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The eastern coastal areas of China spanmultiple climatic zones, and the impacts of climate
warming on their ecological environment show regional differences. In this research, the
Normalized Difference Vegetation Index (NDVI) was used as the indicator to characterize
the ecological environment, and selected Guangdong, Jiangsu, and Liaoning as its typical
research areas. The authors selected the NDVI, average temperature, and precipitation
data of the yearly growth season, respectively, from 1982 to 2016. This study adopted the
copula functions model based on Markov Chain Monte Carlo to carry out the research of
bivariate joint distribution so as to calculate the joint probability, the joint exceedance
probability, the joint return period and the co-occurrence return period. The results showed
that 1) the temperature and precipitation in the three regions were respectively related to
the NDVI sequence showing the characteristic that was correlated at the upper tail and
asymptotically independent at the lower tail, which demonstrated that the temperature and
precipitation had little effect on NDVI when they reached their minimum values, and the
temperature and precipitation had obvious effect on NDVI when they reached their
maximum values. 2) The shorter the return period was, the wider the ranges of the
climate factor and the NDVI were, showing that when the climate factor was constant, the
probability of the NDVI having a shorter return period was higher. The greater the climate
factor was, the longer the return period was, indicating that the probability of plant growth
inhibition was higher when the climate factor exceeded a certain threshold. 3) The suitable
temperature and precipitation for vegetation growth in the three regions gradually
decreased from south to north. These results provide some theoretical guidance and
scientific foundation for the protection of regional ecological environment and enhance the
understanding of the impact of climate change on the ecosystem.
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INTRODUCTION

As the main body of the terrestrial ecosystem, vegetation is an
important part connecting the atmosphere, soil water, and energy
cycle (Huryna and Pokorný, 2016; Jin et al., 2017), and thus has great
significance to regional climate regulation, surface energy balance and
soil andwater conservation, etc. (Li et al., 2016;Duveiller et al., 2018;He
et al., 2018). Climate resources such as light, heat, and water are the
basis of vegetation growth, and a vegetation variation is a key indicator
tomeasure a regional environment and a climate change (Li et al., 2017;
Zewdie et al., 2017; Wan et al., 2018). The interaction between the
climate change and the vegetation has aroused widespread interest of
scholars and become a research hotspot in recent years (Huete, 2016;
Seidl et al., 2017).

There is a bidirectional feedback mechanism between the
climate and the terrestrial ecosystem: a variation of a
hydrothermal condition causes a change in a temporal and
spatial distribution pattern of the terrestrial ecosystem (Huang
et al., 2016; Huang et al., 2019); and the change of the ecosystem
patterns affects a regional carbon cycle and water cycle process,
which in turn reacts on the regional climate (Sippel et al., 2018;
Quan et al., 2019). Under the background of climate warming,
temperature, precipitation, radiation, and other factors in different
regions are obviously different, and the influence of the climate
change on the vegetation in different regions varies. The study
held that the changes in factors such as temperature, water, and
light affect the vegetation by participating in photosynthesis,
respiration, and transpiration of the vegetation (Zandalinas
et al., 2018; Dusenge et al., 2019). Meanwhile, the vegetation is
sensitive and adaptable to the climate, resulting in differences in
response rules of the regional vegetation to the climate change.
Therefore, the interaction between the regional climate and the
vegetation belongs to a nonlinear category (Wen et al., 2017).

Normalized difference vegetation index (NDVI), as an
important representative indicator of the growth of surface
vegetation, is widely used in the study on dynamic changes of
the vegetation (Xu et al., 2016). China’s climate resources show
obvious regional differences, vegetation types are diverse, and a
relationship between the vegetation changes and the regional
climate is heterogeneous. Existing researches on the relationship
between the climate changes and the NDVI mainly focused on the
overall correlation between various elements and the NDVI on the
regional scale, or the interrelationship between them on the multi-
time scale; while a relationship between different action subintervals
of climate elements and their corresponding NDVI has not been
excavated. Thus, the dynamic correlation analysis of climate factors
and the NDVI cannot be achieved, nor can the optimal
hydrothermal condition for the NDVI-based growth under the
conditions of the regional climate and climate variability differences
be described. Besides, no zoning discussion has been done
according to the differences in the climatic zones.

Traditional correlation coefficients have been adopted as a
popular method to study the correlation between variables, but

cannot distinguish the dynamic correlation between the variables
in different intervals or exclude the possibility of “pseudo
correlation” between the variables (Ramos-Cordoba et al.,
2016). In addition, although linear regression fitting is also
commonly used in the modeling of multi-element interaction,
the application prerequisite of such method is to assume that there
is a linear relationship between the variables, which requires the
data distribution to conform to the stationarity. In the context of
climate warming, the temperature, precipitation, and NDVI all
have the changing trend, and the data no longer meet the
precondition of the hypothesis of the stationarity. These
problems can be effectively solved by Copula function theory
(Abdi et al., 2017). The Copula function can reflect a correlation
structure of random variables independently from the marginal
distribution of random variables. Any marginal distribution can
be constructed into a joint distribution through the Copula
function. There will be no information distortion and loss as
the information of a single variable is included in the marginal
distribution (Lee, 2018; Papalexiou and Serinaldi, 2020). The
multi-dimensional joint distribution was built on the basis of
the marginal distribution and correlation of the variables, and a
probability distribution function was established through the
Copula function theory to depict in detail the dependence of
temperature-NDVI and precipitation-NDVI in different value
ranges, and the probability of was obtained. This research has
studied the influence of hydrothermal condition variations on an
NDVI, explored the spatial differentiation rule of temperature,
precipitation, and NDVI changes in different temperature zones
and quantified the effect of hydrothermal combination to the
vegetation growth, which can provide a theoretical basis for a deep
understanding of the interaction between regional scale climate
and its ecosystem. And this will be conducive to an active response
to the climate changes, and serving environmental protection and
decision-making plan of coping with the climate warming better.

This research consisted of five sections:Materials and Methods
presented an outline introduction to the research areas and the
used data and method. Through the establishment of joint
probability distribution and exceedance probability distribution,
Results Analysis analyzed the interaction relationship among the
NDVI, the average temperature and the precipitation, and
calculate the corresponding joint return period. Discussion
section focused on the causes of NDVI dynamic change, and
analyzed the response of NDVI to temperature and precipitation
in detail. Finally, the conclusions were presented in Conclusion.

MATERIALS AND METHODS

An Outline Introduction to the Research
Areas
Figure 1 shows the geographical location of the study area.
Guangdong is a southern province of China with a tropical and
subtropical monsoon climate. Therefore, it has long summers and
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warm winters. The average annual temperature is from 20.4 to
23.1°C. Jiangsu is an eastern-central province of China and is
situated in a transitional area between the temperate and
subtropical zone. Generally, toward the south of the Huaihe River
and sub-northern irrigation canal, humid subtropical climate zone is
experienced, whereas, warm temperate climate zone is experienced
toward the north. The annual mean temperature is from 13 to 16°C,
increasing from the northeast to southwest area. Liaoning is a
northern coastal province in Northeast of China and is located in

temperate monsoon climate zone. The temperature in this area is
characterized by uneven spatial distributions, decreasing from the
plain to the mountain area. The annual average temperature in
Liaoning is from 7 to 11°C (Figure 1).

Data and Preprocessing
Meteorological Data and Preprocessing
The daily temperature records from January 1, 1982 to December
31, 2016 were collected for the three provinces from 90

FIGURE 1 | Schematic diagram of (A) Liaoning, (B) Jiangsu, and (C) Guangdong research areas.
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meteorological stations provided by the China Meteorological
Administration (https://data.cma.cn/site/index.html). The stations
were selected on the basis of the length of the time series, data
completeness (missing values less than 5%), and spatial coverage. A
series of quality control tests were applied to identify outliers at all
stations and were marked with a quality control flag. The average
daily temperatures were then extracted. It should be noted that the
level of data completeness in the study exceeded the minimum
requirement of 95%. At this level, scaling indices and scaling
behaviors of the time series were not affected. The monthly
regional average temperatures and precipitations of Guangdong,
Jiangsu, and Liaoning provinces were calculated respectively
according to the daily average air temperature and precipitation.

Normalized Difference Vegetation Index Data and
Preprocessing
Two kinds of NDVI datasets including the latest updated version of
the third generation Global Inventory Monitoring and Modeling
System (GIMMS, available at https://ecocast.arc.nasa.gov/data/pub/
gimms/3g.v1/ as nc4 files) and MODIS NDVI were both used in the
study. The GIMMS NDVI 3g.v1 is generated from National Oceanic
and Atmospheric Administration’s Advanced Very High Resolution
Radiometer data, and the spatial resolution is 1/12°. Its temporal
resolution is 15-days intervals with span from 1982 to 2013. This data
set eliminates the effects of volcanic eruption, solar altitude angle, and
sensor sensitivity changes over time, making the quality of the
GIMMS data set superior to other NDVI data sets. The GIMMS
data is the longest time series of NDVI data at present. It has a better
correlation with other high-resolution data sets and has been
extensively used in the world. The MODIS NDVI data (available
at https://ladsweb.modaps.eosdis.nasa.gov/) is derived from the
MODIS vegetation index product developed by NASA MODIS
Land Product Team according to the unified algorithm. The
MODIS NDVI used in the study is MOD13A2, i.e., the vegetation
index with a resolution of 1 km and temporal resolution of 16 days.

The data sets of GIMMS NDVI and MODIS NDVI in
Guangdong, Jiangsu, and Liaoning were obtained respectively
after NDVI data were preprocessed through quality inspection,
image mosaic, subset extraction, cropping, format, and projection
conversion and so on. In order to get rid of the differences in
temporal resolution there between, the Maximum Value
Composite (MVC) was used to obtain monthly scale NDVI
data, so as to further remove the impact of clouds and
aerosols (Liu, 2017; Seong et al., 2020), and reduce the effect
of the phenological cycle in the month (Fensholt and Proud,
2012). The averaged NDVI for growing season was calculated for
analysis. The pixel values with an average of growing season
NDVI <0.1 were masked as non-vegetated areas.

Due to the different spatial resolutions of the GIMMS data and
the MODIS data, this research has adopted the GIMMS data with
the time span from 1982 to 2013, and the MODIS data with the
time series from 2001 to 2016. The correlation analysis of the
monthly NDVI data was carried out in terms of data in
overlapping periods. The correlation coefficient of the two data
is 0.927, and the linear regression equation is NDVIGIMMS � 0.781 *
NDVIMODIS − 0.0469(r2 � 0.9016, p-value < 0.05). Using the
regression equation and combiningMODIS-NDVI data from 2014

to 2016 to interpolate monthly GIMMS-NDVI data, the time span
of GIMMS NDVI data set was extended to 1982–2016.

Methods
Maximum Value Composites
The MVC was proposed by Holben (1986). The specific formula
of MVC (Kundu et al., 2018) is as follows:

NDVIi � Max(NDVIij) (1)

where NDVIi refers to the NDVI in the ith month or the ith year;
and NDVIij refers to the NDVI data on the jth 15-day in the ith
month or on the jth month in the ith year.

Copula Function Theory
The Copula function raised by Sklar (Li et al., 2018) can use the
marginal distribution and correlation framework to build a multi-
dimensional joint distribution Copula function model (Salvadori and
De Michele, 2007). The study selected eight Copula function clusters
(Clayton, 1978; Genest and Favre, 2007; Li et al., 2013; Sraj et al., 2015),
including 1) BB1, 2) Clayton, 3) Frank, 4) Gaussian, 5)Gumbel, 6) Joe,
7) t, and 8) Tawn. These eight forms of the Copula functions have
always been common choices for related models due to their
performances. The selected Copula functions were used to establish
a two-dimensional joint distribution of climate elements and NDVI.

Parameter Estimation
The parameters of the Copula function were calculated by the
non-parametric estimation method (Genest and Rivest, 1993).
This technique is mainly related to the parameter θ of the Copula.
See Table 1 for various Copula function forms.

Formula (2) shows the relationship between θ and τ (Kendall
correlation coefficient). By calculating τ from the measured data,
the corresponding joint distribution parameters can be obtained

τ � 1
θ
. (2)

Verification and Evaluation
To quantitatively evaluate the fitting error and select the
appropriate Copula function, Akaike information criterion
(AIC), Bayesian information criterion (BIC) (Pho et al., 2019),

TABLE 1 | Copula families and their closed-form mathematical description.

Copula
function
name

Mathematical description

BB1 {1+ [(u−θ1−1)θ2+ (υ−θ1−1)θ2 ]1/θ2 }−1/θ2
Clayton max(u−θ+ υ−θ−1,0)−1/θ

Frank −1
θ
ln[1+ (exp(−θu) − 1)(exp(−θυ) − 1)

exp(−θ) − 1
]

Gaussian ∫ϕ−1(u)

−∞
∫ϕ−1(υ)

−∞
1

2π
������
1 − θ2

√ exp
2θxy − x2 − y2

2(1 − θ2)
⎞⎠dx dyb⎛⎝

Gumbel exp{−[(−ln(u))θ+(−ln(υ))θ]1/θ}
Joe 1− [(1− u)θ+(1− υ)θ−(1− u)θ(1− υ)θ]1/θ

T ∫t−1θ2 (u)

−∞
∫t−1θ2 (υ)

−∞
Γ((θ2 + 2)/2)

Γ(θ2/2)πθ2
������
1 − θ2

√ ⎛⎝1+ x2 − 2θ1xy + y2
θ2

⎞⎠(θ2+2)/2
dx dyc

Tawn exp{ln(u(1−θ1 ))+ ln(υ(1−θ2 )) − [(−θ1 ln(u))θ3+ (−θ2 ln(υ))θ3 ]1/θ3 }
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and root mean square error (Dodangeh et al., 2017) were
employed as the criteria for selecting the Copula function clusters.

AIC � −2ι(θ�|y) + 2K (3)

BIC � −2ι(θ�|y) + K ln(n) (4)

Kwas the number of estimated parameters in the model including
the intercept and ι(θ�|y) was a log-likelihood at its maximum
point of the estimated model; n was a sample size. The rule of
selection was that the smaller the value of AIC was, the better the
model was, and so did the BIC.

RMSE �
�����������������
1
n
∑n
i�1

(Xc(i) − Xo(i))2
√

(5)

where n is the number of observations, Xc is the theoretical
probability of copula, and Xo is the empirical probabilities of
observations.

Correlation Analysis and Establishment of Marginal
Distribution Function
In order to determine whether there was a correlation between
the NDVI and monthly mean temperature and monthly
precipitation, this paper established a joint distribution
function and adopted Kendall, Pearson, and Spearman rank
correlation coefficients to analyze the correlation between the
climate elements and the NDVI.

Multivariate Copula Analysis Toolbox, as a general software
toolbox, uses Markov Chain Monte Carlo simulations to estimate
Copula parameters (Sadegh et al., 2017). It was adopted to study the
dependency structure between variables and select the optimal
marginal distribution function for each variable. Distribution
functions include 1) Beta, 2) Birnbaum-Saunders, 3) exponential,
4) extreme value, 5) Gamma, 6) generalized extreme value, 7)
generalized Pareto, 8) inverse Gaussian, 9) logistic, 10) log-logistic,
11) lognormal, 12) Nakagami, 13) normal, 14) Rayleigh, 15) Rician,
16) T location scale, and 17) Weibull distributions. The parameters
are estimated by the maximum likelihood approach. Detailed
descriptions about these distributions refer to Sadegh et al. (2018).

Joint Probability Distribution
For the sake of the study of the joint probability of Tavg-NDVI
and Pre-NDVI, the marginal distributions of Tavg, Pre, and
NDVI were calculated respectively, and the parameters of this
function were obtained. The comparison between a fitting result
of the function and the actual data was evaluated by Quantile-
Quantile plot. Based on the univariate marginal function, a two-
dimensional Copula function was constructed, and three
goodness-of-fit evaluation indexes of AIC, BIC, and root mean
square error were used to select the optimal Copula function type
from the Copula function clusters (Chen and Sun, 2015).

The Return Period of Normalized Difference Vegetation
Index and Mean Temperature/Precipitation
The return period refers to the time when the value of the random
variable appears in a longer period (Singh and Zhang, 2018).

Calculating the return periods of the NDVI under different
temperature and precipitation conditions can provide valuable
information for a more meticulous study of how heat and water
affect the NDVI. This paper calculates a bivariate joint return
period and conditional return period because the univariate
recurrence interval or return period often leads to
overestimation or underestimation of the risk rate of an event
(Shiau, 2006). It is defined that in the joint return period, X ≥ x
and Y ≥ y, and in the conditional return period, X ≥ x or Y ≥ y.

Tjoint � E(L)
P(X ≥ x,Y ≥ y) � E(L)

1 − FX(x) − FY(y) + C(FX(x), FY(y)),
(6)

Tconditional � E(L)
P(X ≥ x or Y ≥ y) � E(L)

1 − C(FX(x), FY(y)). (7)

In the above formulas, Tjoint represented the joint return period
for X ≥ x and Y ≥ y; Tconditional indicated the conditional return
period for X ≥ x or Y ≥ y; and E(L) showed an expected value of
the time interval at which continuous events start. Detailed
discussions on the relationships between univariate, bivariate,
and conditional return periods could be found in Shiau (2006).

RESULTS ANALYSIS

Trend Analysis of Mean Temperature,
Precipitation, and Normalized Difference
Vegetation Index
From Guangdong to Liaoning, it spanned tropical, subtropical,
and temperate zones, and climate and NDVI change rates in
different regions vary markedly. Figure 2 showed the variation
trends of mean temperature (Tavg), precipitation (Pre), and
NDVI in Guangdong, Jiangsu, and Liaoning.

It can be seen from Figure 2A that Tavg in Guangdong,
Jiangsu, and Liaoning provinces showed an obvious rising
trend from 1982 to 2016 and displayed a larger regional
difference in a descending order as follows: GuangDong >
JiangSu > Liaoning. However, the mean temperature change
rate was the smallest in Guangzhou and the largest in Jiangsu,
which may be caused by the fact that climate regulation of sea
surface temperature enhanced the stability of a climate system
of Guangdong greatly influenced by marine factors. Located at
the junction of subtropical monsoon climate zone and
temperate continental monsoon climate zone, serving as the
junction of China’s zero isotherm, Jiangsu was affected by
alternating cold and warm air masses. Factors capable of
changing the Jiangsu’s climate were complex and
changeable, resulting in a large temperature change rate. In
Figure 2B, the descending order of precipitations in the three
regions was the same as the mean temperature, but the
precipitation change rates were as follows: GuangDong >
JiangSu > Liaoning. Here, the precipitation in Liaoning
Province showed a significant downward trend, which was
due to the law that the annual precipitation in Liaoning
Province decreases from southeast to northwest at almost
equal intervals, and the significant decrease of the
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precipitation mainly arose from dramatically reduced summer
precipitation in southeast and winter precipitation in southern
Liaoning. Figure 2C showed the variation trends of the NDVI
in the three provinces. The NDVI of the three regions showed a
highly consistent increase trend during the growing season. The
NDVI change rate in Guangdong was notably higher than that
in the other two provinces, and the NDVI of each of the three
regions had a huge transition around 1998.

Joint Probability Distribution of Mean
Temperature, Precipitation, and Normalized
Difference Vegetation Index
The mean temperature and precipitation provide necessary heat
and water conditions for vegetation growth. There are regional
differences in the influence of internal hydrothermal conditions on
NDVI-based growth in different temperature zones. Correlation

FIGURE 2 | The historical trend variations of mean temperature (Tavg), precipitation (Pre), and NDVI in Guangdong, Jiangsu, and Liaoning provinces. (A) The mean
temperature, (B) the precipitation, and (C) the normalized difference vegetation index (NDVI).

TABLE 2 | The Kendall, Spearman, and Pearson correlation between the mean temperature (Tavg), precipitation (Pre), and its corresponding normalized difference
vegetation index (NDVI) during the growing season (April–October) in Guangdong, Jiangsu, and Liaoning provinces.

Factors name Province Kendall Spearman Pearson

Coefficient p value Coefficient p value Coefficient p value

Tavg_NDVI Guangdong 0.405 0.000* 0.449 0.000* 0.297 0.012*
Jiangsu 0.580 0.000* 0.670 0.000* 0.471 0.005*
Liaoning 0.594 0.001* 0.712 0.000* 0.502 0.002*

Pre_NDVI Guangdong −0.162 0.012 −0.196 0.023 −0.186 0.024
Jiangsu 0.341 0.034 0.291 0.034 0.344 0.023
Liaoning 0.428 0.023 0.489 0.032 0.419 0.034

Asterisks indicated significance levels at p < 0.05.
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analysis was conducted on Tavg, Pre, and NDVI during the growing
season in Guangdong, Jiangsu, and Liaoning. Kendall rank
correlation coefficients, Pearson correlation coefficients, and
Spearman rank correlation coefficients were used to measure the
correlation of two-dimensional variables. The calculation results are
shown in Table 2.

According to Table 2, the Tavg and the NDVI had a relatively
obvious positive correlation during the growing season in the
three regions, and all had passed the hypothesis test (p < 0.01).
The correlation intensity was Liaoning > Jiangsu > Guangdong.
There was a comparatively pronounced positive correlation
between the Pre and the NDVI in Jiangsu and Liaoning, and

TABLE 3 | Copula function cluster selection criteria for mean temperature-normalized difference vegetation index (NDVI) in Guangdong, Jiangsu, and Liaoning.

Province Copula function Tavg-NDVI

Akaike information criterion Bayesian information criterion Root mean square error

Guangdong Gaussian −204.6827 -204.3326 0.2392
t −204.6827 -203.9148 0.2385
Clayton −203.6495 -203.2994 0.2442
Frank −201.1836 −200.8334 0.2569
Gumbel −201.6093 −201.2592 0.2546
Joe −196.6023 −196.2521 0.2820
BB1 −205.9662 −205.2660 0.2320
Tawn −201.3733 −200.3229 0.2538

Jiangsu Gaussian −221.5741 −221.2239 0.1694
t −221.1784 −220.4781 0.1701
Clayton −200.2525 −199.9024 0.2618
Frank −220.6517 −219.9150 0.1740
Gumbel −224.2290 −223.8788 0.1605
Joe −215.1125 −214.7624 0.1933
BB1 −224.2464 −223.5462 0.1598
Tawn −225.6631 −224.6128 0.1546

Liaoning Gaussian −218.9522 −218.6021 0.1787
t −218.5379 −217.8376 0.1795
Clayton −214.2404 −213.8902 0.1968
Frank −216.3653 −216.0152 0.1884
Gumbel −201.4081 −201.0579 0.2557
Joe −182.3247 −181.9745 0.3774
BB1 −225.3726 −224.6724 0.1561
Tawn −201.4067 −200.3564 0.2536

TABLE 4 | Copula function cluster selection criteria for precipitation-normalized difference vegetation index (NDVI) in Guangdong, Jiangsu, and Liaoning.

Province Copula function Pre-NDVI

Akaike information criterion Bayesian information criterion Root mean square error

Guangdong Gaussian −218.5208 −218.1706 0.1803
t −217.9008 −217.2006 0.1819
Clayton −199.3882 −199.0381 0.2664
Frank −218.4739 −218.1238 0.1805
Gumbel −199.3773 −199.0272 0.2665
Joe −199.4054 −199.0552 0.2663
BB1 −199.1459 −198.4457 0.2667
Tawn −199.0055 −197.9551 0.2663

Jiangsu Gaussian −222.5495 −222.1993 0.1661
t −223.3693 −222.6690 0.1627
Clayton −214.9434 −214.5932 0.1940
Frank −221.6213 −221.2712 0.1693
Gumbel −225.8110 −225.4609 0.1554
Joe −225.1546 −224.8045 0.1575
BB1 −225.6072 −224.9070 0.1554
Tawn −236.8267 −235.7763 0.1231

Liaoning Gaussian −219.5678 −219.2176 0.1765
t −219.0439 −218.3437 0.1777
Clayton −203.1752 −202.8251 0.2466
Frank −219.0942 −218.7440 0.1782
Gumbel −207.4578 −207.1077 0.2260
Joe −191.0027 −190.6526 0.3162
BB1 −217.2321 −216.5319 0.1844
Tawn −208.2973 −207.2470 0.2203
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the correlation in Liaoning was greater than that in Jiangsu. The
monthly Pre and NDVI in Guangdong showed a relatively
remarkable negative correlation, and both had passed the
hypothesis test (p < 0.05). The correlation between the mean
temperature and the precipitation decreased from north to south
with the decrease of latitude, while the absolute value of a
correlation coefficient corresponding to the precipitation was
less than the value of the mean temperature in the same
region, which indicated that the influence of the mean
temperature on vegetation growth was notably higher than
that of the precipitation in various temperature zones along
the east coast of China.

As it could be seen from Tables 3 and 4, the optimal Copula
functions for the Tavg-NDVI Copulas in Guangdong, Jiangsu,
and Liaoning were BB1, Tawn, and BB1, respectively, and their
corresponding three evaluation index values were all less than
those of the other seven Copula functions. Similarly, the optimal
Copula functions for the Pre-NDVI Copulas in the three

provinces were Gaussian, Tawn, and Gaussian, respectively. It
indicated that these Copula functions had the best fitting effect
and were more suitable to describe the joint distribution
characteristics of Tavg-NDVI and Pre-NDVI. Therefore, this
paper chose BB1 Copula, Tawn Copula, and BB1 Copula as well
as Gaussian Copula, Tawn Copula, Gaussian Copula functions to
establish two-dimensional joint probability distribution models
of the mean temperature, precipitation, and NDVI in the three
regions, respectively.

Climate Response of Normalized Difference
Vegetation Index to Mean Temperature and
Precipitation
Figure 3 showed the joint probability distribution relationship
between the monthly mean temperatures and the NDVI in the
growing season from 1982 to 2016 in Guangdong (Figure 3A),
Jiangsu (Figure 3B) and Liaoning (Figure 3C). The joint

FIGURE 3 | Analysis of joint copulas of mean temperature-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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probability of the mean temperature and the NDVI at any point
could be obtained from the figure. The joint probability
distribution function could clearly reflect the correlation
between the mean temperatures and the NDVI in different
ranges. The most prominent feature in the figure was an
asymmetric and inclined dependency structure of monthly
scale data. Guangdong probability isoline had the smallest
inclination, and Liaoning’s probability isoline had the largest
inclination, indicating that the correlation between the mean
temperature and the NDVI increased from south to north. The
limit change of the tail intervals of the commonly used two-
dimensional Copula distribution was very small, and the tail
interval mainly presented a characteristic of approximately
independent distribution or relatively intensive asymptotic
correlation. The probability distribution function of the mean
temperature and the NDVI in the figure showed the
characteristics that the upper tail was higher than the lower
tail. That is, the mean temperature was correlated with the
upper tail on the NDVI sequence, and the lower tail was
gradually independent, demonstrating that the minimum
mean temperature had little influence on the NDVI, while the

maximum mean temperature had significant influence on the
NDVI. According to the isogram, the interval distribution of the
mean temperature and the NDVI could be obtained when the
joint probability is 0.1–0.9.

From the isogram, it could be seen that the greater the NDVI
was when the mean temperature took a fixed value or the greater
the mean temperature was when the NDVI was fixed, the greater
the joint probability was. The joint probabilities of the mean
temperatures and the NDVI in different intervals on the same
isoline were also obviously different. The joint scenario
occurrence probability of the mean temperature and the
NDVI in the middle of the isoline was greater than that at
either end of the isoline. It could be seen from Figure 3 that
the joint probability of three scenarios of the minimum
temperature and the minimum NDVI, the minimum
temperature and the maximum NDVI, and the maximum
temperature and the minimum NDVI was lower. However,
the joint probability of the maximum temperature and the
maximum NDVI was higher. When the monthly mean
temperature in Guangdong was lower than 23°C, Jiangsu was
lower than 17°C, and Liaoning is lower than 7°C, the probability

FIGURE 4 | Analysis of survival copulas of mean temperature-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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of a lower NDVI was higher, which is not conducive to plant
growth. However, when the mean temperature was between 27
and 30°C, 23 and 27°C, and 20 and 24°C, the probability of a larger
NDVI (greater than 0.6) was higher and was greater than 0.7,
which indicated that the vegetation in the three regions grew well.

Figure 4 showed isograms of the joint exceedance probabilities
of mean temperature-NDVI in Guangdong, Jiangsu, and
Liaoning. According to the joint exceedance probability graph,
the joint exceedance probabilities when the mean temperature
and NDVI were arbitrary values could be obtained. The figure
showed different combinations of the mean temperatures and the
NDVI which were both greater than or equal to a specific value
when the joint exceedance probabilities are 0.1–0.9, respectively.
The smaller the values of the mean temperature and the NDVI
were, the greater the joint exceedance probability was and vice
versa. This indicated that the occurrence probability that both the
mean temperature and the NDVI exceeded a smaller value was
greater than the occurrence probability that both exceeded a
larger value.

Figure 5 showed two-dimensional isolines for joint return
periods of mean temperatures and NDVI in Guangdong,
Jiangsu, and Liaoning. By using the joint return period

diagram, the return period corresponding to the mean
temperature or NDVI greater than or equal to a specific
value could be calculated. Figure 5 reflected the
combinations of mean temperatures or NDVI greater than or
equal to a specific value when the return periods are 2, 5, 10, 25,
and 50 years, respectively. The shorter the joint return period
was, the larger the value range of the mean temperature and the
NDVI was, which indicated that when the mean temperature
was fixed, the probability of the NDVI having a shorter return
period was higher. When the mean temperature was in a higher
range like 25–30°C (Guangdong), 22–26°C (Jiangsu), and
17–22°C (Liaoning), the probability of the NDVI having the
shorter return period is maximum. The values of the NDVI in
the above temperature ranges were all greater than 0.5, stating
that the occurrence frequency of excellent plant growth was the
highest. The difference in heat conditions among the three
regions led to a gradual decrease of the suitable growth
temperature of plants from south to north.

Figure 6 showed the co-occurrence return periods of the mean
temperatures and NDVI in Guangdong, Jiangsu, and Liaoning.
From the co-occurrence return period diagram, return periods
where the mean temperature and NDVI were both greater than

FIGURE 5 | Joint copula return periods of mean temperature-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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or equal to a specific value are known. Figure 6 demonstrated the
combinations of the mean temperatures and NDVI which were
both greater than or equal to a specific value when the return
periods were 2, 5, 10, 25, and 50 years. For the case that the values of
the mean temperature and the NDVI were fixed, their co-
occurrence return period was obviously longer than the joint
return period. For the co-occurrence return period, the longer
the given return period was, the greater the values of the mean
temperature and the NDVI were. Even when the values of the mean
temperature and the NDVI were large enough, the co-occurrence
return period exceeds 50 years. Accordingly, under the background
of climate warming, the increase of the mean temperature in the
historical period spurred the growth of vegetation in the three
regions. However, with the further increase of the temperature in
the future, it may not necessarily promote the growth of plants, or
even the temperature exceeded a certain threshold, the probability
of inhibiting the growth of plants was higher.

Figure 7 showed a dependency between monthly precipitations
and NDVI in the growing season from 1982 to 2016 in Guangdong
(Figure 7A), Jiangsu (Figure 7B), and Liaoning (Figure 7C),
reflecting values of the precipitations and the NDVI when the
joint probability was 0.1–0.9. The most prominent feature in the
figure was an asymmetric and inclined dependency structure of

monthly scale data. Guangdong’s probability isoline had the
smallest inclination, and Liaoning’s probability isoline had the
largest inclination, which reflected that the correlation between
the precipitation and the NDVI gradually increases from south
to north.

The greater the NDVI was when the precipitation took a fixed
value or the greater the precipitation was when the NDVI was
fixed, the greater the joint probability was. The probability
distribution function of the precipitation and the NDVI showed
the characteristics that the upper tail was higher than the lower tail.
That is, the precipitation was correlated with the upper tail on the
NDVI sequence, and the lower tail was gradually independent,
demonstrating that the minimum precipitation had little influence
on the NDVI, while the maximum precipitation had significant
influence on the NDVI. When the monthly precipitation was
higher than a threshold: 200 mm (Guangdong), 110 mm
(Jiangsu), and 60mm (Liaoning), NDVI values in the three
regions were all greater than 0.5, and each of the joint
probabilities of the two was greater than 0.5, indicating that
these precipitation intervals had a greater impact on the NDVI.
When the monthly precipitations in Guangdong, Jiangsu, and
Liaoning were in the ranges of 250–700, 160–400, and
110–350 mm, respectively, the probability of a higher NDVI

FIGURE 6 | Survival copula return periods of mean temperature-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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(>0.6) in each region was more than 0.7. When the precipitations
in the three regions were located in the above-mentioned intervals,
the precipitations enhanced the plant growth, wherein on the
probability isolines at 0.7, when the precipitations in the three
regions were located in the intervals of 250–550, 150–170, and
110–280 mm, the occurrence number of well vegetation growth
(NDVI> 0.6) was larger than that in other intervals.

Figure 8 showed isograms of the joint exceedance probabilities
of precipitation-NDVI in Guangdong, Jiangsu, and Liaoning. It
showed a variety of combinations of the precipitations and NDVI
which were both greater than or equal to a specific value when the
joint exceedance probabilities are 0.1–0.9, respectively. The smaller
the values of the precipitation and the NDVI were, the greater the
joint exceedance probability was and vice versa. This indicated that
the occurrence probability that both the precipitation and the
NDVI exceeded a smaller value was greater than the occurrence
probability that both exceeded a larger value.

Figure 9 showed two-dimensional isolines for joint return
periods of precipitations and NDVI in Guangdong, Jiangsu, and
Liaoning. Figure 9 reflected the combinations of the
precipitations or NDVI greater than or equal to a specific
value when the return periods were 2, 5, 10, 25 and, 50 years,
respectively. The shorter the joint return period was, the larger
the value range of the precipitation and the NDVI was, which
indicated that when the precipitation was fixed, the probability of
the NDVI having a shorter return period was higher.

Figure 10 showed the co-occurrence return periods of the
precipitations and NDVI in Guangdong, Jiangsu, and Liaoning.
Figure 10 demonstrated the combinations of the precipitations
and NDVI which are both greater than or equal to a specific value
when the return periods were 2, 5, 10, 25, and 50 years. Under the
same combination, the co-occurrence return period of the
precipitation and the NDVI was obviously longer than the
joint return period. For the co-occurrence return period, the
longer the given return period was, the greater the values of the
precipitation and the NDVI were. Even when the values of the
precipitation and the NDVI were large enough, the co-
occurrence return period exceeded 50 years. Therefore, if the
precipitation continued to increase, it may not necessarily
promote the growth of plants. When the precipitation
exceeded a certain threshold, it was more likely to inhibit the
growth of the plants.

DISCUSSION

Dynamic Change of Normalized Difference
Vegetation Index
The monthly NDVI in Guangdong, Jiangsu, and Liaoning
showed an overall upward trend during the growing season
from 1982 to 2016. This result was consistent with the research
results of the NDVI change trends on different spatial scales such

FIGURE 7 | Joint copulas of precipitation-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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as global (Yang et al., 2019), Eurasia (Piao et al., 2011), China
(Peng et al., 2011), and eastern China (Jiang et al., 2014). The
change rates of the NDVI in the three regions showed a law of
increasing from north to south. However, the NDVI experienced
a huge jump around 1998, which may be related to the intensified
warming and strong El Nino around 1998. Climate warming
leads to an increase in the daily temperature range (Ma et al.,
2019). Photosynthesis of plants increased with the rise of
temperature in daytime, and respiration (consumption) of the
plants decreased with the reduction of temperature at night,
resulting in a higher net photosynthetic accumulation of the
plants, which was conducive to the growth and development of
vegetation and vice versa (Wen et al., 2018). Although the
vegetation in Liaoning was generally on the rise, the rising
rate was lower, which could be related to the gradual
warming and drying of Liaoning. Guangdong and Jiangsu
were relatively rich in water resources, and the
evapotranspiration caused by temperature rise would take
away excess water, which in turn promoted the growth of
vegetation.

Response of Normalized Difference
Vegetation Index to Climate Change
Compared with the correlation study of NDVI with mean
temperature and precipitation on the annual scale, the
response of the NDVI to the temperature and precipitation on

the monthly scale could reveal the influence of hydrothermal
changes on the NDVI more deeply (Pei et al., 2019; Guo et al.,
2020). On the one hand, the annual-scale dependency between
the NDVI and climate factors reflects the long-term change trend
relationship between the two, which failed to “peel off” other
factors, such as urbanization, land utilization/change, and solar
radiation in the course of the year, which affect vegetation. On the
other hand, the monthly scale time series removed seasonal
signals, and to some extent, eliminated the interference of
signals having seasonal variation characteristics like the
temperature, precipitation, solar radiation and agricultural
production, etc., on the research results. It was more scientific
to explore the response mechanism of the NDVIs to the climate
factors (Van Gelder et al., 2008). Therefore, this paper discussed
the response characteristics of monthly scale NDVI to the
temperature and precipitation.

Response of Normalized Difference Vegetation Index
to Mean Temperature
The difference in latitudes among Guangdong, Jiangsu, and
Liaoning caused unbalanced heat. The suitable growth
temperature of plants in the three regions decreases from
south to north. When the mean temperature was in an
appropriate range, the sufficient heat and accelerated
physiological activities of plants were bringing the plants on
nicely, making the NDVI higher. When the mean temperature

FIGURE 8 | Survival copulas of precipitation-normalized difference vegetation index (NDVI) in Guangdong, Jiangsu, and Liaoning.
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was in a lower range, insufficient heat would slow down the
physiological activities of the plants, resulting in slower growth
even stop and wither of the plants.When the temperature was in a
higher range, evapotranspiration of trees was intensified by the
increased temperature, which would lead to the excessive
consumption of soil water and eventually affect the normal
growth of vegetation (Kong et al., 2017; Zhang et al., 2019). It
could be seen from Table 2 that there was a relatively obvious
positive correlation between the mean temperatures and NDVI in
the three regions; and the correlation intensity was Liaoning >
Jiangsu > Guangdong; while the heat condition in the three
regions was Liaoning < Jiangsu < Guangdong; and the
demand of plant growth for heat: LiaoNing > JiangSu >
Guangdong. The effect of the mean temperature on the plant
growth in Liaoning was greater than that in either of Jiangsu and
Guangdong, showing that the positive correlation between the
mean temperature and the NDVI in Liaoning was higher than
that in either of the other two regions.

Response of Normalized Difference Vegetation Index
to Precipitation
Water conditions in Guangdong, Jiangsu, and Liaoning were also
significantly different. The correlation coefficients in Table 2
reveal that monthly precipitation and NDVI in Jiangsu and
Liaoning have obvious positive correlation, and the correlation

in Liaoning was greater than that in Jiangsu; while there was an
obvious negative correlation between the precipitation and the
NDVI in Guangdong. Guangdong and Jiangsu were sufficient in
water and higher in soil water content, and thus, generally avoids
shortage of water during the plant growing season. Even if the
precipitation was less, the inhibition effect on plant growth was
weak, which was manifested in that the smaller precipitation and
the NDVI were gradually independent of each other, and have a
lower correlation. When the precipitation was excessive, the plant
roots carried out oxygen-free respiration, which directly adversely
affected the absorption efficiency of nutrients and water of
vegetation, and inhibited the growth and development of
vegetation. Meanwhile, the increased precipitation reduced
light, bringing an adverse influence on the photosynthesis of
vegetation, and stunting the growth of vegetation (Ye et al., 2016).
Here, a negative correlation existed between the precipitations
and the NDVI. Liaoning was relatively short in water resources
and was lower in the soil water content, so that the precipitation
increase was beneficial to the growth of vegetation.

Climate warming was asymmetric in diurnal variations, which
had a significant impact on vegetation growth (Peng et al., 2013;
Du et al., 2019). The physiological effects of day-and-night
temperature on plants were different, and the responses of the
plants to round-the-clock asymmetric temperature rise would
also be different. Therefore, it is necessary to further study the

FIGURE 9 | Joint copula return periods of precipitation-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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effect of asymmetric circadian warming on vegetation and the
impact of continuous precipitation events on the NDVI. In
addition, the precipitation events also include precipitation
intensity, precipitation days, precipitation frequency, etc. In
order to have a deeper and clearer understanding of the
response mechanism of the NDVI to precipitation changes, in-
depth research on the NDVI and more precipitation events is
needed.

CONCLUSION

This paper uses the Copula function theory to discuss the
response characteristics of the NDVI in typical climate zones
along the east coastal areas of China to monthly mean
temperature and monthly precipitation. The main conclusions
are as follows.

(1) The mean temperatures in Guangdong, Jiangsu, and
Liaoning all showed a rising trend, with a rising rate of
Jiangsu > Liaoning > Guangdong. The precipitations in
Guangdong and Jiangsu showed an increasing trend, with
an increasing rate of Guangzhou > Jiangsu; and the

precipitation in Liaoning showed a significant downward
trend. The NDVI of the three regions were all increased
significantly in an ascending order of Guangdong > Jiangsu >
Liaoning.

(2) The joint probability distribution functions of the monthly
mean temperatures and the NDVI as well as the monthly
mean precipitations and the NDVI in Guangdong, Jiangsu,
and Liaoning all showed the characteristics that the upper tail
was higher than the lower tail. That is, the temperature and
precipitation were correlated with the upper tail of the NDVI,
and the lower tail was gradually independent, demonstrating
that the minimum temperature and precipitation had a little
influence on the NDVI, while the maximum temperature and
precipitation had a significant influence on the NDVI.

(3) The shorter the return period was, the wider the ranges of the
climate factor and the NDVI were, showing that when the
climate factor was constant, the probability of the NDVI
having a shorter return period was higher. The greater the
climate factor was, the longer the return period was, indicating
that the probability of plant growth inhibition was higher
when the climate factor exceeded a certain threshold.

(4) The hydrothermal combination conditions required for plant
growth in different regions were significantly different. Plant

FIGURE 10 | Survival copula return periods of precipitation-normalized difference vegetation index (NDVI) in (A) Guangdong, (B) Jiangsu, and (C) Liaoning.
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growth had an optimal temperature interval and an optimal
precipitation interval, and would be inhibited above or below
these thresholds.

(5) The subsystem composed of vegetation and climate elements
had the characteristics of complexity and nonlinearity. The
Copula function is utilized to quantitatively explain the
relationship between different hydrothermal conditions and
the NDVI through the probabilities, so that its uncertainty
was studied, and the return period was calculated.

Vegetation was affected by both climate change and human
activities. De-seasonal changes may eliminate signals with
seasonal characteristics such as temperature, precipitation, and
regular agricultural production to some extent, but the impact of
the human activities on the NDVI had not been separated and
quantified. In addition, the low spatial resolution of NDVI data
may also affect the response degree of climate elements. Further
research will be devoted to the construction of high-resolution
vegetation index data sets, and the attribution of regional
vegetation cover changes would be further explored,
concentrating on quantitative research of influencing factors of
the vegetation cover changes. It was worth noting that the rate of
global warming was uneven on the spatial scale and asymmetric
in time. This asymmetrical diurnal warming trend would have a
major impact on the growth of global vegetation. Therefore,
further studies are necessary to determine the effects of
asymmetric day-and-night warming on natural ecosystems.
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