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Abstract

The western Pacific warm pool (WPWP) has a profound impact on the global

climate. In this study, the forecast skill of ENSEMBLES model for predicting

the WPWP sea surface temperature (SST) for the period 1960–2006 is evalu-

ated, where a WPWP index (WPWPI) is defined to represent the interannual

variability of WPWP SST. The result indicates that the ENSEMBLES exhibit a

poor skill in predicting the WPWPI during January–April (2- to 5-month fore-

casts starting on November 1). To improve the ENSEMBLES-predicted WPWP

SSTs during January–April, a physical–empirical (PE) model is developed

based on two predictors, using the year-to-year increment method and the lin-

ear regression method. The two predictors include the ENSEMBLES-predicted

sea level pressure during January and the observed northern tropical Atlantic

SSTs during the preceding August. The mechanisms associated with the two

predictors are illuminated. The 1-year-out cross-validation and the indepen-

dent hindcast indicate that this PE model may notably improve the WPWPI

prediction of ENSEMBLES, with a correlation coefficient (CC) above 0.6

between the PE-model-predicted WPWPI and the observed WPWPI during

January–April. The physical mechanisms expounded in this study and the PE

model utilized in this study can be considered to improve the prediction of

WPWP SST of numerical models in the future.
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1 | INTRODUCTION

The western Pacific warm pool (WPWP) is a crucial com-
ponent of tropical oceans. It has been identified as both
the warmest portion of the heat reservoir and the hottest

portion of the firebox where a huge amount of
precipitation-induced latent-heat release is accumulated
due to the maximum annual precipitation (Chen et al.,
2004). The importance of WPWP for global climate has
been widely recognized (Wang and Xie, 1998; Clement
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et al., 2005; Wang and Mehta, 2008; De Deckker, 2016;
Hu et al., 2017; Li et al., 2017). For instance, the sea sur-
face temperatures (SSTs) in WPWP reflect the variability
of El Niño-South Oscillation (ENSO), which is the domi-
nant influential factor of interannual variability of global
climate (Matsuura and Iizuka, 2000; D'Arrigo et al., 2006;
Hu et al., 2017; Shen et al., 2019). The WPWP SSTs also
exert important influences on the East Asian monsoon
(Nitta, 1986, 1987; Huang, 1992; Matsuura and Iizuka,
2000; Sun et al., 2016), the greenhouse effect (Rajeevan
and McPhaden, 2004; Ruiz et al., 2005), and the precipita-
tion along the coast of China (Li and Zhou, 1999). Thus,
the evaluation of forecast skill for WPWP SSTs as well as
the improvement of the forecast skill for WPWP SSTs is a
critical issue for the prediction of climate variability.

Many efforts have been done to examine the predic-
tive skill of dynamical and statistical models for the tropi-
cal SSTs (Tangang et al., 1997; Berliner et al., 2000; Saha
et al., 2006; Wu et al., 2006; Weisheimer et al., 2009;
Stockdale et al., 2011). Specifically, (a) dynamical models
showed anomaly correlation skill of ~0.5 up to 12 months
ahead for eastern Pacific SST such as the Niño3 or
Niño3.4 SST (Saha et al., 2006; Weisheimer et al., 2009;
Stockdale et al., 2011); (b) statistical model were viable
for ENSO forecasting even at longer lead times of
9–12 months (Tangang et al., 1997; Wu et al., 2006); Kang
and Kug (2000) also developed an El Niño prediction
model, which can predict the eastern Pacific and central
Pacific for up to 12 months. However, most of the above
studies focused on the predictive skill of dynamical and
statistical models for the eastern tropical Pacific SSTs.
Less effort has been done to examine and improve the
predictive skill for the WPWP SSTs.

Generally, two approaches can be used to improve
numerical-model-forecasted products. The first approach
is to improve the numerical model via tuning the
dynamic processes and parameterization and resolution
of the numerical model (Gao et al., 2008, 2018; Gao and
Giorgi, 2017; Sun et al., 2018). For instance, Weisheimer
et al. (2009) improved models used in ENSEMBLES in all
aspects: in physical parameterizations, in resolution and
in the initialization. Doblas-Reyes et al. (2009) compared
three models obtained from ENSEMBLES by setting up
perturbed parameter and stochastic physics techniques.
The other approach is on the basis of numerical model
forecast, to establish a physical–empirical (PE) model
containing several predictors and a predictand to improve
the original forecast of numerical model, where the
underlying physical mechanism between the predictors
and the predictand has to be well understood (Huang
et al., 2014; Tian and Fan, 2014; Fan et al., 2016; Bi et al.,
2018; Tian et al., 2018; Zhang et al., 2019a). For instance,
Huang et al. (2014) developed a physical–empirical model

to improve the ability to predict the interannual variabil-
ity of the summer rainfall over the Yangtze River valley
with two predictors of Asian–Pacific Oscillation and SST
anomaly over the Atlantic. Zhang et al. (2019b)
established a physical–empirical model to improve the
prediction of Antarctic Oscillation Index (AOI), with two
predictors including concurrent spring SSTs forecasted by
NCEP Climate Forecast System Version 2 (CFSv2) and
observed preceding autumn sea ice.

Thus, this study aims to examine the predictive skill
of the ENSEMBLES model for the WPWP SSTs and to
improve the ENSEMBLES prediction of WPWP SSTs
using a physical–empirical model, which is established
based on an understanding of the mechanisms for the
interaction between the WPWP SSTs and the predictors
for WPWP SSTs.

The structure of this article is as follows. Section 2 intro-
duces the data and methods applied in this study. The pre-
dictive skill of the ENSEMBLES with regard to WPWP SST
is discussed in section 3. In section 4, the two predictors
applied to predict the WPWP SST are introduced first, then
the PE model is established and adopted to improve the
prediction of WPWP SST in ENSEMBLES. Finally,
section 5 provides some discussions and conclusions.

2 | DATA AND METHODS

2.1 | Data

ENSEMBLES is a comprehensive project funded by the
European Union to establish a climate change ensemble
forecasting system based on the most advanced,
high-resolution, global and regional Earth system models
developed in Europe, and to validate European data
through quality control, high-resolution grids (Doblas-
Reyes et al., 2009). The multi-model ensemble for seasonal-
to-annual forecasts comprises of global coupled
atmosphere–ocean climate models from the UK Met Office
(UKMO), Météo France (MF), the European Centre for
Medium-Range Weather Forecasts (ECMWF), the Leibniz
Institute of Marine Sciences at Kiel University (IFM-GEO-
MAR), the Euro-Mediterranean Centre for Climate Change
(CMCC-INGV) in Bologna, and the Hadley Centre Coupled
Model version 3 (HadCM3), with hindcast data for the
period of 1960–2005. Each year has 7-month-long seasonal
forecasts starting on the first of February, May, August and
November. In addition, the November forecasts from all
models except for CMCC-INGV were extended to
14-month-long annual forecast. In this study, the 14-month
long annual forecasts starting on the first of November are
utilized. Since the HadCM3 model does not have the
hindcast data of SLP, the multi-model ensemble-mean
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(MME) of SLP does not include the HadCM3 model. In
addition, equal weights are applied to all models when
computing the multi-model ensemble-mean (MME) of
ENSEMBLES.

The reanalysis data included vertical velocity (ω), sur-
face wind, 850-hPa wind and SLP data are derived from
the monthly reanalysis data of National Centers for Envi-
ronmental Prediction (NCEP) and National Center for
Atmospheric Research (NCAR), which has a resolution
of 2.5�× 2.5� (Kalnay et al., 1996). The ω is at levels of
1,000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150 and
100-hPa. Observation data of SST is derived from the Met
Office Hadley Center, which has a resolution of 1� × 1�

(Rayner et al., 2003). Particularly, the net long-wave radi-
ation fluxes, net shortwave radiation fluxes, latent heat
net fluxes and sensible heat net fluxes derived from
NCEP/NCAR are on T62 Gaussian grids (192 × 94).

2.2 | Methods

In this study, the temporal correlation coefficient (CC) and
the root-mean-square error (RMSE) are adopted to evaluate
the prediction skill of the ENSEMBLES multi-model. Addi-
tionally, the RMSE does not discriminate between systematic
and random errors of the model, thus an alpha index
(AI) proposed by Koh and Ng (2009) is applied in this study
to evaluate random errors of the model. The AI is given by:

AI=1−2
cov F,Oð Þ

var Fð Þ+var Oð Þ=
PN

i=1 Fi− �F−Oi− �Oð Þ2
PN

i=1 Fi− �Fð Þ2+PN
i=1 Oi− �Oð Þ2

where F is the time series of hindcast and O is the time
series of observations; cov(F,O) is the covariance between
the forecast and observation; var(F) and var(O) are the
variance of forecast and observation, respectively; N is
the length of time series; the overbar denotes climate
mean. The AI ranges from 0 to 2. Thus, in the case of Fi –
�F ≈ Oi – �O, AI approaching 0, which denotes a small ran-
dom error and a better prediction skill; in the case of cov
(F,O)≈ 0, AI approaching 1, which denotes a large ran-
dom error and poor agreement between the prediction
and observation; in the case of Fi – �F ≈− (Oi – �O ), AI
approaching 2, which indicates that the random error is
small and the difference between forecast value and the
observation is large. For a good numerical-model fore-
cast, the AI should be less than 1.

In this study, we establish a PE model to improve the
original forecast of ENSEMBLES. First, the predictors of the
predictand are determined, and then the PE model is
established by using the concurrent predictor predicted by
model and the previous information in the observation data.

Compared to the traditional prediction models which
aim at predicting the anomalies of a variable, a year-to-year
increment approach was applied to develop the PE model.
The year-to-year increment approach proposed by Fan et al.
(2008) based on Wang et al. (2000) treats the year-to-year
increment (DY, the difference in a variable between current
year and previous year) of a variable as the predictand, pro-
duces the final predicted variable by adding the predicted
DY of the variable to the observed value from the previous
year. Results have suggested that the year-to-year increment
approach can obviously improve the prediction of East Asian
winter monsoon (Tian et al., 2018), AOI (Zhang et al.,
2019b), and the winter North Atlantic Oscillation (Fan et al.,
2016). Huang et al. (2014) pointed out that adding model-
predicted DY of the North Pacific tropospheric temperature
index (PI) to observed PI from the previous year can improve
the model's prediction of PI. Specially, the year-to-year incre-
ment approach is mainly used in the context of the quasi-
biennial oscillation of the variables of the tropospheric
climate, such as the East Asian monsoon, ENSO and other
climatic factors. It is not difficult to understand why the
year-to-year increment approach is useful for better predic-
tion. Specifically, if Yi represents the variable in the current
year and Yi − 1 represents the variable in the previous year,
then Yi= C + di and Yi − 1 = −C + di − 1, where C represents
the anomaly of the variable, and where di and di − 1 repre-
sent a disturbance in C. After the disturbance is ignored, the
climatological mean is 0, then the climatic anomaly of Yi is
Yi – 0 = C + di ≈ C and the year-to-year increment of Y is
DYi = Yi – Yi − 1 ≈ 2C. If DY is considered as the predicand,
then the amplitude of DY is twice the amplitude of Y. Thus,
using the year-to-year increment prediction approach could
largely amplify the prediction signals.

The PE model's predictive capability is assessed using
1-year-out cross-validation (Michaelsen, 1987) and inde-
pendent hindcast. The 1-year-out cross-validation method
predicts the predictand in the specific year with a model
built by the sample of leaving this specific year out. Inde-
pendent hindcast divided the database in two periods, one
applied for training period of 1963–1984 and another
period of 1985–2006 for verification. The statistical signifi-
cance of correlation coefficients (CCs) is assessed using the
Student's t-test.

In section 4.1.2, the ENSO signal is removed by the
following formula (Li et al., 2006):

SST* = SST – Ni~no3:4 × a+bð Þ

a = cov Ni~no3:4,SSTð Þ=var Ni~no3:4ð Þ
b = avg SSTð Þ – a × avg Ni~no3:4ð Þ

where SST* is the SST field after ENSO signal is removed;
SST is the original SST field; cov(Niño3.4, SST) is the

CHEN AND SUN 3



covariance between the Niño3.4 index and SST;
var(Niño3.4) is the variance of Niño3.4 index; avg(SST) is
the average of SST filed; avg(Niño3.4) is the average of
Niño3.4 index.

Considering that this study focuses on the inter-
annual variability, the linear trends in the data during
1960–2006 are removed before all computations.

3 | THE FORECAST SKILL OF
ENSEMBLES FOR THE WPWP SST

In the previous study, there are many definitions for
WPWP using different isotherms as its boundary for dif-
ferent purposes (Graham et al., 1987; Webster and Lukas,
1992; Picaut et al., 1996; Ridout and Reynolds, 1998;
Wang et al., 2010; Gan and Wu, 2012). For instance, Gan

and Wu (2012) utilized an isotherm of 28�C as the bound-
ary of WPWP. Ridout and Reynolds (1998) used the iso-
therm of 29�C to identify the WPWP. To examine the
model's predictive ability for the WPWP SST and to avoid
the influence of regional changes caused by the selection
of specified isotherm on the score of forecast skill, this
study follows Zhan et al. (2013) and defines the WPWP
index (WPWPI) by the SST averaged over the region
within 0�–16�N and 125�E–165�E.

Figure 1 shows the predictive skill scores of the multi-
model ENSEMBLES for WPWP SST from 1960 to 2006
based on different metrics. The CCs between the observa-
tion and the EMSEMBLES MME for the WPWPI
decrease rapidly towards a low level after 2-month fore-
casts, with a CC below 0.4 (significant below the 99%
confidence level) for most models (Figure 1a). Specifi-
cally, the HadCM3 model has a relatively higher forecast

(a) (b)

(c) (d)

(e) (f)

FIGURE 1 (a–b) Correlation coefficients, (c–d) RMSEs and (e–f) AIs between the ENSEMBLES multi-models and the observation for

WPWPI (left panel) and DY_WPWPI (right panel) starting on November 1st for the period 1960–2005. The lead time 0 in the X-axis refers to

November. Colour code: Blue, ECMWF; green, UKMO; pink, MF; yellow, IFM-GEOMAR; red, CMCC-INGV; purple, HadCM3; black, the

MME. In (a) and (b), the horizontal dashed line indicates the 99% confidence level based on the Student's t-test. In (a), thick black dashed

line indicates the variance of multi-models
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skill score for WPWPI than other models, which has a
CC with the observation higher than 0.4 (significant at
the 99% confidence level) within the 5-month forecasts.
The CCs between the observed and forecasted DY of
WPWPI (DY_WPWPI) show similar features (Figure 1b).
Correspondingly, for the MME and for most models, the
RMSEs between the observation and forecasts (Figure 1c)
and the AIs (Figure 1e) increase towards a high level
after the 2-month forecast, indicating a notably decreased
forecast skill for most models after the 2-month forecast.
Moreover, the CCs, RMSEs, and AIs for different models
exhibit a noticeable variance after the 2-month forecast,
suggesting a large uncertainty of the model forecasts of
WPWPI. The 2-month forecast refers to the January fore-
cast starting on first of November. Thus, the forecast for
WPWPI for the months during January–April needs to be
improved.

4 | IMPROVEMENT OF WPWP SST
PREDICTIVE SKILL-BASED ON THE
PE MODEL

Wavelet analyses are computed for the January–April
WPWPI during 1960–2006. The results indicate that the
monthly WPWPI during January–April has a significant
2- to 6-year period (Figure 2). Thus, the year-to-year
increment method can be utilized to establish the PE
model, which may enlarge the signal of interannual vari-
ability of WPWPI and hence be conducive to the predic-
tion of WPWPI. Considering that the WPWP SST is
affected by regional air–sea interaction (Da Silva et al.,
1994; Wu et al., 2006) and is teleconnected with the air-
sea interaction over Atlantic (Enfield et al., 2006; Ham
et al., 2013), two predictors are utilized to establish the
PE model for improving the forecast skill of WPWPI,
which are the regional SLPs and the northern tropical
Atlantic (NTA) SSTs, respectively.

4.1 | Predictors and associated
mechanisms

4.1.1 | Regional SLP over WPWP

Previous studies indicate that the regional air–sea inter-
action over WPWP may exert an impact on the WPWP
SSTs (Sun et al., 2017). An anomalous depression or sub-
sidence over the WPWP may induce Walker circulation
anomalies, surface winds anomalies, cloud anomalies
and radiation fluxes anomalies, resulting in SST anoma-
lies (Madden and Julian, 1994; Knaff, 1997; Wang and
Enfield, 2001; Druyan and Hastenrath, 2002; Zelinka and

Hartmann, 2010; Soden and Vecchi, 2011). These SST
anomalies may persist in the following months due to the
low-frequency variation of SSTs (Luksch and von Storch,
1992). Thus, regional climate variables associated with
the air–sea interaction over the WPWP during January or
preceding January could be considered potential predic-
tors for the WPWPI during January–April.

One of the regional potential predictors of WPWP
SST is the SLP over WPWP. As shown in Figure 3, the
lead–lag CCs between the DY_SLP during January and
the DY_WPWPI during January–April indicate that
anomalous low regional DY_SLP during January is gen-
erally associated with positive DY_WPWPI during
January–April, suggesting that the regional SLP
during January can be used as a predictor of WPWPI dur-
ing January–April to establish the PE model from a statis-
tical perspective.

However, the question is: how the regional SLP dur-
ing January influences the air–sea interaction and hence
influences the WPWP SSTs during January–April? To
answer this question, the climate anomalies associated
with the anomalous regional SLP over the WPWP are
examined, where a SLP index (SLPI) is defined as the
areal mean SLP over the region within 10�S–20�N, 120�–
165�E. Figure 4 shows the 850-hPa ω anomalies during
January–April regressed on the SLPI during January. It
can be seen that negative ω anomalies occur over the
WPWP during January concurrent with an anomalous
depression (Figure 4a). The enhanced vertical ascending
motion over western tropical Pacific induces a strength-
ened Walker circulation over the tropical Pacific, which
is characterized by ascending anomalies over the tropical
Pacific within 110�–165�E and descending anomalies
over the tropical Pacific within 165�–90�W (Figure 4b).
This strengthened Walker circulation may lead to
increase near-surface easterly winds over the tropical
Pacific (Figure 5a), inducing a large amount of warmer
seawater in the central equatorial Pacific to be trans-
ported to the western Pacific (Kucharski et al., 2011). The
convergence of the surface waters in the western Pacific
results in increased WPWP SSTs (Figure 5b). At the same
time, the western boundary of the WPWP is composed of
sporadic islands, which also weakens the boundary
upwelling and is conducive to the increase of the WPWP
SSTs (Wu, 1993).

In turn, the increased WPWP SSTs may provide a
boundary condition favouring the strong upward atmo-
spheric motions and convection over the WPWP, which
may enhance the easterly winds over tropical central
Pacific and then strengthen the cold anomaly in the
central-eastern equatorial Pacific through increased
upwelling. The Bjerknes feedback may amplify the cou-
pling of the temperature gradient of east–west sea surface
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and the strengthened Walker Circulation (Figure 4e,h,k
and 5c,e,g; Bjerknes, 1969). This positive feedback can
persistently warm WPWP SST during January–April
(Figure 5b,d,f,h). However, the Pacific SST also has its
own variability, not completely controlled by the Walker
circulation, and there are many factors that inhibit its
warming (Kitoh et al., 1999). For example, the more con-
vective cloud associated with increased convective activ-
ity reduce the incoming solar radiation, which cool the
SST, so this positive feedback only affects the seasonal
changes of the SST.

It should be noted that previous studies suggested
that the regional SLP and convection may influence the

WPWP SSTs via affecting the surface heat budget, includ-
ing the net long-wave radiation, net shortwave radiation,
latent heat net fluxes and sensible heat net fluxes (Cronin
and McPhaden, 1997; Shinoda and Hendon, 1998; Huo
and Xiao, 2017). However, our result shows that although
net long-wave radiation and sensible and latent heat
fluxes are responsible for the positive net heat fluxes
anomaly into the ocean, which warms up SST, while the
net shortwave radiation counter-acts the other three radi-
ation factors, the correlation coefficients between WPWP
net surface heat fluxes and the WPWP SST anomalies are
not significant in any lag/lead month (Figure 6a). In con-
trast, Figure 6b shows that the maximum negative

(a) (b)

(c) (d)

FIGURE 2 Wavelet analyses of the WPWPI during (a) January, (b) February, (c) march and (d) April for the period 1961–2006. Dotted
regions indicate significant variability at the 90% confidence level estimated by a red noise process, and the parabola indicates the “cone of
influence”
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correlation between the WPWP SSTs and the near-
surface zonal wind averaged over the tropical Pacific
(10�S–5�N, 160�E–150�W) occurs when the lag month is
zero, with a correlation coefficient of −0.57, which is
above the 99% significance level. The lead–lag CCs are
still significant when the WPWP SSTs lead/lag the
near-surface zonal wind by 5 months. The above results
suggest that the regional SLP over the WPWP and the
associated near-surface zonal wind anomalies over the
tropical Pacific are more important factors for inducing
the anomalous WPWP SSTs during January–April than
the surface heat budget.

Furthermore, the SLP over the WPWP region is better
predicted than WPWP SST, because the SST anomalies in
the western Pacific are smaller than the SST anomalies in
the eastern Pacific, whereas the SLP anomalies in the east
and west are not much different (Xue and Leetmaa,

2000). As depicted in Figure 7, the ENSEMBLES MME
shows a better skill for predicting the SLPI than WPWPI
for lead-times of 2–5 months. The lead times of
2–5 months refer to the forecast during January–April
starting on November 1. Specifically, for the 2- to
5-month forecasted WPWPI, the CCs between the
observed WPWPI and the forecasted WPWPI are approxi-
mately 0.2, which are below the 90% significance level
(Figure 7a); whereas the CCs between the observed SLPI
and the forecasted SLPI are approximately 0.75, which
are above the 99% significance level (Figure 7a). These
results indicate that the ENSEMBLES MME has a better
skill for predicting the SLP than for predicting the SSTs
over the WPWP regarding the 2- to 5-month forecast. As
for the DY, the CCs between the observed DY_WPWPI
and the forecasted DY_WPWPI are approximately 0.0 for
the 2- to 5-month forecast; in contrast, the CCs between

(a) (b)

(c) (d)

FIGURE 3 Correlation coefficients between the observed January DY of SLP and observed DY_WPWPI during (a) January,

(b) February, (c) March and (d) April. Slashed areas indicate statistical significance at the 99% confidence level based on the Student's t-test
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the observed DY_SLPI and the forecasted DY_SLPI are
approximately 0.8 for the 2- to 5-month forecast, which
are above the 99% confidence level (Figure 7b). In addi-
tion, as shown in Figure 7c, the RMSEs for the forecasted
SLPI are notably smaller than the RMSEs for the fore-
casted WPWPI regarding the 2- to 5-month forecast, indi-
cating a better predictive skill for the SLPI than for the
WPWPI. At the same time, the ENSEMBLES-predicted
January SLP is significantly correlated with the observed
WPWPI during January–April. The 2- to 5-month fore-
cast we mentioned above refers to the forecast during
January–April starting on November 1. Thus, the January
SLPI forecasted by the ENSEMBLES MME can be used

as a predictor for establishing the PE model of predicting
WPWPI for January–April.

4.1.2 | Northern tropical Atlantic SSTs

Previous studies demonstrate that SST anomalies over NTA
area may exert regional air–sea interaction and further pro-
duce teleconnections over the tropical ocean (Jansen et al.,
2009; Frauen and Dommenget, 2012; Kucharski et al.,
2016; Sun et al., 2017). In particular, some studies docu-
mented the impact of the Atlantic Multidecadal Oscillation
(AMO) on the Pacific SSTs (Enfield et al., 2006;

FIGURE 4 Anomalies of observed 850-hPa ω (unit: 10−3 Pa s−1; left panel) and meridional averaged ω within 5�S–5�N (unit:

10−3 Pa s−1) (middle panel) during (a–b) January, (d–e) February, (g–h) March and (j–k) April regressed on the standardized time series of

observed January SLPI for 1960–2006. Climatology of meridional averaged ω within 5�S–5�N (right panel) during (c) January, (f) February,

(i) March and (l) April. Slashed areas in (a, d, g, j) and shaded areas in (b, e, h, k) indicate statistical significance at the 95% confidence level

based on the Student's t-test. The black curvilinear rectangles in (a, d, g, j) represent the region of WPWP
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Timmermann et al., 2007; Zhang and Delworth, 2007). It is
suggested that the warming of NTA SST may induce west-
erly wind anomalies over the eastern Pacific as Rossby
waves and easterly wind anomalies over the Indo-western
Pacific as Kelvin waves and these wind anomalies induce
eastern Pacific cooling and Indo-western Pacific warming
(Ham et al., 2013; Li et al., 2016; Sun et al., 2017). Consider-
ing the aforementioned teleconnection between the NTA
SSTs and the tropical Pacific SSTs, the NTA SSTs could be
considered a potential predictor for the WPWPI during
January–April.

The relationship between the observed monthly
WPWPI during January–April and the monthly NTA
SSTs during preceding boreal summer and autumn is

examined. The results indicate a significant correlation
between the preceding August NTA SSTs and the WPWPI
during January–April. Figure 8 depicts the correlation
coefficients between the DY_SST of preceding August
and the monthly DY_WPWPIs during January–April. It
can be seen that the DY_WPWPI during January–April
are all significantly correlated with the NTA SSTs (areal
mean SST anomalies within 0�–15�N, 90�W–20�E) during
the preceding August. Thus, from a statistical perspective,
the NTA SSTs during the preceding August can be con-
sidered a predictor to establish the PE model for
predicting the WPWP SSTs during January–April.

To illustrate the mechanism how the preceding NTA
SSTs impact the WPWP SSTs during January–April, a

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 5 Observed surface zonal wind (unit: m s−1; left panel) and SST (unit: �C; right panel) during (a–b) January, (c–d) February,
(e–f) March and (g–h) April regressed on the standardized time series of observed January SLPI for 1960–2006. Slashed areas indicate

statistical significance at the 95% confidence level based on the Student's t-test. The black curvilinear rectangles in (b, d, f, h) represent the

region of WPWP
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northern tropical Atlantic index (NTAI) is defined by the
areal mean SST over the region within 0�–15�N and 90�W–
20�E (Figure 8). To investigate the influence of NTA SST
on the WPWP SSTs, regressions of tropical climate vari-
ables on the preceding August NTAI are calculated. Con-
sidering that the interannual variability of NTA SSTs and
WPWP SSTs are influenced by the ENSO (Alexander and
Scott, 2002; Chiang and Sobel, 2002), the ENSO signal of
previous December–February is first removed from the

corresponding data before the lagged regression is per-
formed. The ENSO signal is represented using the Niño3.4
index (5�S–5�N, 170�–120�W). Figure 8 shows the seasonal
SST anomalies and 850-hPa wind anomalies during
autumn, winter, and spring regressed on the detrended and
standardized time series of NTAI for August.

During the boreal summer and the early autumn
(August–September–October), warm SST anomalies in
the NTA area may induce strengthened convective

(a) (b) FIGURE 6 Lagged cross-

correlation coefficients between

observed January WPWPI and (a) the

net surface heat fluxes (unit: W m−2),

(b) the zonal wind at 10 M (unit: m s−1).

The horizontal dashed lines represent

90% significance level based on the

Student's t-test. The net surface heat

fluxes are calculated as the regionally

averaged net surface heat fluxes over

WPWP area (positive out of the ocean).

The zonal wind is calculated as the

regionally averaged zonal wind over

10�S–5�N, 160�E–150�W

(a) (b)

(c) (d)

FIGURE 7 (a, b) Correlation coefficients and (c, d) RMSEs between ENSEMBLES MME and the observation for SLPI and WPWPI (left

panel), DY_SLPI and DY_WPWPI (right panel) starting on first of November for the period 1960–2005. The horizontal dashed line in (a, b)

indicates the 99% confidence level based on the Student's t-test
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activity over the subtropical Atlantic within 40�–5�W
(Figure 9a), and the associated convective heating may
stimulate a Gill-type Rossby wave response characterized
by an anomalous low-level cyclone over the subtropical

eastern Pacific (Gill, 1980; Figure 9b). The northerly wind
anomalies on the west edge of this anomalous cyclone
increase the surface wind speed over the subtropical
Pacific within 160�–125�W (Figure 10a) and lead to

(a) (b)

(c) (d)

FIGURE 8 Correlation coefficients between observed DY of SST of previous August and observed DY of SST of current year during

(a) January, (b) February, (c) March and (d) April. Dotted areas indicate statistical significance at the 99% confidence level based on the

Student's t-test. The black curvilinear rectangles represent the region of NTA

(a) (b)

(c) (d)

(e) (f)

FIGURE 9 Anomalies of observed 850-hPa ω (unit: 10−3 Pa s−1; left panel) and SST (unit: �C, colour shading), 850-hPa wind (unit: m

s−1, vector; right panel) during (a–b) August–October (the ASO season), (c–d) NDJ and (e–f) FMA of next year regressed on the observed

august NTAI for 1961–2006. Slashed areas in (a, c, e) indicate statistical significance at the 90% confidence level based on the Student's t-test.

As for the 850-hPa wind in (b, d, f), only the values above 0.2 m s−1 are shown. As for the SST in (b, d, f), only the values at the 90%

confidence level or higher are shown

CHEN AND SUN 11



increased evaporative cooling of the SSTs in this region
(Ham et al., 2007), which provides an unfavourable con-
dition for the overlaying atmospheric convection and
results in weakened convective heating over the subtropi-
cal eastern Pacific within 130�–100�W (Figure 9c). The
weakened convective heating over the subtropical eastern
Pacific may stimulate an anomalous low-level anticy-
clone over the subtropical central Pacific (Gill, 1980;
Figure 9d); in turn, the northerly wind anomalies along
the eastern edge of this anomalous anticyclone lead to
increased wind speed over the eastern North Pacific
within 145�–110�W (Figure 10b), which may further con-
tribute to increased evaporative cooling in the eastern
North Pacific (Figure 9f) and hence further lead to weak-
ened convective heating over the eastern North Pacific
(Figure 9e). The above positive feedback may eventually
result in an anomalous anticyclone occupying North
Pacific during winter and the subsequent spring, which
induces enhanced low-level easterly winds over the sub-
tropical and tropical Pacific (Figure 9f). These enhanced
low-level easterlies over the tropical Pacific would lead to
warm SST anomalies in the western tropical Pacific and
cold SST anomalies in the central and eastern tropical
Pacific (Figure 9f).

In addition to the aforementioned mechanism medi-
ating the influence of NTA SSTs on the WPWP SSTs,
there may be another mechanism of preceding August
NTA SSTs affecting the January–April WPWP SSTs. As
shown in Figure 9b, an anomalous warming in the tropi-
cal Atlantic is generally concurrent with an anomalous
warming in the northern Indian Ocean during August
(Kucharski et al., 2008; Wang et al., 2009). It has been
well known that an anomalous warming in the tropical
Atlantic during boreal summer may stimulate an equato-
rial Kelvin wave which propagates eastward to the
Indian Ocean and western tropical Pacific within 2 weeks
(Ham et al., 2013; Li et al., 2016), the Kelvin wave is char-
acterized by easterly low-level wind anomalies over the
Indo-Pacific region (Figure 9b). These easterly wind
anomalies over the Indo-Pacific region may induce
decreased surface wind speed over the tropical Indo-
Pacific region within 90�–150�E (Figure 10a), which lead
to decreased evaporative cooling of SSTs in this region
and hence warm SST anomalies in this region (Xie and
Philander, 1994; Figure 9b). The warm SST anomalies in
the Indo-Pacific region may in turn induce a secondary
circulation during the subsequent NDJ, which results in
westerly low-level wind anomalies over the tropical

(a)

(b)

(c)

(d)

FIGURE 10 Observed surface wind speed (unit: m s−1) during (a) ASO, (b) NDJ, (c) FMA of next year and (d) time–longitude
section of observed meridional SST averaged within 0�–15�N (unit: �C) regressed on the observed August NTAI for 1961–2006. Slashed areas

in (a–c) indicate statistical significance at the 90% confidence level based on the Student's t-test. Crossed areas in (d) indicate statistical

significance at the 95% confidence level based on the Student's t-test
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Indian Ocean and easterly low-level wind anomalies over
the western tropical Pacific (Figure 9d). The easterly low-
level wind anomalies over western tropical Pacific may
enhance the Walker circulation and lead to warm SST
anomalies in the WPWP via the Bjerknes feedback
(Bjerknes, 1969; Figure 9d), which may persist through
the subsequent FMA (Figure 9f). Figure 9d shows regres-
sion of subtropical (0�–15�N) SST on the preceding
August NTAI, which indicates that the signal of Atlantic-
induced warm SST anomalies in the Indian Ocean during
preceding August may propagate eastward with time and
lead to warm SST anomalies in the western tropical
Pacific during the subsequent January–April.

Thus, anomalous warm SSTs in the NTA during the
preceding August may contribute to warm WPWP SST
anomalies during January–April via two different mecha-
nisms, whereby the observed NTAI during the preceding
August can be used as a predictor for establishing the PE
model predicting the WPWP SST anomalies.

4.2 | Establishing PE model and
improving the numerical model prediction

Based on the above results, two predictors for the PE
model predicting the DY_WPWPI during January–April
are determined, which are the DY of ENSEMBLES-
MME-forecasted SLPI during January (hereafter referred
as DY_SLPI) and the DY of observed NTAI during pre-
ceding August (hereafter referred as DY_NTAI). The CC
between the time series of DY_SLPI and DY_NTAI dur-
ing 1960–2006 is −0.09, which is below the 90% confi-
dence level, indicating that the two factors are
independent. Based on the above two predictors, a PE
model is established using a multivariable regression
method:

DY_WPWPI = a × DY_SLPI+b × DY_NTAI

where the DY_WPWPI is the monthly DY_WPWPI dur-
ing January–April; the DY_SLPI is the DY of
ENSEMBLES-MME-predicted SLPI during January; the
DY_NTAI is the DY of observed NTAI during preceding

August; the a and b are the corresponding regression
coefficients for DY_SLPI and DY_NTAI, respectively.

Table 1 shows the CCs between the predictors and
the predictand. The predictors are significantly correlated
with the predictand during January–April, where the
corresponding CCs are all at the 99% significance level.
Specifically, the CCs between the DY_SLPI during
January and the monthly DY_WPWPI during January–
April are characterized by negative values smaller than
−0.4; the CCs between the monthly DY_NTAI during
preceding August and the monthly DY_WPWPI during
January–April are characterized by positive values larger
than +0.4.

The performance of the PE model is evaluated using a
cross-validation method with a one-year-out approach for
the period 1963–2006 (44 years) and is also evaluated
using independent hindcast for 1985–2006 (22 years).

According to the 1-year-out cross-validation results
(Table 2), the CCs between the PE-model-predicted
DY_WPWPI and the observed DY_WPWPI are larger
than 0.8 for January–March and is approximately 0.7 for
April, which are significant at the 99% confidence level.
Furthermore, the CCs between the observation and the
PE model for the WPWPI are larger than 0.65 for
January–April, which are above the 99% significance
level. In contrast, the CCs between the ENSEMBLES-
MME-predicted DY_WPWPI and the observed
DY_WPWPI during January–April are approximately
0.05 (significant below the 90% confidence level), and the
CCs between the observation and the ENSEMBLES
MME for the WPWPI are approximately 0.15 (significant

TABLE 1 Correlation coefficients between predictors and the

predictand (DY_WPWPI) for the period 1960–2006

Predictand

Predictors

DY_SLPI DY_NTAI

JAN −0.81 0.47

FEB −0.77 0.54

MAR −0.66 0.62

APR −0.48 0.59

TABLE 2 Correlation coefficients

between the PE model and the

observation for the WPWPI and

DY_WPWPI in cross-validation for the

period 1963–2006 and independent

hindcast for the period 1985–2006 (CCs

between the ENSEMBLES MME and

the observation for the WPWPI and

DY_WPWPI are in parentheses)

Predictand

Cross-validation Hindcast

DY_WPWPI WPWPI DY_WPWPI WPWPI

JAN 0.88 (0.05) 0.72 (0.19) 0.90 0.81

FEB 0.89 (0.05) 0.68 (0.19) 0.92 0.77

MAR 0.85 (0.05) 0.73 (0.19) 0.85 0.75

APR 0.69 (0.05) 0.66 (0.17) 0.74 0.68
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below the 90% confidence level). The results of 2/3 years
out cross-validation are similar to the result of 1-year-out
cross-validation. The above results suggest a good capa-
bility of the PE model for improving the WPWP SST pre-
diction of numerical model. Specifically, Figure 11 shows
the cross-validation results for DY_WPWPI and WPWPI
during January–April. The PE-model-forecasted
DY_WPWPIs during January–April are significantly cor-
related with the observed DY_WPWPIs in the one-year-
out cross-validation for the period 1963–2006, with CCs
above 0.65 (Figures 11a,c,e,g). Correspondingly, the time
series of the PE-model-forecasted WPWPI are also largely
consistent with the time series of the observed WPWPIs
during January–April regarding the interannual variabil-
ity (Figures 11b,d,f,h).

As for the independent hindcast for 1985–2006, the
CCs between the observation and the PE model for the
DY_WPWPI are larger than 0.85 for January–March and
is 0.74 for April, which are significant at the 99% confi-
dence level; the CCs between the PE-model-predicted

WPWPI and the observed WPWPI during January–April
are larger than 0.65, which are also significant at the 99%
confidence level (Table 2). Specially, Figure 12 shows the
independent hindcast of DY_WPWPI and WPWPI during
January–April for 1985–2006 (Figures 12a,c,e,g). The
time series of PE-model-forecasted WPWPI and observed
WPWPI show similar features (Figures 12b,d,f,h). Thus,
the PE model performs well for improving the
ENSEMBLES-MME-predicted DY_WPWPIs as well as
WPWPIs for January–April.

5 | DISCUSSION AND
CONCLUSION

In this study, the predictive ability of the ENSEMBLES
MME for the WPWP SST during 1960–2005 is assessed. A
relatively poor forecast skill of the ENSEMBLES MME
for the WPWPI during January–April is detected, with an
insignificant correlation between the ENSEMBLES-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 11 The PE-model-predicted (blue line) and observed (orange line) DY_WPWPI (left panel) and WPWPI (right panel) during

(a) January, (b) February, (c) March and (d) April in the cross-validation test for the period 1963–2006
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MME-predicted WPWPI/DY_WPWPI and the observed
WPWPI/ DY_WPWPI during January–April for the
period 1960–2005. To improve the prediction of ENSEM-
BLES MME for the WPWPI during January–April, a PE
model is established using the year-to-year increment
approach based on two predictors. The two predictors
include the ENSEMBLES-MME-predicted SLP during
January over the WPWP region and the observed SST in
preceding August in the NTA region. The 1-year-out
cross-validation and independent hindcast results indi-
cate that the PE model can notably improve the
ENSEMBLES-MME-predicted DY_WPWPI as well as
WPWPI, suggesting that this PE model may be utilized to
improve the numerical-model-predicted WPWP SSTs.

The results of this study suggest that the SLP over the
WPWP during January and the NTA SSTs during the pre-
ceding August may exert a persistent influence on the
WPWP SSTs during January–April via different mecha-
nisms. In addition to those two factors, there are some
other factors that may also influence the variability of

WPWP SSTs, such as the Niño4 SST during previous year
(Fan et al., 2017), the heat flux at the ocean surface in the
western Pacific (Wang and Xie, 1998), the Pacific Decadal
Oscillation (PDO) during pervious winter (Gan and Wu,
2012). These factors may also be considered to improve
the seasonal and interannual forecast of WPWP SSTs in
the future.

Finally, this study only focus on improving the pre-
diction of ENSEMBLES MME, there are more recent
databases of seasonal forecasts such as CFSv2, Met Office
Global Seasonal Forecast System 5 (GloSea5) and EURO-
pean Seasonal to Interannual Prediction (EUROSIP).
Further studies on evaluating and improving the predic-
tion of these numerical model's production are needed.
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