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ABSTRACT

The intensity of the tropical cyclone has been introduced into the Dynamical-Statistical-Analog Ensemble

Forecast (DSAEF) for Landfalling Typhoon (or tropical cyclone) Precipitation (DSAEF_LTP) model.

Moreover, the accumulated precipitation prediction experiments have been conducted on 21 target tropical

cyclones with daily precipitation$ 100mm in South China from 2012 to 2016. The best forecasting scheme for

theDSAEF_LTPmodel is identified, and the performance of the prediction is comparedwith three numerical

weather predictionmodels (theEuropeanCentre forMedium-RangeWeather Forecasts, theGlobal Forecast

System, and T639). The forecasting ability of the DSAEF_LTP model for heavy rainfall (accumulated

precipitation $ 250 and $100mm) improves when the intensity of the tropical cyclone is introduced, giving

some advantages over the three numerical weather predictionmodels. The selection of analog tropical cyclones

with a maximum intensity (during precipitation over land) equaling to or higher than the initial intensity of the

target tropical cyclone gives better forecasts. The prediction accuracy for accumulated precipitation is higher for

tropical cyclones with higher intensity and higher observed precipitation, with in both cases positive linear

correlations with the threat score.

1. Introduction

Tropical cyclones (TCs) are frequent events and can

cause large numbers of casualties (Zhang et al. 2009;

Chen 2010),mainly as a result of heavy rainfall (Rappaport

2000; Zhang et al. 2010). In 1975, the maximum daily

precipitation of Typhoon Nina in Henan Province of

China reached 1062mm, resulting in damage to six

large- and medium-sized reservoirs and at least 26 000

deaths (Chen and Xu 2017). In the United States,

Hurricane Harvey (2017) after landfall produced 5-day

accumulated rainfall totals exceeding 1000mm acrossCorresponding author: Dr Fumin Ren, fmren@163.com
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a wide swath of the Houston metropolitan area in the

state of Texas. There were 70 deaths and an estimated

$125 billion (U.S. dollars) economic damage (Emanuel

2017; Klotzbach et al. 2018).Prediction of the heavy

rainfall caused by TCs is therefore crucial in disaster

prevention and mitigation and is a significant area of

scientific research (Chen et al. 2010).

There has been much research on understanding the

formation of heavy precipitation in TCs. There are

many factors involved that can be characterized as the

underlying surface variables, the ambient variables

and the variables specific to TCs (Lonfat et al. 2004).

Considering the first of these, the movements of TCs

over different underlying surfaces (e.g., mountains,

coastlines, lakes, and wetlands) have important ef-

fects on the intensity and asymmetrical distribution of

precipitation (Wu 2001; Shen et al. 2002; Xu et al.

2014; Meng and Wang 2016). Concerning ambient

variables, the intensity and range of the precipitation

from TCs generally vary with the environmental con-

ditions, e.g., the injection of cold air, the transport of

water vapor, and the vertical wind shear. This varia-

tion is dependent on whether the TC can obtain more

favorable dynamic environmental conditions includ-

ing ambient water vapor, energy, and vorticity when

interacting with the ambient field during landfall

(DiMego and Bosart 1982; Chan et al. 2004; Liu et al.

2007; Dong et al. 2009; Lin et al. 2016).

Changes in the variables specific to TCs also have

large effects on rainfall. The track, landfall date, inten-

sity, and structure of the TC also affect the intensity and

distribution of precipitation (Marchok et al. 2007; Xie

and Zhang. 2012; Wu et al. 2013; Yu et al. 2015; Jiang

et al. 2018; Qiu et al. 2019). Studies of the speed and

direction of the TCmovement have shown that the front

quadrant of the moving direction is prone to intense

precipitation (Chen et al. 2006; Cecil 2007). Considering

TC intensity, the distribution and variation of TC precipi-

tation are closely related to intensity and its change (Kieper

and Jiang 2012; Jiang and Ramirez 2013; Zagrodnik and

Jiang 2014; Alvey et al. 2015; Harnos and Nesbitt 2016).

Lonfat et al. (2004) analyzed the TCs of different in-

tensity categories and found that the mean maximum

TC precipitation was in the front quadrant but varied

with the intensity of TCs. Moreover, the TC peak mean

axisymmetric rain rates increase with increasing in-

tensity of the TC. Barnes and Barnes (2014) found that

with the increase of TC intensity, the radius of the eye

decreased while the eyewall area and rain rate in-

creased. Yu et al. (2017) analyzed 133 TCs in China and

found that the axisymmetric distribution of TC rainfall

is closely related to intensity. Stronger TCs always have

larger axisymmetric total rain and a lager rain area.

Various methods have been proposed to forecast the

precipitation from TCs. These include statistical pre-

diction models, numerical weather prediction (NWP)

by dynamical models and dynamic–statistical methods.

For statistical methods, extrapolation, stepwise regres-

sion and principal component analysis are applied for

quantitative precipitation prediction (Wei 2012; Li et al.

2015; Huang et al. 2018). As the skill of numerical

weather prediction has increased over the decades, statis-

tical methods have generally been replaced by NWP

models, which in most countries form the basis of TC

rainfall prediction in the operational forecast and warning

centers.However, due to the complexity of themechanisms

for production of heavy rainfall, the current operational

forecasting capability is still limited (Tuleya et al. 2007;

Marchok et al. 2007; Wang et al. 2012; Gao et al. 2013).

In order improve TC precipitation forecasts with a

new method, Ren et al. (2018) developed an objective

TC track similarity area index (TSAI) for the selection

of analog TCs from the historic database. Prediction

experiments for the accumulated precipitation of TCs

over South China have shown that the forecasting of

heavy precipitation by the TSAI is comparable with the

NWP models. Recently, Ren et al. (2020) proposed a

Dynamical-Statistical-AnalogEnsembleForecast (DSAEF)

Model for Landfalling Typhoon (or TC) Precipitation

(the DSAEF_LTP model). This model introduces two

physical variables (the TC track and landfall date) into

the DSAEF_LTP model. The results of experiments to

forecast accumulated precipitation show that the use of

more physical variables improves the accuracy of the

generalized initial value and the forecasting ability of

the DSAEF_LTP model. In this article, a third variable

is added to the selection, the TC intensity (wind speed).

The paper documents the method for introducing the

third variable and compares the predictive skill with that

of the two-variable model.

Section 2 introduces the data and methodology.

Section 3 describes the introduction of the intensity of

the TC to the model and the design of the accumulated

precipitation prediction experiment. Section 4 compares

and analyzes the prediction results for the DSAEF_LTP

model before and after the introduction of the intensity

of the TC. The last section gives our conclusions.

2. Data and methodology

a. Data

Historical observed daily precipitation data (1200–

1200 UTC) from 190 rain gauge stations in South China

are obtained from theNationalMeteorological Information

Center of China Meteorological Administration (CMA)

for the time period 1960–2017 (Fig. 1). In this study, the
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accumulated precipitation refers to the sum of TC precipi-

tation within the life of a TC for each station.

Historical data (track, time, and wind) for TCs are

obtained from the best track dataset (6-h intervals) of

the CMA’s TC database (http://tcdata.typhoon.org.cn/

zjljsjj_zlhq.html) for the time period 1960–2017 and are

used to find the analog tracks. The observed and pre-

dicted information (track, time, and wind) of the target

TCs are obtained from real-time operational forecast

data based on the revised NWP model issued by the

CMA National Meteorological Center (NMC).

The grid precipitation forecast data of three NWP

models are used to evaluate the performance of the

DSAEF_LTP model for the time period 2012–16: 1) the

European Centre for Medium-Range Weather Forecasts

(ECMWF)model; 2) theGlobal Forecast System (GFS) of

the U.S. National Centers for Environmental Prediction;

and 3) T639, the global spectral model of the CMA/NMC.

The equivalent horizontal resolution of the three NWP

models is 0.258 3 0.258, 18 3 18, and 1.1258 3 1.1258, re-
spectively. To compare with the precipitation data from

rain gauge stations, the daily precipitation data from the

NWPmodels are interpolated to the rain gauge stations by

the method of inverse-distance weighting (Lu and Wong

2008). The component of the NWP forecast that is asso-

ciated with the TC is identified by the objective synoptic

analysis technique (OSAT) (Ren et al. 2001, 2007).

b. Methodology

1) THE OBJECTIVE SYNOPTIC ANALYSIS

TECHNIQUE (OSAT)

The OSAT (Ren et al. 2001, 2007), has the purpose of

partitioning TC precipitation from daily data and has

been widely applied (Ren et al. 2002, 2006; Chang et al.

2012; Luo et al. 2016; Jiang et al. 2018; Qiu et al. 2019).

This technique consists of four steps: 1) identification of

the natural rainband; 2) discrimination of the potential

TC rainband; 3) discrimination of each station; and

4) combination of the complete TC rainband.

2) TRACK SIMILARITY AREA INDEX (TSAI)

The TSAI (Ren et al. 2018) is an objective tech-

nique to select the analog track from historic TC data.

The principle of TSAI is to calculate the area en-

closed by the two tracks, the historical TC and that of

the target TC. The smaller the area, the higher the

similarity.

3) DYNAMICAL-STATISTICAL-ANALOG

ENSEMBLE FORECAST FOR LANDFALLING

TYPHOON MODEL

Ren et al. (2020) developed the DSAEF model and

applied this to the prediction of precipitation from TCs

that made landfall. This study uses the DSAEF_LTP

model (Landfalling TC Prediction model) to predict the

accumulated precipitation for target TCs. Application

of themodel consists of four steps: 1) obtain a forecast of

the TC track using operational forecast data from the

CMA/NMC; 2) construct the generalized initial value

(GIV), including the variables specific to the TC and the

ambient variables; 3) identify analogs, based on the two

or three variables used to define theGIV, in this case the

track similarity identified by the TSAI, the landfall date

similarity identification, and the intensity similarity; and

4) find the ensemble LTP of the analog cyclone using the

accumulated precipitation obtained by OSAT from

similar historical TCs to forecast the future precipitation

of the target TC.

4) THREAT SCORE

The threat score (TS) is the primary operational

forecast verification metric used in China for the oper-

ational prediction of precipitation. The formula is

TS5
hits

hits1misses1 false alarms
. (1)

The meanings of the terms in the formula are as fol-

lows. ‘‘Hits’’ indicate the number of rain gauge sta-

tions that both observed precipitation and predicted

precipitation are within the same specified threshold

range. ‘‘Misses’’ mean the number of rain gauge stations

that the observed precipitation is within the specified

threshold, while the predicted precipitation is not. ‘‘False

alarms’’ represent the number of rain gauge stations that

the predicted precipitation is within a specified threshold

and the observed precipitation is not (Table 1 ofMcBride

and Ebert 2000).

FIG. 1. Distribution of the 190 rain gauge stations in South China.
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5) BIAS SCORE

In this study, besides the hit score, we use the bias

score (BS). The formula is

BS5
hits1 false alarms

hits1misses
. (2)

Themeanings of the terms in the formula are the same

as those in the formula of threat score. When the num-

ber of false alarms equals to that of misses, which means

the two ‘‘areas’’ are equivalent, the value of bias score

is 1. Meanwhile, if the area (number) of false alarms is

greater (less) than that of misses, the value is greater

(less) than 1. Thus, in the context of this paper the bias

for each individual accumulated precipitation forecast,

the bias score is a useful measure of the accuracy of the

areal extent of TC rainfall above a given threshold.

3. TC intensity and experimental design

a. TC intensity

There are two steps in introducing a new variable into

the DSAEF_LTP model. First, a suitable measure for

the new variable should be chosen. We use wind speed

(the 2-min average maximum wind speed at 10-m height

near the center of the TC) to represent the intensity of

the TC. Second, an index needs to be defined to be used

as a basis for similarity between target and historic TCs

in the process of choosing analogs. The intensity of the

TC is divided into categories and levels. There are four

categories and five levels, giving a total of 20 combina-

tions (Table 1). The four categories are the average and

maximum intensity on the first rainy day (the first day that

the TC produces rain over land) and all rainy days (the

whole process of TC rainfall over land). The intensity of

the TC is divided into six grades: tropical depression

(10.8–17.1ms21), tropical storm (17.2–24.4ms21), severe

tropical storm (STS; 24.5–32.6ms21), typhoon (32.7–

41.4ms21), severe typhoon (STY; 41.5–50.9ms21), and

supertyphoon (superTY; $51ms21). The five levels are

the differences in intensity between the target TC

and the historical TC, including all grades (no limita-

tion), the same grade and above (intensities of historical

TCs that are greater than or equal to the target TC), the

same grade and below, only the same grade, and the

same grade or one-grade difference.

Table 2 lists the eight parameters of the DSAEF_LTP

model of TC intensity. The eight parameters combina-

tions give a total of 2 160 000 sets of forecasting schemes

for the ideal state of a single target TC.

b. Experimental design

We conduct accumulated precipitation forecasting ex-

periments using the DSAEF_LTP-2 and DSAEF_LTP-3

models to examine the changes in forecasting ability.

The DSAEF_LTP-2 and DSAEF_LTP-3 models rep-

resent the DSAEF_LTP model with two (no intensity)

and three (with intensity) variables, respectively. The

time period 2012–16 is selected as the experimental

period according to the retained historical data to

compare the results of the three NWPmodels (ECMWF,

GFS and T639). We select historical TCs with daily

precipitation $ 100mm (at least one rain gauge station)

in South China (Fig. 1) during 2012–16 as the target TCs

in the experiment.

In total, 21 target TCs (Table 3), 13 of which occurred

during 2012–14, are used as training samples to choose

the optimum set of parameters for the DSAEF_LTP

model. The remaining eight TCs occurring during 2015–

16 are used as independent samples to validate the

model. After conducting the training samples experi-

ment, the schemes of the thirteen TCs that can be per-

formed jointly are selected as the conventional schemes.

Considering the performance of DSAEF_LTP model in

forecasting heavy precipitation ($250 and $100mm)

(Ren et al. 2020), the average threat score ofmultiple TCs

below two heavy precipitation thresholds for each con-

ventional scheme was calculated in the training experi-

ment. The best forecasting scheme of the DSAEF_LTP

model is the one in which the sum of TS250 (the threat

score of accumulated precipitation $ 250mm) and

TABLE 1. Combination of values for the intensity of tropical cyclones.

Four categories

Five levels

Avg intensity on first

rainy day

Max intensity on first

rainy day

Avg intensity on all

rainy days

Max intensity on all

rainy days

All grades (grade 1 tropical depression

to grade 6 supertyphoon)

(1, 1) (2, 1) (3, 1) (4, 1)

Same grade and above (1, 2) (2, 2) (3, 2) (4, 2)

Same grade and below (1, 3) (2, 3) (3, 3) (4, 3)

Same grade only (1, 4) (2, 4) (3, 4) (4, 4)

Same grade or one-grade difference (1, 5) (2, 5) (3, 5) (4, 5)
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TS100 (the threat score of accumulated precipitation$

100mm) is the largest in the conventional schemes.

The independent samples experiment is then carried

out to evaluate the performance of the best forecast-

ing scheme. The prediction performances of different

models (DSAEF_LTP-2, DSAEF_LTP-3, and the three

NWP models) are compared and the performance of the

DSAEF_LTP-3 model is analyzed further.

4. Results

The best forecasting scheme of the DSAEF_LTP

model is obtained through the training samples experi-

ment. Due to some changes in parameter definition

(the tested value of the initial time) and an update of the

historic track data (the target TCs), the results of the

DSAEF_LTP-2 model vary from the results presented

in Ren et al. (2020). Figure 2 shows the scatterplots of

the average threat score for the training samples ex-

periments for the DSAEF_LTP-2 and DSAEF_LTP-3

models. The horizontal (vertical) coordinate is the av-

erage threat score value of accumulated precipitation$

250mm ($100mm). As discussed by Ren et al. (2020)

the inclusion of short track TC’s limits the range of

values of parameters P1 and P2, leading to a sharp de-

crease in the total number of forecasting schemes in the

experiment (Ren et al. 2020). There are 4890 (Fig. 2a)

and 48 340 (Fig. 2b) conventional schemes (blue dots)

in which all target TCs can be run using both the

DSAEF_LTP-2 and DSAEF_LTP-3 models. For the

three NWPmodels the best performance for forecasting

accumulated precipitation $ 250mm is T639 (threat

score 0.042), while for precipitation $ 100mm is

ECMWF (threat score 0.1726). Most of the schemes of

theDSAEF_LTP-2 (1552 schemes) andDSAEF_LTP-3

(14 206 schemes) models perform better than the

ECMWF and T639 models in the upper-right quad-

rant enclosed by the two inner dashed axes. The red

dots in Fig. 2 are the best forecasting schemes of the

DSAEF_LTP-2 and DSAEF_LTP-3 models. The co-

ordinates of the red dots in Figs. 2a and 2b are (0.1594,

0.2341) and (0.1883, 0.2392), respectively. The best

forecasting ability of the DSAEF_LTP model in the

training samples experiment has been improved with the

introduction of the TC intensity for both precipitation

TABLE 2. Parameters of the DSAEF_LTP-3 model and the values for the best forecasting scheme.

Parameters (1–8) Tested values Optimized values

Initial time (P1) 1–4 for 1200 and 0000 UTC on the day of the tropical cyclone

precipitation occurring on land and the day before,

respectively

P1 5 1

Similarity region (P2) A parameter of TSAI defined as a rectangle with the diagonal

points A and B. A is the tropical cyclone locations at 0, 12, 24,

36, or 48 h prior to the initial time, and B is the tropical

cyclone locations at 0, 6, or 12 h prior to the maximum lead

time. The lead time refers to the time interval between the

time point of the NWP model’s prediction with the NWP

model’s lead time and the initial time. 1–15

P2 5 12 (12 h before the initial

time and 12 h before the

maximum lead time)

Threshold of the segmentation ratio of

a latitude extreme point (P3)

A parameter of TSAI defined as 1–3 for 0.1, 0.2 and 0.3,

respectively

P3 5 3

Overlapping percentage threshold of

two tropical cyclone tracks (P4)

A parameter of TSAI defined as 1–6 for 0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9, respectively

P4 5 6

Seasonal similarity (P5) 1–5 for the whole year, May–November, July–September, the

same landfall month as the target tropical cyclone and within

15 days of the target tropical cyclone landfall time,

respectively

P5 5 2

Intensity similarity (P6) Four categories, as in Table 1 and five levels, as in Table 1 P6 5 (category, level) 5 (4, 2)

Number (N) of tropical cyclones with

the top N closest track

similarity (P7)

1–10 for 1, 2, . . . , and 10, respectively P7 5 2

Ensemble forecast scheme (P8) 1–2 for mean, maximum, respectively P8 5 2

Total No. of schemes 4 3 15 3 336 3 534 3 5310 3 2 5 2 160 000

TABLE 3. List of training samples and independent samples for

tropical cyclones.

Sample classification Names of tropical cyclone

Training samples

(13 tropical cyclones)

2012: Doksuri, Kai-Tak, Son-Tinh

2013: Rumbia, Soulik, Jebi, Utor, Usagi,

Wutip, Haiyan

2014: Rammasun, Matmo, Kalmaegi

Independent samples

(8 tropical cyclones)

2015: Noul, Linfa, Mujigae

2016: Mirinae, Nida, Aere, Sarika, Haima
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thresholds. Table 2 shows the best forecasting scheme

parameters of the DSAEF_LTP-3 model.

The independent samples experiment is conducted

and the forecasting capability analyzed to test the per-

formance of the DSAEF_LTP model in real predic-

tion scenarios. Figure 3 compares the average threat

score of the DSAEF_LTP-2, DSAEF_LTP-3, and the

three NWP models. The average TS100 values of the

DSAEF_LTP-2 and DSAEF_LTP-3 models are 0.1965

and 0.2413, respectively. The prediction ability signifi-

cantly improved when the intensity was introduced into

the DSAEF_LTP model. At this precipitation thresh-

old, the best performing of the three NWPmodels is the

ECMWFmodel (threat score 0.2283), which has a lower

score than the DSAEF_LTP-3 model. When the accu-

mulated precipitation is $250mm, the average threat

score decreases significantly. The TS250 values of the

three NWP models are all equal to zero. The average

TS250 value of the DSAEF_LTP-2 (DSAEF_LTP-3)

model is 0.0493 (0.027). The result of the TS2501TS100

shows that the performance of the DSAEF_LTP-3

model is better than that of the DSAEF_LTP-2 model

and the threeNWPmodels, although theDSAEF_LTP-2

model forecasts better than the DSAEF_LTP-3 model at

TS250. Therefore, in terms of threat score the forecasting

ability of the DSAEF_LTP model has been improved

after the introduction of the TC intensity and it performs

better than the three NWP models in the independent

samples experiment.

Figure 4 shows the average bias score of the train-

ing and independent samples under the best scheme.

From the training sample experiment (Fig. 4a), it can be

seen that the BS250 (the bias score of accumulated

precipitation $ 250mm) and BS100 (the bias score of

accumulated precipitation$ 100mm) of the three NWP

models are all less than 1, which means that the area of

misses is greater than that of false alarms. For the

DSAEF_LTP model, both BS250 and BS100 are great-

er than 1, indicating the area of false alarms is greater

than that of misses. In addition, among the three NWP

models, the best values (closest to 1) of BS250 and BS100

are 0.2055 (T639) and 0.3 (GFS), respectively. And

among the twoDSAEF_LTPmodels, the two best values

are 1.5345 and 1.3352, both from the DSAEF_LTP-3

model. For the independent samples (Fig. 4b), the BS250

of the three NWP models and the two DSAEF_LTP

models show similar characteristics to those in the

training samples. However, for the BS100, two NWP

models have bias greater than 1, with the values of

ECMWF and T639 being closer to 1 than those of the

two DSAEF_LTP models.

The ability of the DSAEF_LTP-2 and DSAEF_LTP-3

models to forecast the accumulated precipitation $

250mm, is presented in Fig. 5, which shows the TS250 of

all 21 target TCs, from the three NWP models and the

two DSAEF_LTP models. Some of the TCs in Fig. 5

have no threat score value, indicating that accumulated

precipitation $ 250mm was neither observed (eleven

FIG. 2. Scatterplots of average threat scores for the training samples experiment for two thresholds of accu-

mulated precipitation (accumulated precipitation $ 250 and $100mm). The blue dots indicate the different

schemes of the DSAEF_LTPmodel, the open circles denote the threat scores of the three NWPmodels (ECMWF,

GFS, and T639), and the red dots are the best forecasting scheme of the DSAEF_LTP model. The dots in the first

quadrant of the two intersecting dashed lines are the schemes with threat scores greater than the NWP models.

(a) DSAEF_LTP-2 model and (b) DSAEF_LTP-3 model.
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target TCs have accumulated precipitation , 250mm)

nor predicted for these TCs. There are 11 target TCs

with no TS250 value for the ECMWF and GFS models,

10 for the T639 model, 3 for the DSAEF_LTP-2 model,

and 6 for the DSAEF_LTP-3 model. The DSAEF_LTP

model has more false alarms than the three NWP

models. However, with the introduction of the TC

intensity, this phenomenon decreases slightly. For

the other 10 target TCs with observed accumulated

precipitation $ 250mm, there are 7 TCs with TS250

greater than 0 for the DSAEF_LTP-3 model, 8 for

the DSAEF_LTP-2 model, 1 each for the ECMWF

and T639 models, and 2 for the GFS model. In terms

of numbers, the DSAEF_LTP-2 and DSAEF_LTP-3

models perform better than the three NWP models,

which have almost no ability to forecast accumulated

precipitation $ 250mm. In general, accumulated

precipitation$ 250mm is rarely predicted for TCs by

the three NWP models, whereas the DSAEF_LTP

model can forecast accumulated precipitation $

250mm, but with more false alarms. The number of

false alarms decreases with the introduction of the

TC intensity index.

To further understand the performance of the

DSAEF_LTP-3 model, the relationship between the

threat score and the TC rainfall intensity is examined in

Fig. 6, which shows the maximum accumulated precipita-

tion (the largest value of all rain gauge stations for each

TC) and the threat score for the 21 samples. Themaximum

accumulated precipitation of the TC increases from left to

right. The accumulated precipitation of 11 TCs to the

left of the dotted black line is ,250mm. For the 11

samples with no observed accumulation $ 250mm, six

TCs (1323, 1506, 1307, 1306, 1411 and 1320) have no

TS250, while the remaining five have a TS250 of 0 (1207,

1624, 1510, 1605 and 1309), indicating the presence of

false alarms. The average TS250 of the 10 target TCs

with accumulated precipitation $ 250mm is 0.1695; the

highest is 0.5556 (1418) and the lowest is zero. The re-

sults are better for TS100 than for TS250. Only three

TCs (1506, 1307, and 1411) have a TS100 value of zero.

The TS100 of the 21 target TCs shows an upward trend

as the accumulated precipitation increases. The positive

correlation coefficient between the TS100 and the ac-

cumulated precipitation of 21 samples is 0.5159, which

passed the 0.05 significance level test. This means that

the greater the accumulated precipitation of TC, the

more accurate the prediction of DSAEF_LTP-3 model

(for TS100).

The relationship between the threat score and the

intensity of the TC also has been analyzed. Figure 7

shows the intensity of the 21 target TCs at the fore-

casting time and the threat score under the best fore-

casting scheme of the DSAEF_LTP-3 model. The

intensity of the target TCs increases from left to right.

The ordinate is the TC intensity (left axis) and threat

score (right axis). From left to right, the target TCs are

tropical storm, STS, typhoon, STY and superTY in the

area bounded by the dotted green, blue, red and black

FIG. 3. Comparison of threat scores from different models

(ECMWF, GFS, T639, DSAEF_LTP-2, and DSAEF_LTP-3) for

independent samples.

FIG. 4. Comparison of bias scores from differentmodels (ECMWF,GFS, T639,DSAEF_LTP-2, andDSAEF_LTP-3)

for (a) training and (b) independent samples.
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lines and the two vertical axes. For the TS250, six TCs

have no TS250 value, the same as in Fig. 6. The fore-

casting performance for target TCs with intensities of

tropical storm and STS (10 TCs in total) is relatively

weak. The average TS250 values of tropical storms and

STS are 0.0667 and 0.1, respectively. The reason for the

poor performance is that the observed accumulated

precipitation of 7 of the 10 TCs (1309, 1207, 1605,

1306, 1411, 1510, and 1307) is ,250mm, among which

four (1309, 1207, 1605, and 1510) have false alarms.

The average TS250 of the other three TCs (1621, 1214,

and 1224) with accumulated precipitation$ 250mm is

0.2111. In contrast, the forecasting performance for

TCs that reach the typhoon and STY grades (10 TCs in

total) is relatively good. The average TS250 values are

0.1528 and 0.1127, respectively. Three TCs (1323, 1624,

and 1320) have accumulated precipitation, 250mm and

only one TC (1624) has a false alarm. Among the re-

maining seven TCs, five have TS250 greater than zero.

The average TS250 of the seven TCs is 0.1517. For TS100,

FIG. 5. Threat scores of 21 target tropical cyclones with accumulated precipitation $ 250mm

from different models (ECMWF, GFS, T639, DSAEF_LTP-2, and DSAEF_LTP-3).

FIG. 6. Maximum accumulated precipitation and threat scores of 21 target tropical cyclones

during 2012–16. The maximum accumulated precipitation is the largest value of all rain gauge

stations for each tropical cyclone. The threat scores at different precipitation thresholds (TS250

and TS100) are from the best forecasting scheme of the DSAEF_LTP model, including the

intensity of the tropical cyclone. The abscissa is the number of the target tropical cyclone (e.g.,

1207 is the seventh tropical cyclone in 2012). The accumulated precipitation of the target

tropical cyclone increases from left to right. The left-hand side of the black dashed line shows

the tropical cyclones with accumulated precipitation , 250mm.
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the average values of the tropical storm and STS grade

target TCs are 0.2803 and 0.1479, respectively. The tar-

get TCs at the typhoon and STY grades are relatively

well predicted, with an average TS100 of 0.3294 and

0.3299, respectively. The TS100 shows an increasing

upward trend with intensity in the STS and typhoon

grades of the target TCs. The correlation coefficient

between TS100 and the wind speed is 0.5669 and passed

the 0.05 significance test. This indicates that for the TCs

in STS and typhoon grades, the stronger the TC inten-

sity, the better the precipitation prediction performance

of DSAEF_LTP-3model. The decreasing trend of TS100

at intensity levels of STY and above (correlation coeffi-

cient between TS100 and wind speed 20.542) may be

related to the intensity parameters of the best forecasting

scheme. There are fewer historical TCs similar to the

target TC when the screening criteria is the same grade

and above because TCs in the STY and superTY grades

are relatively rare.

To further illustrate the skill and the characteristics of

theDSAEF_LTP-3 model, distributions of the observed

and forecast accumulated precipitation for two target

TCs are shown in Figs. 8 and 9. We select Kalmaegi

(1418) with the largest sum of TS250 and TS100 and

Doksuri (1207) with the smallest sumof TS250 andTS100

for further analysis.

Figures 8 and 9 show the distribution of the observed

and forecasted accumulated precipitation of the two TCs,

respectively. The observed heavy rainfall of Kalmaegi is

mainly concentrated near its track (Fig. 8a).Accumulated

precipitation$ 100mm occurs on both sides of the track,

while the center with precipitation$ 250mm is located in

the northern part of Hainan Island on the left-hand side

of the track. The threeNWPmodels are unable to predict

precipitation $ 250mm, whereas the DSAEF_LTP-3

model is more accurate in forecasting heavy precipi-

tation and its central location, with TS250 as high as

0.5556 (Figs. 8b–e). The three NWP models have some

forecasting capability for accumulated precipitation $

100mm (Figs. 8c–e). With this precipitation threshold,

the ECMWF model (TS100 5 0.603) gives the best pre-

diction among the three models. The values of TS100 for

the GFS and T639 models are 0.382 and 0.345, respec-

tively. The TS100 of the DSAEF_LTP-3 model is 0.5323,

second only to the ECMWF model (Fig. 8b).

In Fig. 9a, the observed accumulated precipitation of

Doksuri in southern China is much weaker than that of

Kalmaegi. Most rain gauge stations on the right-hand

side of the track have precipitation , 10mm. On the

left-hand side of TC track, the accumulated precipita-

tion of several rain gauge stations exceeds 50mm and

there is only one rain gauge station exceeding 100mm.

The amount of forecast precipitation in the three NWP

models is also low (Figs. 9b–d). The precipitation of all

stations forecasted by ECMWF is,50mm. For the left-

hand side of the TC track and near the landfall location,

the GFS and T639 models predicted precipitation $ 50

and ,100mm. The TS100 of all three NWP models is

zero. There is a significant overprediction in the

DSAEF_LTP-3model (Fig. 9b).Most of the stations near

and to the left of the TC track forecast precipitation $

100mm, with maximum rainfall $ 400mm. These two

FIG. 7. Intensity and threat scores of 21 target tropical cyclones during 2012–16. The intensity

is the wind speed at the initial forecast time for each tropical cyclone. The threat scores and

abscissa are as in Fig. 5, and the intensity of target tropical cyclone increases from left to right.

The intensity of the target tropical cyclones in the region is enclosed by green, blue, red, and

black dashed lines, and the two vertical coordinate axes are tropical storms, severe tropical

storms, typhoons, severe typhoons, and supertyphoons, respectively.
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examples are illustrative of the property that the

DSAEF_LTP-3 model has more false alarms for TCs

with weaker precipitation. Whereas, the DSAEF_LTP-3

model shows a clear advantage over the NWPmodels for

larger accumulated precipitation situations.

5. Summary and conclusions

In this study, the TC intensity has been introduced as a

third variable to construct the GIV of the Dynamical-

Statistical-AnalogEnsemble Forecastmodel for Landfalling

Typhoon Precipitation (DSAEF_LTP). Forecast ex-

periments have been conducted for accumulated pre-

cipitation for 21 target TCs in South China. The main

results can be summarized as follows:

d TC intensity has been successfully introduced into the

DSAEF_LTP model. The wind speed (2-min average

maximum wind speed at 10-m height near the center

of the TC) is used to indicate the intensity of the TC.

To provide an index or model parameter, intensity

information is classified in four categories and five

FIG. 8. Distribution of the accumulated precipitation (mm) associated with Kalmaegi (1418) from (a) rain gauge

observations and predictions by (b) the DSAEF_LTP-3 model and the dynamic models (c) ECMWF, (d) GFS, and

(e) T639. The blue line in (a) is the observed track of Kalmaegi (6-hourly positions).
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levels. The best parameter values of category and level

are category 4 (the maximum observed intensity over

all days that on land TC rainfall is observed) and level

2 (the same intensity grade and above). Thus in the

choice of analogs, the best prediction is given by his-

toric TCs with the same intensity grade and above as

the target TC, using the maximum intensity in all rain

days of the historic TC as a reference.
d After introducing the TC intensity, the DSAEF_LTP

model has an improved forecasting ability for heavy

rainfall and has certain advantages over the three

NWP (ECMWF, GFS, and T639) models. The sums of

the average threat scores (TS100 1 TS250) for the

revised DSAEF_LTP model in the training and inde-

pendent experiments are 0.4275 and 0.2683, respectively.

Comparedwith the results before the introduction of the

intensity of the TC, this is an improvement of 8.64%

(training experiment) and 9.15% (independent experi-

ment). In the independent experiment, the threat scores

of accumulated precipitation $ 250 and $100mm for

FIG. 9. Distribution of the accumulated precipitation (mm) associated with Doksuri (1207) from (a) rain gauge

observations and predictions by (b) the DSAEF_LTP-3 model and the dynamic models (c) ECMWF, (d) GFS, and

(e) T639. The blue line in (a) is the observed track of Doksuri (6-hourly positions).
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the DSAEF_LTPmodel (with intensity) are 0.027 and

0.2413, respectively. Of the three NWP models, the

ECMWF performs best, with threat scores of accu-

mulated precipitation $ 250 and $100mm of 0 and

0.2283, respectively. Thus the forecasting ability of the

DSAEF_LTP model for accumulated precipitation $

250mm is superior to that of the NWPmodels and the

forecasting ability for accumulated precipitation $

100mm is comparable with the NWP models. From

the spatial distribution performance, the DSAEF_LTP

model ismore prone to false alarms while NWPmodels

tend to more misses.
d The DSAEF_LTP model has a good predictive per-

formance for high intensity TCs (typhoon and STY

grades) and heavy accumulated precipitation obser-

vations. For an accumulated precipitation $ 250mm

($100mm), the average threat scores of target TCs of

typhoon and STY grades are 0.1528 and 0.1127 (0.3294

and 0.3299), respectively, higher than the values of

0.0667 and 0.1 (0.2803 and 0.1491), respectively, of the

tropical storm and STS grades.When the intensity of the

target TCs is below typhoon grade, the DSAEF_LTP

model gives false alarms that result in the rela-

tively low threat score at this precipitation threshold.

This tendency decreases as the intensity of the target

TCs increases beyond the typhoon and STY levels.

The threat score for accumulated precipitation $

100mm increases as the intensity increases. In the

range where the target TCs are at the level of STS

and typhoon, the correlation coefficient between the

threat score and intensity is 0.5667 and passes the 0.05

significance level test. The threat score of accumulated

precipitation $ 100mm is also closely related to the

amount of accumulated precipitation. As the accumu-

lated precipitation increases, the threat score of each

target TC also shows an upward trend. The correlation

coefficient over the 21 samples is 0.5159 and passes the

0.05 significance level test.

As discussed in the papers referred to in the Introduction

(e.g., Jiang et al. 2018), TC intensity has a major influ-

ence on the area and amount of TC precipitation. The

results above demonstrate that incorporating TC in-

tensity as a variable in the choice of analog for the

DSAEF_LTP model has improved the performance in

predicting heavy precipitation. In our earlier paper that

developed the theoretical basis of the model, we stated:

‘‘in the second step of constructing the generalized ini-

tial value, it is highly desirable to include all the physical

variables that may influence LTP, including both TC’s

internal variables (e.g., intensity, size) and environ-

mental variables (e.g., vertical wind shear, subtropical

high, summer monsoon), many of which remain to be

examined’’ (Ren et al. 2020). This paper has taken a

further step in this direction through the inclusion of TC

intensity as the third variable, after track and season.

The experiments described here display that themethod

used to introduce TC intensity is effective, and suitable

values for the intensity category and level have been

obtained in the best scheme.

Meanwhile, the DSAEF_LTP model also shows an

obvious weakness and tends to predict more false

alarms than misses for TC accumulated precipitation.

Further research investigations such as introducing

more variables or more suitable ensemble parameters,

are needed to solve this problem. In addition, experi-

ments should be carried out for more target TCs

(longer time range) in a larger area (such as the whole

of China) to further improve the forecasting perfor-

mance of the DSAEF_LTP model.

This study has made important progress in our re-

search on combining dynamical forecasts with initial

condition analogs from historical observations for the

prediction of heavy rainfall events associated with

landfalling typhoons.
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