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Abstract

The vertical distributions of sand-dust aerosol®AS) over the Taklimakan Desert
(TD; 37°N-41°N, 78°E—88°E) that occurred during Hping are essential for both
long-range transport and climate effects, aparhftbe living environment and health.
In this study, we investigated the optical promertiof SDAs and evaluated the
correlation between optical properties and metegiohl factors over the TD area
located in the northwest of China. For this, we éhantilized the A-train
multiple-satellite remote sensing data providedsgggnchronized observations by
the Cloud-aerosol Lidar and Infrared Pathfindereflitg Observations (CALIPSO),
CloudSat, and Moderate Resolution Imaging Spealionaeter (MODIS) instruments
for the study period during 2007-2010. Besides,haee verified the meteorological
factors observed from the CALIPSO to know the aggtlility and reliability with the
Radiosonde sounding data. We found that the clardsal discrimination (CAD)
algorithm can accurately identify clouds and SDAgrothe TD area, especially
during blowing dust/floating dust (BD/FD). Overalt, is revealed that the total
depolarization ratio of SDAs is below 0.5. Besidé®, temperature (T) and pressure
(P) of CALIPSO satellite products data are in ebecelagreement with the radiosonde
sounding measured data over the TD area. Furthest data points during the DS
(BD/FD) event spread towards lower (higher) relatinumidity (RH) ranged between
0.0386 and 0.6306 (0.1079 and 1.00). Our analysiwiges the observational

evidence from the CALIOP that the optical properted vertical dust particles and
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meteorological elements over the TD have distiretability below and above 4 km
height for DS and BD/FD events. The results obthiwél provide not only reliable

reference values for the improvement of the CAatgm used in the CALIPSO but
also provide critical information for model evaliget and enhancement of CALIPSO

products.

Keywords CALIPSO; CloudSat; Sand-dust aerosol; Radiosonaldjmakan Desert.

1. Introduction

Sand-dust aerosols (SDAs), one of the essentiakaketypes (i.e., mineral dust
particles mainly from the desert), affect the egdrglance and the hydrological cycle.
They induce directly by absorbing and scatteringalér radiation and indirectly by
altering cloud microphysical properties (Twomeyakt 1984; Chen et al., 2017),
causing air pollution and thus posing health haz&od humans (Tanaka and Chiba,
2006; Nan and Wang, 2018). The Taklimakan Desd),(The second-largest desert
in the world, extends between 37°N-41°N and 78°EE8f-ig. 1) located in the
central Tarim Basin, Xinjiang and the hinterland tbé Eurasian continent in the
mid-latitude region of the Northern Hemisphere (¢/a&t al., 2016; Pan et al., 2019).
It is surrounded by the Lake Lop Nur (which is & $ake), the Kunlun Mountains,

the Pamir Plateau, and the Tianshan Mountains eénetist, south, west, and north
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directions, respectively, forming a unique terraurrounded by the mountains on
three sides and a depression on one side (Sun 20@l; Lu et al., 2018). Because of
the Qinghai-Tibet Plateau and its surrounding mainous areas block the transport
of ocean water vapor, the TD region has becomexarreely arid climate area with
dry winters and little rain in summer. It has tHe@cteristics of sufficient thermal
conditions, scarce precipitation, intense sunshitiee significant temperature
difference between day and night, and sparse desg#tation, which constitutes a
unique and extremely fragile natural ecosystem. dhsert has a very different
climate and underlying surface conditions to thos®ther parts of the world. Its
atmospheric boundary layer structure and land searnfmocesses are unique and have
significant influences on the regional climate atehospheric circulation (Yumimoto
et al., 2009; Ge et al., 2016).

The TD area provided the most substantial contiobuto global dust emissions,
next to the Sahara Desert in Africa (Ma et al., 20¥ehta et al., 2018). Previous
studies have found that dust particles from thectid fertilize not only the Pacific
Ocean but also the North Atlantic Ocean (Yumimdtalg 2009). These particles also
contribute to background dust in the free atmosphed affect the radiative budget at
high altitudes through scattering and absorptiomiigy its extraordinary long-range
transport, the dust even reaches heights whewult create nucleation sites for ice
clouds (Sakai et al., 2004; Sassen et al., 2008p, Aduang et al. (2009) found that

dust aerosols have a significant impact on theatadi energy budget over the TD,
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which can heat the atmosphere between 1 and 3 K dde altitudes of Asian dust
loading in the atmosphere are essential for botly-fange transport and climate
effects. The case studies showed that the dustlparfrom the TD could reach the
upper troposphere from 4 to 10 km above sea lewstiong convective updrafts, and
then be transported more than one full circuit acbthe globe in about 13 days
(Eguchi et al., 2009; Groussetet al., 2003; Unalet2009). Eguchi et al. (2009)
found a two-layered dust vertical distribution otlee northeastern Pacific and North
America in May 2007. The upper dust cloud (4-10 kvay seen above the primary
cloud layer and mainly originated from the dustsi® (DSs) that occurred over the
TD, and probably unmixed with the Asian pollutantéhereas the lower dust layer
(0—4 km) was largely generated from the DS thatioed in the Gobi Desert and got
mixed with anthropogenic aerosols.

Besides, the radiative effects of Asian dust agmicantly determined by the
vertical distributions (Huang et al., 2014). Howevihe net SDA climate effects
(direct, indirect, and semi-direct) are still highincertain. The model simulations of
aerosol vertical distributions differ by up to ooeder of magnitude, leading to
significant uncertainties in climate effects (e.fpxtor et al., 2006; Rosenfeld et al.,
2008; Guo et al., 2016). The impact of DSs overTibearea on the radiative energy
budget and the implications for the regional clienate open questions (Huang et al.,
2009; Shao et al., 2013; Yang et al., 20T%hang et al., 2019). Besides, due to unique

topography, the Taklimakan dust lower than 5 krnoame easily transported out of
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this desert (Ge et al., 2014). Still, it can ber&ned in height between 5 km and 10
km and carried horizontally over long distancesthg westerlies during the DSs
(Yumimoto et al., 2009), even on a global scalenfidsia to North America (Shao et
al., 2013; Zhang et al., 2019). The atmospherid tias been observed across the
continents and oceans, giving rise to its imporaimc both terrestrial and marine
ecosystems (Huebert et al., 2003; Mahowald et 2009; Kok et al., 2017).
Furthermore, many studies have been utilizing tA&IESO data to analyze SDAs in
different areas and helping to develop the accudc@AD algorithm (Tian et al.,
2017; Vaughan et al., 2019; Benkhalifa et al., 2@&laker et al., 2019; Luo et al.,
2020; Zeng et al., 2020).

The Cloud-Aerosol Lidar observed the detectionustdveather signals and more
accurate discrimination between clouds and SDA wiitthogonal Polarization
(CALIOP) sensor aboard the Cloud-aerosol Lidar &fdared Pathfinder Satellite
Observations (CALIPSO) satellite. It is critical tetrieve the cloud and aerosol
optical properties with more precise and high aacyrSeasonally, the DSs over East
Asia occurred and were more active primarily during spring season. Few studies
have provided more accurate results and evalubtedhility of CALIPSO detection
under different intensities of sand-dust weathet discrimination between clouds
and SDA using the version 4.2 algorithms. Furthilee, discussion on the vertical
distribution characteristics of SDA was also pr@ddunder different intensities of

sand-dust weather conditions. Also, the variatidraracteristics of atmospheric



132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

conditions under different sand-dust weather cambt utilizing the radiosonde data
is required and could be studied to verify the CBRIdata.

In this study, we examined the vertical distribnscof DS particles over the TD
and downwind regions using the satellite obsernatifor typical cases of sand-dust
weather conditions. This task is undertaken henreetdy the efficiency and accuracy
of the CALIPSO datasets applied over the TD regind the vertical distribution of
dust aerosols and associated atmospheric conditizahear different intensities of dust
weather (including floating dust (FD), blowing du®D), and dust storm (DS))
during spring over the study domain. This work paty provides a reference and
assessment of applicability for the use of CALIP@Gducts in the analysis of SDAs
under different intensities of dust weather durspging over the TD region but also
facilitates improvements to the CALIPSO datasetsrahis region and provides
critical information for model evaluations and waliion, where there are sparse
observations.

2. Data and methods
2.1.Satellite data
2.1.1. The CALIPSO

The CALIPSO satellite was launched on April 28, 0@ study the role of
clouds and aerosols in climate and weather (Wiekeal., 2007; Zhang et al., 2018;
Pan et al., 2019). The Llght Detection And RangibdpAR) is a powerful remote

sensing technique for obtaining information relatedthe vertical distribution of
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aerosols in the atmosphere (Liu et al., 2002). Qgiodal scale, the lidar data are

acquired by the CALIOP, which is a primary instrutheaboard the CALIPSO

satellite (Winker et al., 2007). The CALIPSO deyeld as a collaboration project
between NASA, and the space agency of France (CNE& provided
altitude-resolved profiles of aerosols and clousiace June 2006 (Winker et al.,

2009). The CALIOP provides global and continuoutrnmation on the vertical

distribution of aerosols and clouds. In additionthe total attenuated backscatter

signal obtained at two wavelengths (532 nm and 6% the CALIOP is capable of
acquiring polarization measurements at 532 nmh&sptrticle depolarization ratio is
considered as the fingerprint of desert dust dagifAnsmann et al., 2003; Liu et al.,

2008), the CALIOP is an ideal instrument for stsdielated to the three-dimensional

distribution and transport of dust in the atmosph@miridis et al., 2013; Proestakis

et al.,, 2018). At present, the researchers arotedworld utilized the CALIPSO
products to a greater extent to understand the atnpfaaerosols and clouds on the

Earth’s radiation budget (Kumar et al., 2018; Pah a., 2019). The

CALIPSO/CALIOP (version 4.10) aerosol products usethis study are:

() Level-1B products (temporal resolution: 0.05 stieat and spatial resolution: 30
m (0-8.2 km) and 333 m), include Total_Attenuateaclcatter 532/Attenuated
Depolarization Ratio/Attenuated Color Ratio.

(i) Level-2 products: Aerosol profile (temporal resadat 5.92 s, vertical and spatial

resolution: 60X 5km), include Extinction_Coefficient_ 532/
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Particulate_Depolarization_Ratio_Profile_532/Terapane/Pressure/Relative_H
umidity/Column_Optical_Depth_Tropospheric_Aeroséi32.

(i) Vertical feature mask (VFM) product (temporal resimin: 0.74 s, vertical and
horizontal resolution: 30 m (-0.5 to 8.2 km) an@® 38, 60m (8.2 to 20.2 km) and
1000 m. Include Feature_Classification_Flags (ieatype/cloud type/aerosol
type).

2.1.2. The CloudSat instrument
The CloudSat equipped with 94 GHz CPR (Cloud RedRhdar, W-band) is the

first solar polar-orbiting satellite dedicated toserving clouds with the characteristic

of high vertical resolution. It can be used to mdbe three-dimensional structure of
clouds globally (Stephens et al., 2008). The stda$f located on a solar synchronous
orbit at the height of around 705 km, and a s#telihat orbits the Earth in one
complete circle is called a scan track. The tothitdime and length are about 99 min
and 40,022 km, respectively. Each rail has 36,388satellite pixel points, a beam
coverage width with an along-rail resolution of R, and a cross-rail resolution of

1.4 km, together with a vertical resolution of 2#0at each sub-satellite pixel point.

The CloudSat not only focuses on the detection lofict layers consisting of

larger-scale particles with higher optical thickedmit on the internal information of

clouds. It can generate a vertical profile from ligeiid and frozen water content in
the cloud. Still, it is not detailed enough to peahin clouds at the top, and therefore,

difficult to present information on the aerosoltdisution (Pan et al., 2017).
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The CloudSat cloud products used in this study are:

() 2B-GEOPROF, include Radar_Reflectivity: Radar Raildty Factor;
CPR_Cloud_mask: CPR Cloud Mask.

(i) 2B-CLDCLASS-LIDAR, include Cloud Layer Base; Clougyer Top; Cloud
Layer Type. The data products were processed caubin radar-only and
lidar-only as well as a radar-lidar mode with theALlPSO or
moderate-resolution imaging spectroradiometer (M&Riata.

These two sensors have led to the development oy merieval algorithms and
greatly improved our knowledge on cirrus/ice clowtistributions and its
characterization as well as the classificationlofids and aerosols (Mace et al., 2009;
Pan et al., 2017, 2019; Mehta et al., 2018; Kunhal.e2018). However, few studies
have utilized both sensors to analyze and evalaatesol detection, and useful
classification of clouds and aerosols.

2.1.3. The MODI S sensor
The MODIS onboard Terra and Aqua satellites weundaed by NASA from

2000 and 2002, respectively. The Aqua satelliteg,ails the part of A-train satellite

constellations, flying ahead of the CloudSat and_IPSO only with 45 s and 75 s,

respectively. Consequently, the present studyzetilithe MODIS Aqua satellite to

retrieve the true color images used for the valbdatvith the DS outbreak cases by
the CALIPSO derived features during the selectegs dgipically representing the

optical and physical properties of DS and BD/FDrdbe study region.
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2.2.Meteorological data observed from the Radiosonde

To gain more accurate and comprehensive knowledgtheo variations and
characteristics of atmospheric conditions unddeht sand-dust weather conditions,
we utilized intensively observed radiosonde metegioal data (hereafter,
radiosonde data) to verify some of the data praVioke the CALIOP. The radiosonde
data used for the assessment is collected at Tgz{&hn04°N, 83.64°E, 1109 m)
during the period July 1-30, 2016. Tazhong is kedan the hinterland of the TD area,
which is shown with a star mark in Fig. 1. The aalnaveraged temperature in this
area was 12.1 °C, with the extreme maximum tempegatvaried between 40.0 °C
and 46.0 °C. Whereas, the mean yearly precipitatias measured less than 30 mm,
and the annual averaged evaporation potential e/&ggh as 3800 mm. However, the
winds prevailed from an easterly direction, witlgearly averaged wind speed of 2.3
m s’. The majority of occurrences of DS and BD/FD wirend during the spring
and summer seasons, with an annual averaged ogceroé DS, which is more than
30 days, and the prevailing BD and FD weather daodi were as high as 70 and 100
days, respectively. The radiosonde data observaitenis open and has no shelter.
The surface is shifted sandy land as well as thaenying surface property in
Tazhong, basically representing the surface cheniatits of the whole TD region.

The average horizontal drift distance of the GP@dong observation balloon is
~40 km, and the distance between Tazhong and thiectiDdary is more than 100 km.

Therefore, after the launch of the sounder, theigpiat passes over is desert surface.

11
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The timing of GPS sounding observations is foureSna day at 01:15, 07:15, 13:15,
and 19:15 (Beijing local time, UTC+8 h). The metdogical data obtained from the
experiment mainly include temperature, humiditggsure, wind speed, and direction
of each layer in vertical height. The data usethis paper are original, observed from
the ground up to 14 km. In this paper, we havecsetethe observed data to verify the
reliability and applicability of the meteorologicalements detected by the CALIPSO,
and explored the relationship between the metegrmbparameters and the variation
characteristics of different intensities of SDA ddions; and the correlation between
different SDA optical parameters and meteorologataiments.

The screening principle of site data is based enctbsest distance between the
CALIPSO during scanning time in transit over Tazh@md the radiosonde sounding
station in Tazhong (Fig. 2). Because the grounedaadiosonde sounding data and
the CALIPSO satellite sounding data are not coestsn space, and hence, included
with errors. Also, the maximum deviation distangdimited to 20 km, which means,
if the distance between the observation station #ed satellite scanning transit
position is more than 20 km; hence no data proegssidone (Sheng et al., 2003). At
the vertical height, the spatial matching is doasedal on the vertical resolution of 60
m detected by the CALIPSO, and the selected cosgasites are shown in Table 1.
To quantitatively understand the difference betwdenCALIPSO satellite inversion
data and the radiosonde sounding measured datavedsikom the corresponding

stations, this paper provides the calculationshefrnean error (ME), mean absolute

12
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error (MAE), root mean square error (RMSE), andalation coefficient (R) (Jolliffe
and Stephenson, 2011).
3. Resultsand discussion
3.1. Dust events over the TD — A case study

Dust events are defined as the observations ofiripalust (FD), blowing dust
(BD), and dust storm (DS) (Huang et al., 2008). sasellite data products do not
clearly define and distinguish between FD and B the gap between the two is
small, and hence, the present study does not sdediD and BD, just defined the
DS and BD/FD only. Based on our previous invesioga(Pan et al., 2019), we found
that: the dust events in TD area mainly occurrednduthe spring and summer
seasons, and the annually-averaged probabilitp wtidifferent dust events is as
follows: FD (56.75%), BD (35.84%), DS (7.41%). Tetter identify the sandstorm,
this paper combines the CALIPSO, CloudSat, and A4@DIS quasi synchronous
joint detection data. While the CALIPSO and Cloud#ant detection data only
provide the detection results for the entire ydewen 2007 to 2010, and hence, we
selected the most typical DS and non-DS eventsllpiflustrate their characteristics
and differences over the domain (Deng et al., 2013)
3.1.1. Dust storm (DS) events

Two typical DS cases were chosen to analyze thecabpproperties of DS
particles, and the ability of CALIPSO to detectrthewhich are found on April 22,

2007, and April 14, 2010, are presented in Fid:i§. 3 shows the two DSs outbreaks

13
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299

over the TD area and the locations where the MO&R|8a overpasses along the orbit
track across the TD at 07:44 (Fig. 3a) and 07:4§. (Bb) UTC. These data were
acquired on the daytime side of an orbit, as degidty the CALIOP. On April 22,
2007, the time of CALIPSO overpasses the TD arem avaund 07:44:21-07:45:26
UTC (Lat: 37.50-40.50 °N, Lon: 83.67-82.74 °E), atitt overpass time of
CALIPSO on April 14, 2010, was between 07:45:55 a@d:47:02 (Lat:
37.50-40.50 °N, Lon: 83.74-82.81 °E). It can bensémt the location of the DS
outbreak is very close to Tazhong.

Fig. 4 shows the CALIPSO and CloudSat (hereafte},derived features for two
typical DS cases observed over the TD. The radectwity observed from the
CloudSat 2B-GEOPROF product is shown in Fig. 4Aichllustrates that there is a
small cloud at the height of ~6.5 km around 37.5Whereas, Fig. 4B demonstrates
clearly that the cloud mask 30 (yellow) confirms the existence of a cloud fa t
same height. Fig. 4C presents the cloud informajontly detected by 2C. The
results of combined detection are more compreherain effective, and we can see
that it is As (Altostratus, blue color), where tGéoudSat 2B-CLDCLASS-LIDAR
product was utilized. In summary, it can be see timly ‘As’ clouds were present at
the height of ~6.5 km around 37.5°N during thelfescanning transit when the DS
breakout occurred on April 22, 2007.

According to the CALIPSO official website, as memnid in the summary of the

data product guide on Level-1 attenuated backsoattfficient detection of CALIOP,

14
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aerosols were generally shown as yellow/red/oraotm. More reliable, strong cloud
signals are plotted in gray scales, while weakeudatlIreturns are similar in strength to
strong aerosol returns and coded in yellow and Fegl. 4D shows the CALIPSO
attenuated backscatter measurements demonstratatttf®e height of 2-4 km and
around 37-41°N, SDA (red-yellow-orange, 0.0015-6®&mni*Sr') envelops the
cloud (gray > 0.0065 kihSr'). Among them, dust particles are the main oned, an
clouds (mainly gray-white-colored features) at &M were also observed by the
CALIOP, as shown in Fig. 4E from VFM (Vertical Fee¢ Mask, the CALIPSO VFM
4.10 product which describes the vertical and lomtizl types of cloud and aerosol
layer, and is used to distinguish dust and cloet)m Figs. 4E-4F, it can be seen that
SDA can be lifted to 5 km height. Based on the abamalysis, the cloud—aerosol
discrimination (CAD) algorithm has identified moSDA features correctly while
misidentifying the SDA as a cloud at the heigh2e#f km and around 37—41°N in
cyan color. It is notable that “No Signal” is prasérom the surface up to 1.5 km or
3 km height in Fig. 4E. The misclassifications dNo Signal” happen mainly due to
the extremely dense dust when DSs break out oatumtere the lidar signal
becomes attenuated (no surface signals are defectethe thick dust plume has
similar optical properties to what would be expdcter clouds by the CAD
algorithm.

Figs. 4G—H shows the depolarization ratio and atieed color ratio observed

over the study domain. The depolarization ratiossful for discerning the difference
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between spherical and non-spherical particles. fherical particles (i.e., dust, ice
crystals) change the polarization state of the &eatkered light, while spherical
particles such as water droplets or spherical aé&sodo not. The SDA generally
exhibits a depolarization ratio smaller than 0.#8ayved at the height of 2—4 km (Fig.
4G). In contrast, the attenuated color ratio camdeful for inferring the information
about the size of the particles in the scatteriolgime. The color ratio will often be
smaller than 1 for aerosol layers found at 2—4 legtt (Fig. 4H) and greater than 1
for cloud layers depicted at ~10 km height and ado@7.5°N (Fig. 4H). This has
been confirmed based on the summary of the dat@uptauide and mentioned at

https://www-calipso.larc.nasa.gov/resources/calipsers guide/browse/index.php.

Furthermore, it can be seen from Fig. 4D, and #gthat the distribution of dust
concentration is uneven when the DSs occurredtfzare is a large concentration of
dust signal area. At the same time, a typical D&hewas also presented in Figs. 4a—h
(right panels) occurred on April 14, 2010, and dmalysis was found similar to that
observed in Figs. 4A—H (left panels).

As stated above, the CloudSat 2B-CLDCLASS-LIDAR duat can identify
cloud information more effectively and compreheebiv Moreover, the CALIPSO
has excellent detection capability for clouds dvesm. Combined with the detection
information of 2C, we noticed that the CAD algonittof CALIPSO could recognize
most of the dust information better. As for the B&nts, the CALIPSO misjudges

dust as a cloud at a height of 4 km from the serfand there is a phenomenon of
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severe signal attenuation. For example, the attemueange is about 1 km over the
TD from the surface to an altitude of 2 km. Thigaa@led that a high concentration of
dust particles rose about 1 km from the ground wherDSs occurred. The results of
the DS height are consistent with Ming et al. (20®¢ho utilized the ground-based
Ka wavelength millimeter-wave radar to detect the i@gyht in the TD area during
March-May, 2009. Besides, the high values of rad#ectivity (yellow line) located
at an elevation below 1 km attributed to the grosmdface (combined with Figs.
4E/e), and are consistent with the mean altitudh@fTD region as detected by the
guasi-synchronized observation of 2C.

3.1.2. Blowing dust/floating dust (BD/FD)

Two typical BD/FD cases of 2C cloud and aerosatritisination are displayed in
Fig. 5. The data were acquired by 2C on May 14 72@dthout cloud), and May 16,
2008 (with cloud) from nighttime overpass orbitckkaacross the TD region. The
products derived from the simultaneous CloudSaaradeasurements are presented
in Figs. 5A-C and Figs. 5a—c to identify dense dkand dense dust particles. First,
we analyzed the day on May 14, 2007, where the BDgarticles lifted to ~6 km
(Figs. 5A—-H). It is depicted that the dust layereidremely pure without the cloud.
Also, a spatially extensive TD dust layer of modemptical thickness was observed,
especially at the height of 6 km, extending fron7*M8to the end at ~41°N. The dust
layer is easily identified from the depolarizatioratio measurement with

green—yellow—orange colors (0.2—-0.4), color ratiwaker than 1, and feature type
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acquired with green at ~6.5 km height (Fig. 5 (ledinels)). A relatively dense dust
plume (red-gray-colored features in Fig. 5D) isnséetween 37° and 38.5°N and
below ~5 km, where the lidar signal becomes eelitiitenuated (black box) and the
optical depth, therefore, should be more significdnan ~3. Thus, the dense dust
plume observed at the height of ~2 km (black b@g heen misclassified by the CAD
algorithm in Fig. 5E, because its optical propertae similar to what would be

expected for clouds.

Meanwhile, we presented another typical case obdeon May 16, 2008, with
BD/FD lifted to ~12 km (Fig. 5a—h (right paneld)).this scenario, the cloud layer is
easily identified which is cirrus observed at theght of 9-12 km (Figs. 5a—d), and
surrounded by a low-density dust plume (yellow-cedt) lifted to ~12 km
(Figs. 5e-h). As it is mentioned before, the caltdio is smaller than 1 for aerosol
layers and greater than 1 for cloud layers. Howevbke cirrus exhibited a
depolarization ratio in the range of 0.25-0.40, Hmabke of dust aerosols usually are
smaller than 0.40 (Fig. 5g). Furthermore, 2C hdealed most cirrus effectively and
comprehensively, which is consistent with the répaf Pan et al. (2017). The
CALIOP observes the clouds (gray—white-coloredufiess) in Fig. 5d and all clouds
in this scene have been identified relatively octerd by the CAD algorithm. We have
also noted that, in addition to SDA, the CloudSadar is also unable to detect
optically thin high clouds (e.g., the yellow—orang®ored feature with a white dotted

box in Fig. 5d), due to weak detection ability fmnall particles at radar wavelengths
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(3 mm, 94 GHz). A relatively dense dust plume (BD)an be lifted to a height of
~6 km (Fig. 5), while a less thick dust plume (BDJFcan be raised to relatively
higher altitudes (~12 km). Furthermore, the distiidin of dust concentration is very
uniform when BD/FD events occur. Anyway, as analyaed studied, the CloudSat
and CALIPSO observations together can provide nooraplete measurements of
aerosol and cloud distributions. Moreover, the C#{gorithm can accurately identify
clouds and SDA over the TD in BD/FD events, andre¢hare fewer cases of
misjudgment.
3.2. Optical properties of SDA

To better estimate the optical properties of SDA #re difference between DS
and BD/FD, we deal with the optical parameters & Bnd reduce the signal
mistakenly judged as the cloud to the signal of SEBAimprove the accuracy and
effectiveness of DS information (based on 2C comdbiproducts to distinguish dust
aerosols and cloud signals, to effectively sepatfatereal clouds or the cases where
dust is mistakenly identified as clouds. When thstéerosol is incorrectly identified
as cloud, we delete the so-called cloud signal, thed interpolate it to reduce the
impact caused by mistakenly identified). Fig. 6 \@hdhe optical properties of SDA
(DS, BD/FD) for four typical cases. The optical ttefOD) for the cases of DS and
BD/FD is shown in Fig. 6a. It is evident that th® @f SDA almost exceeds 1.5.
During the DS event on April 22, 2007, there we@gODs less than 1.5, because

the CAD algorithm mistakenly identified the dusttpdes as clouds and eliminated
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the dust information as cloud information, reswtin the discontinuity of OD and

hence, resulted in low values. Besides, the CALIRS@not detect the DS effectively
and comprehensively; and there will be severe sigttenuation at the surface with
high dense dust concentration, so the OD obtairyeith\ersion is similar to that of

the BD/FD events. Fig. 6b shows the extinction toeht (EC) for SDA events. The
EC of all SDA events increases first and then desge below 3 km height (dotted
line), and the average EC of DS (blue and red Jirgesignificantly higher than that of
BD/FD (yellow and purple lines). The DS in this iy could be lifted to ~5 km

height, while it could be raised to a higher heigtitibuted to the dynamics of the
atmosphere and sand-dust events that frequentiyreccduring the study period.

Fig. 6¢c shows the mean depolarization ratio (DR)IDA events. The mean DR
of DS events (red and green) were mainly concexdrat more than 0.4 km and less
than 5 km height, and the distribution is relatyvetattered. Generally speaking, the
mean DR of DS is distributed in the range 0-0.9la#ldw 6 km. However, this is not
the case for BD/FD events. The mean DR of BD/FDnedor May 14, 2007
(manganese purple) are mainly concentrated inahger 0.3—0.4 and less than 7 km
height; those of the May 16, 2008 events (blackewecused primarily on the range
0.1-0.4 and below 12 km height, with the DR belolin¥ decreasing with the height;
and the distribution of the mean DR above 7 km @saruniform. It can be seen that
there are apparent differences between DS and BDAHD, our results proved once

again that SDA generally exhibited a DR smallerntta40 (Liu et al., 2009).
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However, the mean DR existed at the height of niizae 0.4 km and less than 5 km,
which implies more presence of non-spherical pediat lower altitudes during the
DS outbreak events. Fig. 6d shows the DR for alldvé&nts and BD/FD events. It is
revealed that the proportion of DR for DS variedthe range 0.3-0.4 is the largest
with 18.75%, while the most substantial percen{@de89%) of DR for BD/FD found
between 0.1 and 0.2. The proportion of DR that oecuin the range of 0-0.3 for
the/FD events is higher than that of DS, while peecentage of DR for the DS was
found higher in the range 0.3-1.0 than that of HD/fh conclusion, the particle DR
of DS was mainly occurred in the range 0.2-0.5,levithe BD/FD was found
primarily on the range of 0.0-0.4. Therefore, tl¢alt DR of SDA is mainly
concentrated in the range of less than 0.5.

With the above discussion, it is essential to noenkiere, that firstly the CloudSat
and CALIPSO combined products can provide more d¢etmpmeasurements of
aerosol and cloud distributions. Moreover, the C#{§orithm can accurately identify
clouds and SDA over the TD under most BD or FD &vexcept DS. Secondly, as
mentioned in the paper, for DS, the misclassifaraiand “No Signal” happen mainly
due to the extremely dense dust when DS break octraed, where the lidar
(CALIPSO-CALIOP) signal becomes attenuated (noamgfsignals are detected), or
the thick dust plume has similar optical propertieswhat would be expected for
clouds by the CAD algorithm. Thirdly, because dpstticles are much smaller than

cloud particles, millimeter-wave cloud profile rad&€loudSat-CPR) is not sensitive
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to detection of dust particles, so millimeter-waleud radar cannot effectively detect
dust storm particles; because the millimeter-wdoeed radar can effectively detect
the cloud signal, the CloudSat and CALIPSO combipeoducts just can only
distinguish the cloud and non-cloud signals whea @AD algorithm mistakenly
judges dust as a cloud. All in all, further ideistition of cloud and DS signals needs
to be combined with more other detection methodsth@ other hand, because of the
scarcity of observation stations in the TD, althoupere is some uncertainty in
conclusion, even so, the study of typical casesptayna vital role in the correction of
SDAs and cloud process retrieved by satellite rens@nsing, which is still very
valuable for us to understand further the distrdyutcharacteristics of SDAs and
cloud in Taklimakan Desert. Later, the authors wiévote themselves to further
research.
3.3. Variation of meteorological elements with altde
3.3.1. Applicability of meteorological factors fromthe CALIPSO

The contour density plots of temperature (T), presgP), and relative humidity
(RH) distributions obtained between the CALIPSCelig¢ product and radiosonde
observational dataset are used to evaluate theicapiity of meteorological
parameters over the TD area (Fig. 7). It is rewkdleat a small dispersion was
observed during the study period, represents aease in T-CALIPSO (temperature
obtained from the CALIPSO) with an increase in diwaonde (temperature measured

from the radiosonde) and the same has been fouRd(figs. 7A and B). Relatively,
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there is a large dispersion in the data points rkgein RH-CALIPSO with
RH-radiosonde (Fig. 7C). However, the T data olet@ifrom the CALIPSO are in
excellent agreement comparative with the radios@miending data (T_ME=0.3804;
T _RMSE=1.6812; T_R=0.9977), which indicates that THCALIPSO data is suitable
over the hinterland region in the TD area. Sinylathe P-CALIPSO satellite products
are almost identical with the P-radiosonde soundidgta (P_ME=3.6432;
P_RMSE=4.3342; P_R=0.9999), which shows that th@icgbility of the P data is
opted to chose in the desert hinterland. Therefthre, applicability of CALIPSO
satellite products’ for T and P data is excellattich can effectively make up for the
severe lack of coverage of sounding data in thesgptex terrain areas. In contrast,
there is a large degree of dispersion of RH (RH_®MB£24; RH_RMSE=0.2185;
RH_R=0.5955), and the RH from the CALIPSO satefiteducts have relatively low
correlation with the RH-radiosonde sounding data ttuthe time difference of about
two hours between the two data sets.

Meanwhile, the mean errors (ME) were analyzed tdewstand whether the
CALIPSO satellite products overestimated or undaneged (Fig. 8). It is revealed
that the Tof CALIPSO products were slightly overestimatedingrthe study period
(Figs. 8A) during most days. However, the trend$éfE and RMSE are consistent
in T. It is evident that the RH was slightly undamnated as well as overestimated
during the study period (Fig. 8B). Furthermore, Rebetween RH-CALIPSO and

RH-radiosonde was noted with a moderate correlaifo®.5955. It is worth noting
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that due to the high correlation of pressure, wendibmake a detailed analysis here.
Besides, it is found that the P data of the CALIPS®llite products and radiosonde
observations have almost precisely coincided. Hetiee deviation analysis of the

vertical profiles also has not been done.

The vertical profiles of the ME, MAE, and RMSE forand RH observed from
the CALIPSO satellite products verified against tlagliosonde observations are
shown in Figs. 8C and 8D. At about 2 km height,Mtte MAE, and RMSE of T have
shown the most significant values, while at aboutnd height, they depicted the
lowest. The CALIPSO satellite products indeed ostmate it with increasing
altitude (> 4 km). Besides, it is evident that tRél is underestimated by the
CALIPSO satellite products below 5 km, while itagerestimated above 5 km, and
the smallest ME occurs at 4.5 km height. It carsben that the CALIPSO satellite
products had lower MAE at 1 km. It is also obserteat the largest RMSE of RH
occurred at about 6 km, which might be relatednteractions with the troposphere
(Smith and Kushner, 2012). Whereas, the smallesSRMf RH occurred at 1 km,
which is near the ground height over the TD reglaring the study period.

Overall, the T and P data of CALIPSO satellite picid are in excellent
agreement with the radiosonde data over the TDth@de, P is the best factor for
observation quality found in this study. T has gn#icant relative deviation in the
lower layer and overestimated the actual T at nadi#tudes. In comparison, the

variation of RH is relatively small in the lowerykr, and the real RH value was
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underestimated below 3 km in the lower layer. Timay be related to the unique
natural properties of the underlying desert surf&eerall, the T and P data of the
CALIPSO satellite has excellent applicability otlee TD area.
3.3.2. Comparison of meteorological elements observed from CALIPSO in different
intensities of SDA

The variations of T, P, and RH from the CALIPS&ellite products with height
during the DS and BD/FD events are shown in Fig:@.T, it is evident that there is
a temperature inversion phenomenon under the weat®D/FD below 2 km (Fig.
9A). This is because the two weather conditionsipat about 9 pm (UTC), and the
desert surface releases a lot of heat. In the oddeS events, the temperature
fluctuated (virtual line frame) at the height ofkéh. This may be related to the
temperature of the bare desert increases rapidty tlee atmospheric stratification is
always in an unstable state during spring, conaucig the formation and
development of DS. However, the T between 4 km Eh&m decreases with height,
and hence, there are no apparent fluctuationsviuitil similar changes observed in P
(Fig. 9B). For RH (Fig. 9C), the DS events occumadApril 22, 2007(blue) and April
14, 2010 (red), showed an increasing and decreasngs at the height of 1-3 km
(2-3.5 km) and the maximum value of RH appearednatltitude of 2 km (3 km),
which is consistent with the height of mistakingstlfor the cloud. This may be one
of the reasons that the CAD algorithm mistakenbniifies clouds and aerosols. For

the BD/FD event, the RH decreases first and thereases at heights between 1 and
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3 km, and the minimum value of RH appears at atudé of 1.5 km. Overall, the RH
during DS and BD/FD events showed opposite tremds teeight below 3 km. This
means that there is water vapor transport in thdiceé direction during the
occurrence of DS, and an increase of aerosol comtenng the process of DS
increases the probability of subsequent precipmatihus increasing the RH of the air.
3.4. Correlation between optical properties and emblogical factors

The contour density plots between the optical prigee (extinction coefficient
(EC) and depolarization ratio (DR)) of SDAs and eweblogical factors (T, RH)
observed during the DS and BD/FD events are predentFig. 10. The EC of DS is
significantly higher than that of BD/FD. It can been that the concentration of DS
particles is much higher than that of BD/FD, ane #alue of DR is concentrated in
the region of 0.69 (Figs. 10A and 10G). TowardsTland EC, the number of DS data
points spread out into areas of high EC and lowdgssted increased dominance of
dense aerosols attributed to the DS activities treafand surface, while the BD/FD
data points spread out into regions of low EC aigh T (Figs. 10B and 10H).
Moreover, the more extensive temperature distdoutange of BD/FD is due to the
greater height of dust particles raised by the ED#&ctivity, and the signal loss
caused by attenuation at an altitude below 3 kmrvthe DS occurs, and the height of
dust particles raised is generally lower than 5 Kime distribution difference of DR
between DS and BD/FD events is small. However, ethare relatively more

coarse-mode particles than fine-mode particles wb&s occurred. For the DS
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events most data points spread towards lower RH betwe@380and 0.631, while the
BD/FD events have a large number of data pointseraal towards higher RH
between 0.108 and 1.00 (Figs. 10D and 10J). FurtieRH was much lower for the
DS event than BD/FD and combined with T. We can the¢ the height of dust
particles for DS was relatively small, which may d® essential reason why dust is
mistakenly identified as the cloud (Figs. 10E-F afd—L). Overall, the atmospheric
conditions during DSs are dry and cold, while thos&8D/FD are relatively warm
and wet. Therefore, by checking the low-layer T B#t| the misclassified dense dust
layers may be identified in the DS cases. In cattrgome other results showed that
the DSs usually occurred during dry and hot airditions over the source regions in
the daytime, due to the enhanced convection inepated boundary layer in the
other areas (Mbourou et al., 1997).
5. Conclusions

In this study, we investigated the optical progertdf sand-dust aerosols (SDAS)
using A-train multiple-satellite remote sensingadaiVe evaluated the correlation
between optical properties and meteorological facbserved during the spring over
the Taklimakan Desert (TD) area (37°N-41°N, 78°EB}&ituated in the northwest
of China. The data presented in this work is deriivem the CALIPSO, the CloudSat,
and the MODIS instruments for the selected domaiing the period between 2007
and 2010. Besides, we have verified the applidgbiand reliability of the

meteorological elements of CALIPSO satellite datadpcts over the TD area using
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the radiosonde sounding data measured from Julf,12€BL6. The following are the
main conclusions established from the results nbthin this study.

1. The CAD algorithm can accurately identify clowatsd SDAs over the TD under
BD/FD conditions, and there are fewer cases ofudgnent. For DS event, the lidar
signal becomes attenuated (no surface signalsedeetdd), and the incredibly thick
dust plume could be misclassification as cloudghey CAD algorithm. It is worth
noticing that the CAD algorithm works well in m&D/FD cases, but not in the DS.
2. The optical depth of SDAs revealed from the olm@ns is almost more than 1.5.
Further, the value of the total particle depolar@aratio (DR) of SDAs is less than
0.5. Moreover, the T and P data of the CALIPSOl&&tgoroducts are in excellent
agreement with the radiosonde sounding data iTEheOf these, P is the best factor
for observation quality in this study. In contrakfluctuated notably at the height of 3
km during DS events. Whereas, the RH showed ansifgpioend at an altitude below
3 km for the DS and BD/FD events. However, no sigant differences were found
in P for DS and BD/FD.

3. For DS events, most data points spread towandsrl RH between 0.0386 and
0.6306, while BD/FD events have a large number aih ¢points covered towards
higher RH between 0.1079 and 1.00. The atmospheriditions of DSs are dry and
cold, while those of BD/FD are relatively warm awet in the TD. Therefore, by
checking the low-layer T and RH, the misclassifiethse dust layer may be identified

in DS cases. Additionally, many DS data points ag@reut into regions of high EC,
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and low T suggested an increased dominance of deesesols attributed to DS
activities near the land surface, while BD/FD dpténts spread out into regions of
low EC and high T.

Overall, the results mentioned above will not ohkip us to understand the
optical properties of global SDAs better, and sdogt emission and transport; but
will also provide critical information for model alations and improvements in the
CALIPSO satellite products. They also offer relahleference values for the
improvement of the CAD algorithm in CALIPSO. Funthhesearch on SDAs should
focus on combining the CALIPSO measurements witheotA-Train satellite
measurements, as well as measurements from aiegrdfsurface network/supersites
in the TD area.
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Table 1. The CALIPSO overpass time over the TD area andtiserved radiosonde

sounding time at Tazhong site.

Sounding Radiosonde CALIPSO CALIPSO overpass Time interval
Station Sounding Time overpass time range (or difference)
(°N,°E) (YYYY-MM-DD-h  coordinates (YYYY-MM-DD-h  between
h:mm/UTC) over the TD h:mm:ss/UTC) over sounding and
(°N)(°E) the TD satellite
detection. (hh:
mm)
Tazhong 2016-07-01-06:00 (37.02,40.98) 2016-07-01-07:56: 01:57
(39.04,83. (80.80,79.5)  21-07:57:27
63) 2016-07-02-18:00 (41.00,37.04) 2016-07-02-20:39: )
(83.35,82.13) 33-20:40:39 02:40
2016-07-03-06:00 (37.02,40.98) 2016-07-03-07:43: 01:45
(83.90,82.68) 56-07:45:02
2016-07-04-18:00 (41.00,37.04) 2016-07-04-20:27: 02:98
(86.44,85.23) 09-20:28:14
2016-07-05-06:00 (37.02,40.98) 2016-07-05-07:31: 01:32
(87.00,85.78) 31-07:32:37
2016-07-07-18:00 (40.99,37.03) 2016-07-07-20:57: 02:59
(78.74,77.51) 59-20:59:05
2016-07-08-06:00 (37.04,41.00) 2016-07-08-08:02: 02:03
(79.27,78.05) 24-08:03:30
2016-07-09-18:00 (40.96,37.04) 2016-07-09-20:45: 02:46
(81.81,80.60) 40-20:46:46
2016-07-10-06:00 (37.03,40.99) 2016-07-10-07:50: 01-51
(82.36,81.13) 04-07:51:10
2016-07-11-18:00 (40.96,37.04) 2016-07-11-20:33:2 02:34
(84.89,83.68) 0-20:34:26
2016-07-12-06:00 (37.03,40.99) 2016-07-12-07:37: 01:38
(85.44,84.21) 44-07:38:51
2016-07-13-18:00 (40.99,37.03) 2016-07-13-20:21: 02:99
(87.98,86.76) 00-20:22:06
2016-07-14-06:00 (37.04,40.96) 2016-07-14-07:25: 01:26
(88.51,87.30) 25-07:26:30
2016-07-16-18:00 (40.99,37.03) 2016-07-16-20:51: 02:53
(80.24,79.02) 56-20:53:03
2016-07-17-06:00 (37.00,40.96) 2016-07-17-07:56: 0157
(80.79,79.56) 20-07:57:27
2016-07-18-18:00 (40.96,37.00) 2016-07-18-20:39: 02:40
(83.31,82.09) 37-20:40:43



2016-07-19-06:00

2016-07-20-18:00

2016-07-21-06:00

2016-07-23-18:00

2016-07-24-06:00

2016-07-25-18:00

2016-07-26-06:00

2016-07-27-18:00

2016-07-28-06:00

2016-07-29-18:00

2016-07-30-06:00

(37.03-41.00)
(83.86,82.63)
(40.96,37.00)
(86.40,85.17)
(37.03,40.99)
(86.94,85.72)
(40.96,37.04)
(78.66,77.45)
(37.04,40.96)
(79.20,77.99)
(40.98,37.02)
(81.75,80.52)
(37.02,40.98)
(82.29,81.07)
(41.00,37.04)
(84.84,83.61)
(37.01,40.97)
(85.38,84.16)
(40.96,37.04)
(87.91,86.70)
(37.00-40.96)
(88.47,87.24)

2016-07-19-07:44-
01-07:45:07
2016-07-20-20:27:
16-20:28:23
2016-07-21-07:31:
40-07:32:47
2016-07-23-20:58:
12-20:59:18
2016-07-24-08:02:
37-08:03:42
2016-07-25-20:45:
51-20:46:58
2016-07-26-07:50:
16-07:51:22
2016-07-27-20:33:
31-20:34:37
2016-07-28-07:37:
55-07:39:01

2016-07-29-20:21:1

1-20:22:16
2016-07-30-07:25:
34-07:26:40

01:45

02:28

01:32

02:59

02:03

02:46

01:51

02:34

01:39

02:22

01:26
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Fig. 1. Topography of the Taklimakan Desert (Source: Zéioal., 2018).

Fig. 2. Trajectory map of CALIPSO transit over the TaklirmakDesert for July 1-30,
2016 (except July 6, 15, 22). (Web site: httpsafisle.earthdata.nasa.gov)
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Fig. 4. The CALIPSO and CloudSat derived features for tyycial strong DS events
observed on 2007-04-22T07-12-34ZD-07:44:21-07:45126C (left A-H) and
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Fig. 6. Optical properties of sand-dust aerosol types @IFFD) for six typical cases.
(a) Optical Depth for DS and BD/FD; (b) Mean Extino Coefficient; (c) Mean

Depolarization Radio; (d) Depolarization Radio. Tlabels in the panels indicate
20YY-MM-DD for the dust events (dust storm (DShdting dust (FD), and blowing
dust (BD)).
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Fig. 6. (Continued).
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Research Highlights

» We have investigated the optical properties of sand dust aerosols (SDAS) over the
Taklimakan Desert from radiosonde and A-train satellite datasets.

» We have evaluated the correlation between SDAS and meteorological factors
during spring.

» The meteorological factors observed from the CALIPSO are verified using the
radiosonde data.
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