slight increase in larger-scale
NRMDTE (Figs. 6h, 7h and 8h), reflecting the relationship
between the moist convection and error growth is weaker at
the larger scale.

Overall,  the  above  findings  confirm  that  upscale  error
growth (Zhang et  al.,  2007; Selz  and Craig,  2015)  is  evid-
ent  over  the  YHRB,  but  more  obvious  for  the  strong-for-
cing  regime.  Meanwhile,  for  the  weak-forcing  regime,  the
error  growth  is  largely  modulated  by  the  convection  after-
noon  peak  (Nielsen  and  Schumacher,  2016; Klasa  et  al.,
2019; Wu  et  al.,  2020).  This  result  highlights  a  strong

regime-dependent feature. In addition, we also find the peak
of forecast errors in the weak-forcing regime is most promin-
ent for the small and transition scales. As the diurnal cycle
of convection can be regarded as “external forcing” from a
quasi-stationary  terrain  or  solar  forcing,  the  peak  (or  other
big  fluctuations)  of  error  growth  for  the  weak-forcing
regime should be regarded as added value superimposed on
the basic error growth emerging from the strong moist convec-
tion (Nielsen and Schumacher, 2016) and explain the scale-
dependent error growth.

Note  that  larger-scale  NRMDTEs  are  slightly  damped
during the first few hours in both regimes (Figs. 6d and h).
This may be due to the poor representation of synoptic- and
subsynoptic-scale information using small-domain convect-
ive-scale  ensemble  forecasts.  A  similar  phenomenon  can
also  be  found  in  previous  studies  (Bei  and  Zhang,  2007;
Zhang,  2019).  A comparison  of  the  NRMDTEs with  those
from  a  larger-domain  experiment  (not  shown)  reveals  that
the relatively small domains and the terrain along the south-
ern  boundary  do  not  influence  the  12-h  evolution  trend  of
forecast  error.  However,  the  terrain  at  the  boundary  does
have  a  slight  negative  impact  on  the  up-amplitude  error
growth  at  the  small-scale,  particularly  for  the  terrain-for-
cing events under weak forcing, which requires further evalu-
ation beyond the scope of this study.

3.3.    Impact of error growth on precipitation

A novelty of  this  study is  a  systematic  examination of
the impact of error growth on the precipitation forecast. Previ-
ous studies have revealed a strong correlation between error
growth and precipitation (Johnson et al., 2014; Flack et al.,
2018),  but they did not consider this issue in terms of spa-

 

 

Fig. 8. As in Fig. 7 but for zonally averaged NRMDTE averaged over cases in each subset.
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tial scales.
Figure  9 shows  the  power  ratio  [Eq.  (2),  hereafter

referred to as R for brevity] averaged over cases within each
subset  at  different  lead  times,  which  is  used  to  quantitat-
ively assess the precipitation uncertainty. In Stage 1 (0.5 h,
black  curves)  for  both  strong-  and  weak-forcing  regimes,
the  rapid  increase  of  the  flow-dependent  small-scale  errors
(Figs.  6b and f)  leads to increased R originated from small
scales.  The  distribution  of R decreases  monotonically  with
increasing scale, revealing an approximately positive relation-
ship between error growth and precipitation uncertainties in
the small scale.

A divergence occurs between the strong- and weak-for-
cing regimes at  the  start  of  Stage 2  (2  h,  blue curves).  For
the strong-forcing regime, R features fluctuations on scales
around 20 km, with the distribution peak shifting to the lar-
ger scales until approximately 6 h (the end of Stage 2), imply-
ing a loss of predictability at  around 60 km (Fig.  9a).  This
indicates  the  impact  of  upscale  error  growth  on  precipita-
tion  at  the  meso-β-scale  (Fig.  9a)  and  can  be  explained  by
the  rapid  displacement  of  individual  cells  driven  by  large-
scale  forced  ascent  (Done  et  al.,  2006; Zhang  et  al.,  2007;
Liu  and  Tan,  2009; Flack  et  al.,  2018)  around  the  mei-yu
front.  After  6  h  (Stage  3),  when  the  NRMDTEs  generally
reach  saturations  at  both  the  small  and  transition  scales
(Figs.  6b and c), R continues  to  increase  as  a  result  of  the
up-amplitude  growth  of  larger-scale  errors  (Fig.  6d)  with
the distribution peak remaining unchanged.

For the weak-forcing regime, with the consistent, up-amp-
litude  growth  of  small-  and  transition-scale  NRMDTEs
(Figs. 6f and g) at Stage 2 (2–8 h), R retains a monotonic dis-
tribution with the peak centered at the grid scales (Fig. 9b),
implying  a  thorough  predictability  loss  at  the  meso-γ-scale
as a result of the localized error growth (Fig. 7e). After 8 h,
the  small-  and  transition-scale  NRMDTEs  become  satur-
ated (Figs. 6f and g) and R displays increase at all scales, par-
ticularly  at  the  larger  scales,  corresponding  to  the  sub-

sequent upscale error growth.
Overall,  these  results  demonstrate  a  strong  correlation

between  error  growth  and  precipitation  in  a  scale-depend-
ent  manner.  Specifically,  the  up-amplitude  error  growth
increases  the  magnitude  of  precipitation  uncertainty  while
the upscale error  transfer  before saturation at  a  given scale
influences its spatial distribution. These results also demon-
strate how multiscale initial  perturbations impact  precipita-
tion  at  different  scales,  particularly  under  various  large-
scale forcings.

4.    Sensitivity  of  regime-dependent  error
growth  to  the  lateral  boundary  and  IC
errors at different scales

To  further  investigate  the  differences  of  predictability
across convective regimes, the sensitivity of the lateral bound-
ary  and  flow-dependent  initial  errors  at  different  scales  is
assessed in this section. Although previous studies focusing
on  the  amplitude  of  error  reached  significant  conclusions
with  respect  to  predictability  at  the  convective  scale
(Nielsen and Schumacher, 2016; Zhang et al., 2016; Flora et
al., 2018), there have been relatively few studies on the sensit-
ivity  of  realistic  flow-dependent  errors  at  different  scales
that are directly relevant to convective- and large-scale for-
cing  or  related  to  the  formulation  of  data  assimilation
strategies.

4.1.    Role of larger-scale lateral boundary errors

In convective-scale ensemble forecasts,  LBC perturba-
tions generally exert larger-scale errors to the inner domain
from LBCs in a one-way nested configuration (Nutter et al.,
2004)  and  dominate  the  ensemble  variability  after  the  first
6–12 h (Vié et  al.,  2011; Kühnlein et  al.,  2014). Figure 10
shows  a  comparison  of  CTRL  (black  curves)  and
IC_MULTI  (gray  curves),  which  reveals  that  the  LBC
errors exert impacts on the error growth at the transition and

 

 

Fig.  9.  Temporal  evolution  of  the  power  ratio  (R)  for  0.5  h  accumulated  precipitation  calculated  from  CTRL
averaged over cases for the (a) strong- and (b) weak-forcing regime. The red reference line represents total loss of
precipitation predictability. The dashed lines correspond to Stage 3 of error growth.
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larger scales for both subsets. Such impacts can also be seen
from  the  comparison  between  CTRL  and  IC_MULTI  in
terms of a spatial view as shown in Fig. 8 and Fig. 11. In addi-

tion,  the  relative  difference  of  total  NRMDTE  between
IC_MULTI  and  CTRL  shows  a  quasi-linear  increase  with
time  and  reaches  30%  at  12  h,  reflecting  the  results  from

 

 

Fig.  10.  Time  series  of  12-h  mean  NRMDTE  at  different  scales  of  CTRL  (black  curves),  IC_MULTI  (gray  curves),
IC_SMALL  (blue  curves),  IC_TRANS  (red  curves),  and  IC_LARGE  (yellow  curves)  averaged  over  cases  for  the  (a–d)
strong- and (e–h) weak-forcing regime: (a, e) total NRMDTE; (b, f) small-scale NRMDTE; (c, g) transition-scale NRMDTE;
(d, h) larger-scale NRMDTE. S1–S3 indicate the error growth stages for each subset.

 

 

Fig. 11. Zonally averaged Hovmöller (time–latitude) diagrams for the NRMDTE of IC_MULTI averaged over cases for the
(a–d)  strong-forcing and (e–h)  weak-forcing regime:  (a,  e)  total  NRMDTE; (b,  f)  small-scale  NRMDTE; (c,  g)  transition-
scale  NRMDTE;  (d,  h)  larger-scale  NRMDTE.  Black  contours  (0.2–1.6  mm,  contoured  every  0.2  mm)  indicate  the
corresponding ensemble mean 0.5 h accumulated precipitation and the shading denotes regions with precipitation exceeding
0.6 mm.
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Zhang (2019), which is primarily attributable to the larger-
scale component (Figs.10d, h and Fig. 11d, h).

Regarding  the  impact  of  LBC  errors  on  precipitation
uncertainty, we find a clear decay of R during the strong-for-
cing regime (Fig. 12a) after 4 h. This finding demonstrates a
practical  predictability  limit  from LBC errors,  as R decays
in both amplitude and spatial  scale of the distribution peak
in  IC_MULTI  after  4  h,  revealing  under-dispersion  issues
compared with CTRL and the need to improve LBC perturba-
tions  for  convective-scale  ensemble  forecasts.  This  feature
can also be identified from 4–6 h in Fig.  10c,  as the trans-
ition-scale  NRMDTEs  for  IC_TRANS,  IC_LARGE,  and
IC_MULTI all experience decays, while larger-scale NRM-

DTEs  cease  increasing  afterward  (Fig.  10d).  Accordingly,
this time period can also be regarded as a bifurcation point
at  which  transition-scale  errors  can  either  reach  a  theoret-
ical  limit  or  continue  to  grow  upscale  to  larger  scale  and
impact  precipitation  at  the  meso-β-scale.  Comparably,
though R in  IC_MULTI  also  exhibits  a  decay  relative  to
CTRL under the weak-forcing regime (Fig. 12b), it neverthe-
less continues to increase with time. In short, these results sup-
port  the  hypothesis  that  error  growth  and  its  associated
impact  on  precipitation  can  be  constrained  by  the  large-
scale  control  imposed  by  the  LBCs  (Nielsen  and  Schu-
macher,  2016; Klasa  et  al.,  2019),  particularly  for  the
strong-forcing regime.

 

 

Fig. 12.  Temporal evolution of the power ratio (R) for 0.5 h accumulated precipitation of (a, b) IC_MULTI, (c, d)
IC_SMALL and (e, f) IC_LARGE averaged over cases for the (a, c, e) strong- and (b, d, f) weak-forcing regime. The
red reference line represents total loss of precipitation predictability. The dashed lines indicate Stage 3 when larger-
scale errors become dominant.
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4.2.    Role of small-scale initial errors

Small-scale  initial  errors  can  grow  up-amplitude  and
upscale  predominated  by  moist  convection  (Hohenegger  et
al., 2006; Zhang et al., 2007; Selz and Craig, 2015). Figure
13 shows  that  the  large  NRMDTE  values  at  the  transition
scale  (Figs.  13c and g)  and  larger  scale  (Figs.  13d and h)
appear later  than those of  the small  scale (Figs.  13b and f)
for IC_SMALL, indicative of the upscale transfer.  In addi-
tion,  the  total  NRMDTE  of  IC_SMALL  (blue  curves  in
Figs.  10a and e)  is  substantially  lower  than  that  of
IC_MULTI (gray  curves  in Figs.  10a and e),  with  reduced
magnitude of mean small-scale NRMDTE at Stage 1 (Figs.
10b and f) and subsequent stages through a weaker upscale
transfer. However, for both convective regimes, we find the
evolution  trend [i.e.,  the  stepwise  feature  under  strong for-
cing (Figs. 10b–d) and the afternoon maximum under weak
forcing (Figs. 10f–h)] of IC_SMALL are similar to those of
IC_MULTI.  This  suggests  that  the  magnitude  of  the  fore-
cast error is mainly dominated by large-scale flow but moist
convection  determines  the  trend (Nielsen  and Schumacher,
2016).

Regarding precipitation uncertainties, initial small-scale
errors  produce R within  the  meso-γ-scale  and  gradually
extend to larger scales (Figs. 12c and d). Specifically, in the
strong-forcing  regime,  the  distribution  peak  of R does  not
shift  to  a  meso-β-scale  within  2–4  h  (Fig.  12c)  compared
with IC_MULTI (Fig. 12a) and is followed by a clear decay
after 4 h. Inconsistent with the strong-forcing regime, R exhib-
its  a  slight  increase  between  2  and  8  h  (blue  to  yellow
curves in Fig.  12d) and remains large afterward as  a  result
of  consistent  up-amplitude  growth  of  small-scale  NRM-
DTE (Fig. 10f) in the weak-forcing regime. In summary, ini-

tial small-scale errors can gradually grow up-amplitude and
upscale, causing a dispersion within ensemble members dur-
ing  the  weak-forcing  regime,  reflecting  greater  sensitivity
than in the strong-forcing regime (Weyn and Durran, 2019).

4.3.    Role of larger-scale initial errors

Flow-dependent larger-scale initial errors generally cor-
respond  to  uncertainties  of  the  larger-scale  systems  (e.g.,
mei-yu front). The total NRMDTE in IC_LARGE shows sim-
ilar temporal (Figs. 10a and e) and spatial (Figs. 14a and e)
features  with  IC_MULTI  (Figs.  10a, e and Figs.  11a, e)
after  4  h.  A  further  comparison  of  NRMDTEs  between
IC_LARGE and IC_MULTI at different scales reveals that,
even in the absence of small-scale errors in the initial state,
the  small-scale  component  is  still  rapidly  generated  (Figs.
10b and f; Figs.  14b and f)  and then transferred to  the lar-
ger scale (Figs. 10d and h; Figs. 14d and h), corresponding
to  the  downscale  cascade  as  proposed  by Durran  and  Gin-
grich (2014). Additionally, we can also see the total NRM-
DTE  in  IC_LARGE  is  obviously  larger  than  that  of
IC_SMALL for both regimes (Figs.  10a and e).  These res-
ults  highlight  that  larger-scale  initial  errors  generally  con-
trol  the  error  growth  after  4  h  while  the  errors  at  smaller
scales are only effective at early lead times.

Figures 12 e–h display the precipitation uncertainties in
IC_LARGE. At 0.5 h, R in IC_LARGE is lower than that in
IC_SMALL, revealing that larger-scale initial errors do not
immediately  impact  the  precipitation.  At  later  times, R in
IC_LARGE (Figs.  12e and f)  is  found to be similar to that
of IC_MULTI (Figs. 12a and b) for both subsets, indicating
that  the limit  of practical  predictability of precipitation can
be extended by reducing the initial errors at the larger scale

 

 

Fig. 13. As in Fig. 11 but for IC_SMALL.
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and  emphasizing  the  necessity  and  importance  of  larger-
scale perturbations in ensemble design (Johnson and Wang,
2016; Surcel et al., 2016). Specifically, R in the strong-for-
cing  regime  displays  a  clear  change  in  distribution  during
2–4 h (blue and cyan curves in Fig. 12e) at scales < 40 km
and  decays  afterward.  By  contrast, R keeps  a  consistent
increase  during  the  entire  forecast  range  with  a  monoton-
ical  distribution  in  the  weak-forcing  regime,  which  relates
to  the  local  instability  under  unstable  environments  (i.e.,
higher  CAPE)  that  stabilizes  the  spatial  error  propagation
and destroys mesoscale predictability eventually.

Additionally,  the  scale-based  experiments  shown  in
Fig.  10 can  also  be  regarded  as  “reduced ”  experiments
(Nielsen and Schumacher, 2016; Zhang et al., 2016; Flora et
al., 2018) that can be used to detect practical versus intrinsic
predictability  by  examining  whether  the  ratio  for  NRM-
DTE  evolution  of  a  “reduced ”  ensemble  over  IC_MULTI
remains constant or rapidly converges to one.  In this study
covering  the  YHRB,  a  converging  tendency  within
ensemble  experiments  in  both  strong-  and  weak-forcing
regimes is found (Fig. 10) at the small and transition scales,
suggesting  intrinsic  predictability  limits  at  relevant  scales
even within  a  12-h  forecast  range.  This  result  corroborates
the  conclusion by Nielsen and Schumacher  (2016) that  the
magnitude of error growth is governed by the interaction of
moist convection with the large-scale flow.

5.    Conclusions

Throughout  the  last  three  decades,  the  mechanisms  of
warm-season convective  events  over  the  YHRB have been
well understood (Ding, 1993; Sun and Zhang, 2012; Luo et

al., 2013, 2014; Zheng et al., 2016), whereas relevant stud-
ies on predictability, especially on the small scales, which is
key  to  the  convective-scale  numerical  forecast,  remain
scarce.  In  the  present  study,  the  forecast  error  growth
(ensemble  variability)  and  associated  impact  on  precipita-
tion  (precipitation  uncertainties)  within  convective-scale
ensemble  forecasts  have  been  systematically  investigated
through 13 cases to better understand the predictability of con-
vective  events  dominated  by  different  large-scale  forcings
over  the  YHRB.  In  particular,  this  study  considers:  (1)
whether the growth of flow-dependent initial error and associ-
ated impact on precipitation are dependent on different con-
vective regimes; and (2) the sensitivity of LBC errors and real-
istic flow-dependent IC errors at different scales.

We  designed  an  OSSE-based  ensemble  data  assimila-
tion  and  forecast  system  to  produce  realistic  flow-depend-
ent  IC/LBC  perturbations  and  initialize  convective-scale
ensemble  forecast  within  a  12  h  forecast  range  (CTRL),
applied  the  convective  adjustment  timescale  (Done  et  al.,
2006) to differentiate convective regimes controlled by differ-
ent  large-scale  forcings,  compared  spatiotemporal  error
growth based on NRMDTE at different scales across convect-
ive regimes, and applied the power ratio (R) of the decorrela-
tion scale  to measure the precipitation uncertainty in terms
of spatial scale. The sensitivities of LBC and IC errors at dif-
ferent scales were further assessed using several scale-based
ensemble sensitivity experiments (IC_MULTI, IC_SMALL,
IC_TRANS, and IC_LARGE).

The  investigation  of  CTRL  revealed  that  the  error
growth  dynamics  are  highly  regime-dependent,  leading  to
varying  precipitation  uncertainties  within  the  12-h  forecast
range. In general, the weak-forcing events (characterized by

 

 

Fig. 14. As in Fig. 11 but for IC_LARGE.
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weaker large-scale advection and higher CAPE) are less pre-
dictable,  a  conclusion  consistent  with  those  of  previous
work  (Done  et  al.,  2012; Keil  et  al.,  2014; Klasa  et  al.,
2019).  Specifically,  the  forecast  error  under  strong  forcing
exhibits  a  stepwise feature  similar  to  that  seen in Zhang et
al. (2007), while the error growth under weak forcing exhib-
its  larger  variability  with  a  peak  that  corresponds  to  the
solar-forced daytime peak phase for mei-yu-season convec-
tion over the YHRB (Sun and Zhang, 2012). The correspond-
ing assessment of precipitation uncertainties shows a strong
relationship between precipitation and error growth: the up-
amplitude  growth  of  NRMDTE  determines  the  magnitude
of R at  a  given  scale,  while  the  upscale  growth  of  NRM-
DTE  before  saturation  influences  the  distribution  of R
across scales during the same period.

A  comparison  of  CTRL  and  IC_MULTI  reveals  that
LBC errors impose a quasi-linear increase in the magnitude
of  NRMDTE  in  both  regimes,  indicating  that  the  mag-
nitude of the forecast error is primarily driven by the large-
scale  flow.  Specifically,  in  the  absence  of  LBC errors,  the
associated R under strong forcing shows a consistent decay
within 4 h, revealing the importance of LBC perturbation in
the ensemble design, especially for the strongly forced mei-
yu frontal events.

The evaluations of IC_SMALL and IC_LARGE demon-
strate  that  scale  interaction,  including  upscale  transfer  of
small-scale  errors  and  downscale  cascade  of  larger-scale
errors,  is  evident  in  both  convective  regimes.  Generally,
small-scale  IC  errors  are  effective  during  the  first  4  h  and
cause  precipitation  uncertainties  at  the  meso-γ-scale,  while
the larger-scale IC errors are responsible for the magnitude
of forecast error during the subsequent forecast range and pro-
duce precipitation uncertainties at the meso-β-scale. This res-
ult indicates that the limit of practical predictability can appar-
ently  be  extended  by  reducing  the  initial  errors  at  larger-
scale  (Sun  and  Zhang,  2016)  and  highlights  the  relative
importance  of  initial  perturbations  at  larger  scales  in
ensemble design (Johnson et al., 2014; Surcel et al., 2017).
Thus, the scale-blending method (Caron, 2013; Wang et al.,
2014)  can be employed in convective-scale  ensemble fore-

cast  systems  to  introduce  larger-scale  perturbations  pro-
duced by a coarser resolution ensemble forecast system that
better sample the uncertainties of synoptic weather systems.
We also find that small-scale IC errors are more sensitive in
the  weak-forcing  regime  than  that  in  the  strong-forcing
regime. To improve the ensemble design, the model resolu-
tion  can  be  enhanced  to  allow  more  error  growth  at  small
scales when local instability plays more important roles.

This study focuses on the practical predictability within
convective-scale ensemble forecasts of warm-season convect-
ive events in the YHRB. The influence of intrinsic predictabil-
ity  is  also  determined  as  all  the  forecast  errors  for  all  the
scale-based sensitivity experiments exhibit convergence tend-
ency. These findings provide insights into convective-scale
predictability,  particularly  the  regime-dependent  features,
which has not been demonstrated previously. However, our
final  goal  is  to  build  an  operational  convective-scale
ensemble forecast applicable to the YHRB, a task for which
the  domain  size  used  in  this  study  may  not  be  sufficiently
large.  A discussion on the  optimal  configuration  for  build-
ing  a  convective-scale  ensemble  forecast  remains  the  sub-
ject of future consideration.
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APPENDIX A

DESCRIPTION OF ERROR

We used the difference total energy (DTE) to represent
energy  differences  between  ensemble  members.  A  vertical
function (Nielsen and Schumacher, 2016) is introduced to cal-
culate the vertically integrated root-mean DTE (RMDTE):

RMDTE(λ)i, j,t =

√
1

nmembers

∑nmembers

m=1

∑nlevels

k=1

p (k+1)− p (k)
p (0)

1
2

[
u (λ)′i, j,k,t,m

2
+ v (λ)′i, j,k,t,m

2
+

Cp

Tr
t (λ)′i, j,k,t,m

2
]
, (A1)

nmembers

nlevels

where  is the number of ensemble members, the sub-
scripts i, j, k, t, and m represent the x-direction, y-direction,
vertical level, forecast time, and ensemble member, respect-
ively. λ is the spatial scale. As vertical sub-tropospheric lay-
ers are typically used to model convective weather,  rep-
resents vertical layers from 1000 to 100 hPa, with p denot-
ing  the  pressure  at  each  vertical  layer.  The  three-dimen-
sional error field for the inner domain was created using Eq.
(A1).

As  RMDTE  values  can  vary  by  convective  event,  we
used a method proposed in Nielsen and Schumacher (2016)
to compare different cases by calculating their associated nor-

malized  RMDTEs (NRMDTEs)  as  the  ratio  of  RMDTE to
total mean kinetic energy (TMKE). The TMKE and its integ-
rated form for a specific region are given as 

iDTE(λ)i, j,t =
1

nmembers

nmembers∑
m=1

nlevels∑
k=1

p (k+1)− p (k)
p (0)

×

1
2

[
u(λ)′i, j,k,t,m2+ v(λ)′i, j,k,t,m2+

Cp

Tr
t(λ)′i, j,k,t,m2

]
TMKE(λ)i, j,k,t =

1
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m=1

1
2

[
u (λ)i, j,k,t,m

2

+v (λ)i, j,k,t,m
2
]
, (A2)
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iTMKE(λ)i, j,t =
∑nlevels

k=0

p (k+1)− p (k)
p (0)

(
TMKE(λ)i, j,k,t

)
.

(A3)

The  temperature  term  is  excluded  from  Eq.  (A3)  to
allow the TMKE to vary with the convective situation in ques-
tion. Thus, the NRMDTE can be calculated as 

NRMDTE(λ)i, j,t =

√
iDTE(λ)i, j,t

iTMKE(λ)i, j,t
. (A4)

The growth of errors at different scales can be assessed
by  computing  NRMDTE  over  time,  which,  according  to
Lorenz (1969), can also be used to represent predictability:
as the region-averaged NRMDTE gradually increases, predict-
ability decreases.

APPENDIX B

CONVECTIVE ADJUSTMENT TIMESCALE

The  convective  adjustment  timescale  is  defined  as  the
rate at which CAPE is removed by diabatic heating associ-
ated with precipitation (Done et al., 2006): 

τc =
1
2

Cpρ0T0

Lvg
CAPE

prate
, (B1)

Cp

ρ0 T0

Lv

prate

τc prate

where  is the specific heat capacity of air at constant pres-
sure,  and  are  the  reference  density  and  temperature,

 is the latent heat of vaporization, g is the acceleration of
gravity,  and  is the precipitation rate.  In this study, the
deterministic forecast for the inner domain is used to calcu-
late . Prior to calculation, the CAPE and  are both spa-
tially smoothed using a Gaussian method (Keil et al., 2014)
with a  spatial  scale  of  36 km and masked with a  threshold
of 0.5 mm h−1 to avoid dry events (Surcel et al., 2016).
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