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,e impact of stochastically perturbing the terminal velocities of hydrometeors on convective-scale ensemble forecasts of
precipitation was examined. An idealized supercell storm case was first used to determine the terminal velocity error charac-
teristics for a one-moment microphysics scheme in terms of the terminal velocities from a two-moment scheme. Two real cases
were employed to evaluate the forecast skills resulting from perturbing the terminal velocities with real data. ,e results indicated
that the one-moment scheme produced terminal velocities that were approximately three times higher than those of the two-
moment scheme for snow and hail, which often resulted in overpredictions of hourly precipitation and areal accumulated
precipitation. ,erefore, stochastically perturbing the terminal velocities according to their error characteristics matched the
observed hourly precipitation and areal accumulated precipitation better than the symmetrical perturbations. For the two-
moment scheme, the symmetrical perturbations of the terminal velocities tended to produce lower falling speeds of precipitation
hydrometeors; therefore, more light rain was produced. Compared to the unperturbed two-moment scheme, symmetrically
perturbing the terminal velocities resulted in smaller precipitation errors when precipitation was overestimated but comparable or
slightly larger precipitation errors when precipitation was underestimated.,is work demonstrates the sensitivity of precipitation
ensemble forecasts to terminal velocity perturbations and the potential benefits of adopting these perturbations; however, whether
the perturbations actually result in significant improvements in precipitation forecast skill needs further study.

1. Introduction

Currently, it is widely acknowledged that numerical weather
predictions should consider uncertainty estimations [1].,is
uncertainty is mainly from two sources: uncertainties arising
from the initial conditions and the model itself [2, 3]. ,e
latter has received much attention in the past decade because
the former cannot explain the entire forecast uncertainty [4].
To allow for model uncertainty, there are two broadly used
approaches categorized according to the number of pa-
rameterization schemes used for one physical process: (i)
using a multiphysics ensemble and (ii) perturbing quantities
such as the prescribed parameters or the tendencies in one
parameterization scheme [3, 5]. Multiphysics ensembles
consist of members that use different parameterizations to

estimate one physical process; the benefit to the performance
of ensemble forecasts in terms of ensemble spread and
forecast skill has been demonstrated in many studies (e.g.,
[2, 4, 6–14]). However, this approach produces different
attractors among members, which causes inconsistent dis-
tributions of forecasts that are not desirable for statistical
postprocessing [5, 15]. In addition, maintaining different
physics configurations requires significant resources.

,e second approach avoids the deficiency of an in-
consistent distribution. Perturbing quantities in one pa-
rameterization makes ensemble members different but
equally likely [16, 17]. One of these approaches is the sto-
chastic method, which perturbs parameterizations at every
time step and grid point during the integration. With this
method, not only the prescribed coefficients but also the
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tendencies can be perturbed. ,e former is called the sto-
chastic perturbed parameterization [18], while the latter is
called the stochastic perturbation of parameterization ten-
dency [19, 20]. ,e SPPT method often perturbs the accu-
mulated physical tendencies from the concerned
parameterizations [2, 4, 16, 20, 21], while the SPP method
has to be designed for each parameterization (e.g.,
[5, 22–25]). Both methods have been demonstrated as useful
for the skill of ensemble forecasts, where the SPP is more
skillful for short-range forecasts [18].

Although all parameterizations can be and have often
been perturbed by the same multiplicative perturbation,
separately perturbing the parameterizations has been shown
to be beneficial [3, 17, 24, 26]. Shutts and Pallarès [27]
indicated that the error characteristics of parameterizations
differ substantially. ,erefore, it is not always valid to at-
tribute the same error characteristics to all parameterizations
[17]. Even in one parameterization, perturbing tendencies of
different variables in the same way may not improve en-
semble forecast skills [28]. Considering the different error
characteristics, Sanchez et al. [26] assigned different error
standard deviations for parameterizations and obtained a
larger spread in the tropics. Later, Christensen et al. [3]
examined the performance of independently perturbing all
parameterizations and concluded that this approach im-
proved the forecast reliability in the tropics and increased
the forecast skill in the extratropics. Subsequently, Wastl
et al. [17] separately perturbed parameterizations and ob-
tained statistically significant improvements with respect to
the probabilistic forecasts. ,ese studies imply that de-
signing the perturbation in terms of the parameterization
error characteristics may benefit the forecast skill using the
stochastic perturbation approach.

Among the parameterizations involved in a numerical
prediction model, the present work focuses on the micro-
physics parameterization because it is important for con-
vective-scale ensemble forecasting but is highly uncertain
[25]. In addition to the impact of intercept parameters on
storm forecasts (e.g., [29–32]), the terminal velocity of
hydrometeors in precipitation forecasts is important. Parodi
and Emanuel [33] revealed that the precipitation intensity
increased along with the terminal velocity of rainwater, and
the convective cell sizes decreased for higher terminal ve-
locities. ,is relationship was confirmed by Singh and
O’Gorman [34], who further demonstrated that the terminal
velocity influenced the precipitation duration substantially.
Bryan and Morrison [35] determined that slower terminal
velocities led to a wide precipitation area. Morales et al. [36]
have documented the impact of terminal velocity on oro-
graphic precipitation and revealed that the terminal velocity
of snow affected the precipitation peak location. An ob-
servational study [37] concluded that the terminal velocities
of wet and dry snow differed substantially, with wet snow
exceeding 2m·s− 1 for a given diameter and dry snow
reaching only 1m·s− 1. Moreover, wet snow is not predicted
in most microphysics schemes, such as the Lin scheme [38],
the WRF SM 6-class (WSM6) scheme [39], the ,ompson
scheme [40], the double-moment (DM) MY2 scheme [41],
and the Morrison scheme [42]. In addition, terminal

velocities influence the raindrop breakup process [43], but
this process is not well simulated by microphysics param-
eterizations [44]. Moreover, the raindrop breakup process
may produce super-terminal drops whose terminal velocities
are higher than the model calculated terminal velocities [45].
,e above studies imply that terminal velocities estimated by
microphysics parameterizations may have a large error; thus,
the terminal velocity uncertainty should be considered in the
ensemble forecast.

To date, however, terminal velocity perturbations have
not been involved in stochastic approaches. Previous studies
have perturbed the intercept parameter [22, 25, 28], the rain
evaporation rate and accretion [22, 23], and the tendencies
of temperature and water vapor [4, 5, 15, 16, 21, 25, 28].
Although the intercept parameter perturbation synchro-
nously adjusts the terminal velocity, the latter is not fully
determined by the former. ,erefore, it is still worth ex-
amining the impact of independently perturbing the ter-
minal velocity in convective-scale precipitation ensemble
forecast with the stochastic perturbation approach, which is
the main purpose of this work. In addition to examining a
one-moment scheme, the terminal velocities estimated by a
two-moment microphysics scheme are perturbed. Per-
turbing the one-moment scheme is based on the consid-
eration that one-moment schemes have still been widely
used in recent years (e.g., [46]) due to their lower compu-
tational cost. For the two-moment scheme, the large ter-
minal velocity difference between the MY2 and Morrison
schemes [32] indicates that the terminal velocity uncer-
tainties in the two-moment schemes are still large. As a
preliminary study on stochastically perturbing the terminal
velocities of hydrometeors, an idealized storm case is first
used to determine the error characteristics of terminal ve-
locities for a one-moment scheme with a two-moment
scheme serving as a proxy for the truth. ,en, two actual
precipitation cases are employed to evaluate the effects of
stochastically perturbing the terminal velocities in terms of
precipitation forecasting.

,e remainder of this paper is organized as follows. In
Section 2, the stochastic perturbation method is briefly
introduced. In Section 3, the idealized and real cases are
reviewed and the experimental designs are described. ,e
results of the experiments are demonstrated and discussed in
Section 4. Finally, in Section 5, the summary and conclusions
are given.

2. Methodology

2.1. Stochastic PerturbationMethod. ,eAdvanced Regional
Prediction System [47, 48] was used in this study. ,e
abilities of this prediction model in convective-scale fore-
casts have been demonstrated by many studies (e.g.,
[49–53]). Based on this model, a stochastic perturbation
method was developed by Qiao et al. [54], who followed the
SPPT method of Palmer et al. [20] but generated spatial
perturbations using the recursive filter proposed by Gao and
Stensrud [55]. Qiao et al. [25] further developed this method
by adding intercept parameter perturbations so that the
method can perform the SPP for convective-scale ensemble
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forecasts. In the present work, the perturbation of terminal
velocities was added.,e perturbation equation is written as
follows:

zX

zt
� D + 

N− 1

i�1
Pi + Pmicro rrvtr, rsvts, rhvth , (1)

where X represents a prognostic variable, N is the number of
parameterizations, which are denoted by P, D denotes the
dynamic part of the forecast model, vt denotes the terminal
velocity, and the multiplicative perturbation is denoted by r,
whose subscripts r, s, and h represent the intercept pa-
rameter, rainwater, snow, and hail, respectively. ,e sub-
script “micro” is used to highlight the microphysics
parameterization. Following Qiao et al. [25], all intercept
parameters used the same multiplicative perturbation.
Terminal velocities were separately perturbed because their
error characteristics may not be identical, which will be
examined later.

,e perturbation resampling procedure proposed by
Wang et al. [28] was adopted in this work. ,is procedure
was designed to transform the Gaussian perturbations (0, 1)
to an asymmetric distribution in which half of the samples
have values greater than 1.0 and the other half have values
less than 1.0. For instance, the perturbed intercept parameter
may be 10 times smaller or 10 times larger than the pre-
scribed value, which corresponds to a range of 0.1 to 10.0
that is not centered at 1.0. ,is asymmetric distribution is
likely valid for terminal velocity perturbations of the one-
moment scheme according to the findings of Dawson et al.
[31] that the small particles may fall too quickly, which
implies that there is a bias between the terminal velocity
estimated by a one-moment scheme and the truth. Because
this bias is currently unknown, the resampling procedure
was modified in this work to generate an approximately
uniform distribution of perturbation R (r) within a specific
range. R (·) is the function of perturbation r which follows a
Gaussian distribution. ,e modified procedure is as follows:

R(r) �
lmax − lmid(  1 − e− (r/σ)(  + lmid, r≥ 0, lmin ≥ 0,

lmid − lmin(  e(r/σ) − 1(  + lmid, r< 0, lmin ≥ 0,

⎧⎨

⎩

(2)

where σ is the STD of r, lmax and lmin are the maximum and
minimum of R (r), respectively, and lmid is a value between
lmax and lmin. For the terminal velocity perturbations, lmid is
the average of lmax and lmin. With (2), the perturbation range
(lmin, lmax) and the middle value of samples can be assigned
straightforwardly. ,e value of R (r) is used for the multi-
plicative perturbation r in (1).

Note that the asymmetric perturbations can also be
resampled in log space, which is simpler than (2); whether
the stochastic approach is sensitive to the resampling per-
turbations needs to be examined in the future. Figure 1
shows an example of the frequency distribution of asym-
metric perturbations after applying either function R (·) or
Log2 (using 2r to transform). Compared to those generated
by function Log2, the frequencies generated by R (·) do not
vary greatly (from ∼9.0% to ∼12.5%) in [0.6, 1.6], which can

be regarded as a quasiuniform distribution to some extent.
For R (·), the value of 2.0 cannot be reached, so the cor-
responding frequency is zero.

2.2. Evaluation Metrics. As mentioned in Section 1, the
forecast accuracies of stochastically perturbing the terminal
velocities in an idealized case and two real cases are ex-
amined in the present work. In the idealized case, the ter-
minal velocity frequencies of rainwater, snow, and hail as
functions of mixing ratios were calculated for both the one-
moment and two-moment schemes. ,e terminal velocity
frequency difference between the one-moment and two-
moment schemes was used to measure the terminal velocity
bias of the one-moment scheme because the two-moment
scheme is more realistic [31]. ,e evaluation of the pre-
cipitation ensemble forecasts was conducted in terms of the
root-mean-square error (RMSE) of hourly precipitation,
bias score, hourly precipitation frequency, and reliability.
,e ensemble spread of hourly precipitation was also ex-
amined. ,e RMSE and ensemble spread of hourly pre-
cipitation were calculated for ensemble means at grid points
with hourly precipitations greater than 0.1mm·h− 1. Con-
sidering that the terminal velocity error may cause pre-
cipitation rate bias, the bias score was used to determine
whether taking into account terminal velocity error benefits
the accuracy of ensemble forecasts, and the precipitation
frequency was employed to measure the precipitation fre-
quency bias. ,e reliability of ensemble forecasts was also
examined to see whether involving terminal velocity per-
turbations has impacts on the probability forecasts. In ad-
dition, the areal accumulated precipitation over the forecast
domain [56] was calculated to measure the areal precipi-
tation amount bias.
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Figure 1: Forecast frequency distribution (%) of the resampled
samples using either function R(·) or function Log2. ,e lmin, lmid,
and lmax are 0.5, 1.0, and 2.0, respectively. ,e sample size is 50000,
and the initial samples followed the Gaussian distribution with a
zero mean and an STD of 1.0. For function Log2, the initial samples
within ±1 were used.
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To quantitatively evaluate the terminal velocity fre-
quency difference between the one-moment and two-mo-
ment schemes, the RMSE of the terminal velocity
frequencies at a given model time was calculated as follows:

(i) Sort terminal velocities of a specific hydrometeor
type throughout the 3D domain from largest to
smallest for both microphysics schemes, which
yields two sorted 1D series f1 and f2, where f1 rep-
resents terminal velocities from the one-moment
scheme and f2 denotes terminal velocities from the
two-moment scheme.

(ii) Calculate the RMSE of the terminal velocity fre-

quencies Ef �

�������������������������

(1/Nf) 
Nf

i�1 (αf1(i) − f2(i))2


,
where Nf is the number of points with both or either
f1(i) or f2(i) greater than zero. ,e term α is a
prescribed ratio that simulates the multiplicative
perturbation in a stochastic approach. A value of α
greater than 1.0 means increasing terminal velocities,
while a value smaller than 1.0 means decreasing
velocities. A discussion of α is provided in Section
4.1.

,e above steps were applied to the terminal velocities of
rainwater, snow, and hail.

In the real cases, there was no terminal velocity obser-
vation available; thus, evaluations were performed for only
hourly precipitation and its associated quantities. In this
situation, the National Centers for Environmental Predic-
tion (NCEP) gridded stage IV (ST4) dataset [57] served as
the baseline. ,is dataset provides hourly precipitation with
a grid spacing of 4 km. Considering that the physical pro-
cesses in the lateral boundaries differ from those in the inner
domain, the verification domain was smaller than the
forecast domain, as discussed in Section 3.

3. Case Review and Experimental Design

In this section, an idealized case and two real cases are
introduced. As a preliminary study on stochastically per-
turbing the terminal velocities of hydrometeors, the optimal
approach to perturbing these variables is unknown, espe-
cially for the one-moment scheme, which may have terminal
velocity biases.,erefore, we first use the idealized case as an
example case with the two-moment scheme as the truth. ,e
real cases are used to evaluate whether the optimal stochastic
perturbation determined in the idealized case benefits actual
ensemble forecasts.

3.1. IdealizedCase. ,e idealized case used in Qiao et al. [25]
was adopted in this work; thus, this case is only briefly
reviewed in this section. In a horizontally homogeneous
environment that was generated from a modified sounding
extracted on 20 May 1977 in Del City, Oklahoma [48], a
supercell storm was triggered from a thermal bubble with
horizontal and vertical radiuses of 10 km and 1.5 km, re-
spectively. ,is simulation lasted for 3 h within a
108 km× 108 km domain at a horizontal resolution of 2 km.
,ere were 53 vertical levels with a minimum grid spacing of

20m near the ground and an average grid spacing of 400m.
,e simulation using the MY2 scheme served as the truth
run (hereafter MY2ref), while simulations with the Lin
scheme represented the situation in the presence of mi-
crophysics parameterization errors. ,e reason for selecting
both schemes is that the rainfall prediction characteristics of
both schemes have been widely studied (e.g., [31, 58]) and
the MY2 scheme is the only two-moment scheme imple-
mented in ARPS.,e simulation using the Lin scheme with a
N0r value of 1× 106m− 4 and N0h of 9×103m− 4 was regarded
as the reference run (hereafter, LINref).

Ensemble forecast experiments were also conducted for
the idealized case, which all used 20 members initialized
from the truth state to isolate the microphysics parame-
terization error. A spatial decorrelation scale of 150 km and a
temporal scale of 1 h were used in all idealized ensemble
forecasts. LINprt_stat separately perturbed the terminal
velocities of rainwater, snow, and hail in terms of statistical
terminal velocity differences between LINref and MY2ref.
lmin and lmax were 0.8 and 1.0 for rainwater, 0.1 and 0.5 for
snow, and 0.2 and 0.7 for hail, respectively. LINprt_sym used
symmetric perturbation ranging from 0.75 to 1.25 for all
terminal velocities.,is type of perturbation has been widely
used in SPPT and SPP studies (e.g., [4, 16, 21]). Comparing
LINprt_stat and LINprt_sym provides a reference to de-
termine if it is necessary to consider the terminal velocity
error characteristics. For convenience, these experiments are
summarized in Table 1.

Note that the above experiments were designed with the
assumption that the MY2 scheme is the truth. However, in
light of the study by Morrison and Milbrandt [32], the
terminal velocity uncertainty in the MY2 scheme is not
ignorable. Whether representing this uncertainty benefits
the forecast skill of the MY2 scheme cannot be evaluated
with the idealized case; therefore, real cases have to be in-
troduced. Additionally, with real cases, we can evaluate
whether using theMY2 scheme as the baseline to perturb the
terminal velocities benefits the forecast skill of the Lin
scheme.

3.2. Real Cases. Two heavy precipitation cases were selected.
Wemainly focus on the case that occurred on 20March 2018
in Alabama. ,is precipitation system produced not only
tornadoes but also heavy rainfall that exceeded 30mm·h− 1

from 00 UTC to 04 UTC. ,e associated convective cells
initialized in northern Mississippi at 20 UTC on 19 March
2018 became a quasilinear convective system in the
southwest-northeast direction two hours later and moved
into Alabama. ,is convective system moved continuously
eastward and reached northern Alabama at 00 UTC 20
March 2018, with the south edge being approximately 70 km
north of Birmingham. By this time, the convective line was
oriented in the west-east direction (Figure 2(a)). Over the
subsequent three hours, the convective system moved
southeastward and generated several tornadoes in north-
eastern and eastern Alabama. ,e precipitation caused by
this convective system in Alabama ceased at approximately
05 UTC. ,e other case occurred on 26 May 2012 in Kansas
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and was a slow-moving supercell. ,e initial convective cell
formed at 23 UTC 25 May 2012 approximately 80 km
northeast of Dodge City. By 00 UTC 26 May 2012, three
strong convective cells formed in a line oriented in the
southwest-northeast direction. ,ese cells stayed nearly in
the same place in the first one and a half hours, producing a
precipitation band oriented in the southwest-northeast di-
rection (Figure 2(b)). By 02 UTC, there were two cells left;
thus, two precipitation centers appear in Figure 2(b) (green
contours). ,is precipitation structure (blue contours)
remained by 03 UTC.

Due to computational limitations, small forecast do-
mains were used, which also restricted the forecast lead time.
In this circumstance, the present work focused on the short-
term precipitation forecast from 00 UTC 20 March 2018 to
03 UTC 20 March 2018 and from 00 UTC 26 May 2012 to 03
UTC 26 May 2012. Our results in Section 4.1 indicate that
the impacts of the stochastic perturbations of the terminal
velocities on precipitation take effect within 3 h, and thus a
3 h forecast is assumed to be sufficient to study the above
impact in the real cases, especially when precipitation has
occurred. ,e heavy precipitation areas were approximately
located at the centers of the forecast domains (Figure 2). For
both cases, the forecast domain size was 406 km× 406 km at

a horizontal resolution of 2 km.,e number of vertical levels
was 43 with the highest resolution of 20m near the surface
and an average resolution of 500m. ,e model top is at
approximately 20 km above ground level (AGL). Twenty
initial ensemble members at 00 UTC were generated by the
approach used by Wang et al. [28]. In this approach, the
three-dimensional variational (3DVar) data assimilation
(DA) system [59] was run in parallel using the Global
Forecasting System (GFS) analysis data at a horizontal
resolution of 0.5° and the perturbed radar data from KBMX,
KHTX, KDDC, and KUEX, the locations of which are
marked by radar icons in Figure 2. All settings, including
both the 3DVar and smooth random perturbation steps for
generating the initial members, were identical to those of
Wang et al. [28], whose model configurations were also used
in this work except for those involved in the stochastic
perturbation. ,e model parameterization configurations
are briefly discussed here. ,e long and shortwave radiation
schemes based on Chou [60] and Chou and Suarez [61],
respectively, were adopted. ,e planetary boundary layer
scheme proposed by Sun and Chang [62] was employed. A
1.5-order turbulence kinetic energy (TKE) scheme [63] was
used for the subgrid-scale turbulence parameterization. All
parameterizations used the default values in ARPS. Four

Table 1: Configurations of the idealized case.

Experiment name Microphysics Ensemble size R (rr) R (rs) R (rh)
LINref Lin N/A 1.0 1.0 1.0
MY2ref MY2 N/A 1.0 1.0 1.0
LINprt_stat Lin 20 0.8–1.0 0.1–0.5 0.2–0.7
LINprt_sym Lin 20 0.75–1.25 0.75–1.25 0.75–1.25
For deterministic forecasts, the resampling function R (·) is forced to be the prescribed value listed in the table; for the ensemble forecasts, lmin and lmax are
listed.
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Figure 2: ,e forecast domains for the (a) 20 March 2018 and (b) 26 May 2012 cases, where the dashed rectangles mask the verification
domains. ,e observed rainfall areas with precipitation greater than 5mm·h− 1 are plotted for 01 UTC (red), 02 UTC (green), and 03 UTC
(blue). ,e locations of KBMX, KHTX, KDDC, and KUEX are marked by radar icons.
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ensemble forecast experiments were designed, and all of
them adopted the two-step generated initial members.
LINens and MY2ens used the Lin scheme and MY2 scheme,
respectively, and employed no stochastic perturbation.
LINprt_ref used the same lmin and lmax as LINprt_stat.
MY2prt_ref used the symmetric perturbation with a max-
imum amplitude of 0.25. ,e terminal velocity of graupel in
MY2prt was not perturbed. ,ese perturbations were se-
lected because the terminal velocity biases of the two-mo-
ment scheme are unknown at this time. ,e spatiotemporal
decorrelation scales were 100 km and 1 h. ,e above en-
sembles were applied to the Alabama and Kansas cases, and
the suffix K was added to the experiment names (namely,
LINens_K, MY2ens_K, LINprt_ref_K, and MY2prt_ref_K)
of the Kansas case. ,e above experiments are listed in
Table 2 except for those designed for the Kansas case.

4. Results

In this section, the results are examined. We first focus on
the idealized case so that the optimal approach to perturb the
terminal velocity from the one-moment scheme can be
determined. Moreover, the impacts of increasing and de-
creasing the terminal velocities on the precipitation struc-
ture and amount can be determined for the one-moment
scheme. For the real cases, we focus on the Alabama case
because the observed precipitation distribution was well
captured by almost all the experiments, thus allowing us to
investigate the impact of perturbing the terminal velocities
on precipitation amounts. ,e results of the Kansas case are
briefly examined to distinguish the case-dependent impacts
of the terminal velocity perturbations.

4.1. Idealized Case

4.1.1. .e Relationship between Precipitation and Terminal
Velocity. ,e hourly precipitation produced by the Lin
scheme and MY2 scheme in the idealized case is first ex-
amined. ,e main difference between the precipitation
forecasts of the two schemes is that LINref produced a
maximumhourly precipitation exceeding 180mm·h− 1, while
the corresponding value in MY2ref was approximately
50mm·h− 1. To determine the cause of this difference, the
vertical mixing ratio profiles across the updraft maximum
are investigated (Figure 3). ,e distance between the peak of
falling hail (area B) and the updraft core (area A) is larger in
MY2ref than in LINref. Considering that both experiments
use the same environment, it is likely the slower falling speed
of hail in MY2ref that allows the hail to be transported to a
more distant location, which is similar to the findings of
Morales et al. [36], which demonstrated that a slower falling
speed resulted in more snow being transported to the
downwind area of the mountain top. In addition, due to the
faster falling speed, more hail (with respect to 0.1 g·kg− 1

contour beneath the updraft core) reaches the ground in
LINref, which is also the likely cause of the larger hourly
precipitation maximum in LINref because melting hail is an
important source of rainwater [38]. Additionally, the cold
pool is stronger in LINref. Previous studies [31, 64] have

stated that one-moment schemes tend to produce more
small hydrometeors, which intensifies the evaporation effect
and causes a stronger cold pool.,e results in Figure 3 imply
that the strong melting effect of hail also contributes to the
strong cold pool in LINref.

Because terminal velocities may strongly influence
precipitation forecasts, the distributions of terminal veloc-
ities with respect to the hydrometeor mixing ratios are
examined. Figure 4 shows the corresponding distribution at
the model time of 2 h. For rainwater (Figure 4(a)), there is no
clear bias between the one-moment and two-moment
schemes. Moreover, the terminal velocities in MY2ref reach
10m·s− 1 even when qr is small, which is the likely result of
more large raindrops being produced inMY2ref, leading to a
larger mass-weighted terminal velocity [31, 41]. A further
increase in qr has very little impact on the maximum ter-
minal velocity in MY2ref but is accompanied by a mo-
notonous terminal velocity increase in LINref. ,e terminal
velocity differences between LINref and MY2ref for snow
and hail are more pronounced (Figures 4(b) and 4(c)), as the
terminal velocities in LINref are often three times larger than
their counterparts in MY2ref. In terms of this result, the
presence of higher terminal velocities in LINref than in
MY2ref is confirmed.

To determine if the terminal velocity differences are
caused by precipitation differences, the terminal velocities
were tuned by varying α (mentioned in Section 2.2) from 0.1
to 1.0. First, it is necessary to determine the optimal α to
minimize the terminal velocity difference. Because the ter-
minal velocities differ substantially, the normalized Ef is
shown in Figure 4(d). ,e results in Figure 4(d) indicate that
further reducing the terminal velocity of rainwater causes a
larger terminal velocity difference between LINref and
MY2ref; thus, the optimal α should be close to 1.0. ,e
optimal values of α are approximately 0.3 and 0.4 for snow
and hail, respectively, which is consistent with the results in
Figures 4(b) and 4(c), where the terminal velocities in LINref
are often larger. ,e terminal velocity distributions and the
normalized error curve differ at different model times, al-
though the distributions are qualitatively similar (not
shown).

4.1.2. Ensemble Forecasts. First, a quantitative analysis is
conducted to evaluate the forecast skills of ensemble fore-
casts with the two-moment scheme as the reference. Figure 5
shows the RMSE and ensemble spread for the ensemble
forecast experiments. With respect to the ensemble mean
RMSE, all ensemble forecasts outperform the deterministic
forecast using the unperturbed Lin scheme (Figure 5(a)),
which demonstrates the benefit of using ensemble forecasts.
Compared with other ensemble forecast experiments,
LINprt_stat produces the smallest hourly precipitation
RMSE (Figure 5(a)), difference between the RMSE and
ensemble spread). For clarity, the bias scores in Figure 5(b)
are shown as logarithmic values, where a value of zero means
no bias. Both experiments used the Lin scheme under
forecasted hourly precipitation less than 5mm·h− 1, but
LINprt_stat generated a smaller bias, consistent with results
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in Figure 5(c), which show that LINprt_stat produced an
hourly precipitation frequency close to the true value. For
hourly precipitation greater than 10mm·h− 1, LINprt_stat
yielded the largest bias, but this bias becomes pronouncedly
smaller when the hourly precipitation is over 30mm·h− 1. In
contrast, the bias scores of LINprt_sym are close to those of
LINref for all examined thresholds, indicating that sym-
metric perturbations cannot represent the terminal velocity
error when systematic bias exists (the terminal velocities of
snow and hail in the Lin scheme overestimate the values in
the MY2 scheme) and implies that there is a benefit to
perturbing a parameterization in terms of its error
characteristics.

,e better estimated precipitation frequency and smaller
bias allow LINprt_stat to better predict the areal accumu-
lated precipitation of MY2ref than the LINprt_sym mem-
bers throughout the forecast (Figure 5(d)), which indicates
that the smaller hourly precipitation RMSE obtained by
LINprt_stat is mainly obtained through a better

precipitation amount forecast. LINref produces an areal
accumulated precipitation value that is much larger than
that of MY2ref, which is mainly attributable to the exces-
sively large precipitation maximum (180mm·h− 1 in LINref
and 50mm·h− 1 in MY2ref). ,e similar mean areal accu-
mulated precipitation values of LINprt_sym and LINref are
expected because the terminal velocity perturbations are
symmetric so that the overpredicted precipitation in some
members is offset by other members that predict less rainfall
with terminal velocity perturbations smaller than 1.0.

In addition to precipitation amount forecasts, the pre-
cipitation probability forecasts were also examined. For
forecast probabilities lower than 0.3, LINprt_stat is more
reliable than LINprt_sym for thresholds from 5mm·h− 1 to
20mm·h− 1. ,is difference between the two experiments is
also valid for forecast probabilities over 0.7. For forecast
probabilities between 0.3 and 0.7, the reliabilities of both
experiments do not substantially differ, except for the
threshold of 20mm·h− 1, where LINprt_stat is consistently

Table 2: Configurations for the Alabama case.

Experiment name Microphysics R (rr) R (rs) R (rh) Spatial scale (km) Temporal scale (h)
LINens Lin 1.0 1.0 1.0 N/A N/A
MY2ens MY2 1.0 1.0 1.0 N/A N/A
LINprt_ref Lin 0.8–1.0 0.1–0.5 0.2–0.7 100 1
MY2prt_ref MY2 0.75–1.25 0.75–1.25 0.75–1.25 100 1
For the resampling function R (·), lmin and lmax are listed. In LINens and MY2ens, the value of R (·) is forced to be a constant of 1.0 so that terminal velocities
are not perturbed.
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Figure 3: Vertical cross-sections of qr (red), qs (green), qh (blue), perturbation potential temperature (black contour), and wind (vector, for
the absolute vertical velocity greater than 1.0m·s− 1) at T� 2 h in the X-Z plane along (a) y� 60 km and (b) y� 58 km for (a) LINref and (b)
MY2ref, respectively. Both X-Z planes cross the maximum updraft centers in supercell. Area A denotes the updraft core; area B denotes the
hail falling outside the updraft core.
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better than LINprt_sym. ,e reason is that most of the
LINprt_stat members produce a spatial precipitation dis-
tribution similar to that of MY2ref, so the high probability in
this experiment is generally consistent with the truth. In
contrast, LINprt_sym overestimates the probability of heavy
rain (>20mm·h− 1) because LINprt_sym has some members
with substantially high terminal velocity values (due to
symmetric perturbations); consequently, the areas with
hourly precipitation greater than 20mm·h− 1 are small and
not well collocated with the truth.

Although terminal velocity perturbations have yielded
potential benefits in precipitation ensemble forecasts, the
above results are determined against the two-moment
scheme, which may not be the best scheme in some cases
(e.g., [65, 66]). ,erefore, it is necessary to examine the
forecast skills using these perturbation approaches in real

cases for both one-moment and two-moment schemes, as
the evaluation of the stochastic perturbation of the two-
moment scheme can only be done with real cases.

4.2. Real Cases

4.2.1. Alabama Case. Figure 6(a) shows the hourly pre-
cipitation error of the ensemble mean and ensemble spread.
,e results in this figure indicate that perturbing the ter-
minal velocities can reduce precipitation errors regardless of
the microphysics scheme. Intuitively, terminal velocity
perturbations have a larger impact on the one-moment
scheme than that on the two-moment scheme. However,
perturbing the terminal velocities does not increase pre-
cipitation forecast spread, as the ensemble spread in all
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Figure 4: Terminal velocity distributions with respect to (a) qr, (b) qs, and (c) qh at T� 2 h for all model levels. Terminal velocities yielded by
LINref are shown with red dots and those of MY2ref are blue.,e normalized standard deviations between the terminal velocity frequencies
of LINref and MY2ref are shown in (d) for rain (red), snow (green), and hail (blue).
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Figure 5: (a) RMSEs of the ensemble mean (solid) and ensemble spread (dashed) for hourly precipitation, (b) the logarithmic bias of hourly
precipitation averaged over all members and all times, (c) the time averaged hourly precipitation frequency throughout the entire ensemble,
(d) the areal accumulated hourly precipitation where the values for LINprt_stat and LINprt_sym are averaged over all members, and (e) the
reliability diagram for LINprt_stat (solid) and LINprt_sym (dashed). ,e MY2 scheme serves as the truth.
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Figure 6: (a) RMSEs of the ensemble mean (solid) and ensemble spread (dashed) of hourly precipitation in the Alabama case, (b) averaged
areal accumulated precipitation of ensemble members and observations, (c) the logarithmic bias of hourly precipitation averaged over all
ensemble members and times, (d) the observed precipitation frequency (black) and the corresponding ensemble frequencies at 03 UTC, the
reliability diagrams for (e) LINens (solid) and LINprt_ref (dashed) and (f) MY2ens (solid) and MY2prt_ref (dashed).
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experiments underestimates the hourly precipitation RMSE.
A plausible cause is that terminal velocity perturbations are
effective only in areas with nonzero hydrometeors, and the
difference among members was zero in the initial members
to prevent the introduction of spurious precipitation [28].
Using a more advanced method to generate initial members
may increase the ensemble spread, although this is beyond
the scope of the present work. In addition, the results in
Figure 6(a) also indicate that the MY2 scheme outperforms
the Lin scheme even when the terminal velocity perturba-
tions are applied to the Lin scheme. Although MY2prt_ref
requires much more computational resources than LINpr-
t_ref, a two-moment scheme is preferable when the com-
putational resources are sufficient.

,e results of areal accumulated precipitation
(Figure 6(b)) indicate that all experiments overestimated the
precipitation amount in the verification domain, even when
the two-moment scheme was adopted. Despite the above
bias, the experiments with terminal velocity perturbations
produced areal accumulated precipitation values closer to
the observation than the experiments with only initial
conditions, especially in the last two hours. Further exam-
ination (not shown) indicates that most members of
LINprt_ref andMY2prt_ref yielded lower areal accumulated
precipitation values than their counterparts in LINens and
MY2ens, implying that the better forecasts of the areal ac-
cumulated precipitation are unlikely to have occurred by
chance.

,e bias scores (Figure 6(c)) demonstrate that all ex-
periments have small biases at the light rain (1mm·h− 1)
threshold but larger biases as the threshold increases. All
experiments overpredicted the precipitation events at
thresholds over 5mm·h− 1, indicating that the areal accu-
mulated precipitation errors are mainly attributable to the
biases associated withmoderate and heavy rain. Even though
large biases exist, LINprt_ref and MY2prt_ref produced
smaller biases than LINens and MY2ens, except for light
rain, indicating that perturbing the terminal velocity is likely
to benefit the precipitation forecasts in real cases. ,e ex-
amination of precipitation frequencies (Figure 6(d)) further
confirms the above improvement in precipitation amounts.
LINprt_ref produced a precipitation frequency comparable
to that of MY2ens for precipitation rates lower than
10mm·h− 1, which can be partly explained by the pertur-
bation parameters in LINprt_ref being tuned according to
the difference between the Lin scheme and the MY2 scheme.
MY2prt_ref yielded a precipitation frequency closest to the
observation, and thus it has the smallest RMSE and pre-
cipitation bias.

,e good performance of LINprt_ref is attributable to
the terminal velocity perturbations being systematically set
to values smaller than 1.0, but the reason for the good
performance of MY2prt_ref is not that straightforward
because symmetric perturbations were used. Considering
that the MY2 scheme allows a raindrop breakup effect, a
plausible explanation is that perturbation greater than 1.0
increases not only the terminal velocities of hydrometeors
but also the collisional kinetic energy (CKE), which increases
the chance of raindrop breakup [43, 67]. As raindrop

breakup occurs, the number of smaller raindrops increases,
which decreases the mass-weighted terminal velocity so that
the amount of rainwater reaching the ground does not
increase as much as when using the Lin scheme. Further
investigation (not shown) indicates that more small rain-
drops appear when the precipitation area is collocated with
perturbations greater than 1.0, supporting the above
speculation.

Although terminal velocity perturbations have positive
impacts on precipitation amount forecasts, the impact on
precipitation probability forecasts is not so clear. ,e reli-
ability results (Figures 6(e)–6(f)) indicate that all experi-
ments overestimated the precipitation probability. ,ere is
no significant difference between experiments with and
without terminal velocity perturbations. Further examina-
tion (not shown) indicates that the overestimation is as-
sociated with the fact that the predicted precipitation areas
in all experiments were larger than the observed precipi-
tation areas, consistent with the overprediction shown in
Figure 6(c).

Figure 7 shows an intuitive comparison of the best
members in LINens, MY2ens, LINprt_ref, and MY2prt_ref
with respect to the hourly precipitation RMSE. All of these
members capture the observed precipitation band but differ
in detail. At 01 UTC, members of LINens and LINprt_ref
overpredicted the observed precipitation maximum, which
is better matched by members of MY2ens and MY2prt_ref.
,is difference is consistent with Figure 6(b), in which the
observed areal accumulated precipitation is well matched
with MY2ens and MY2prt_ref. At 02 UTC, all members in
Figure 7 overpredict the precipitation amount in north-
eastern Alabama, which corresponds to the increased error
in all experiments in Figure 6. At 03 UTC, the observed
precipitation peak (>30mm·h− 1) is approximately captured
by all members, where the LINens and LINprt_ref members
are intuitively better than the MY2ens and MY2prt_ref
members in terms of the precipitation peak distribution. To
the northeast of this observed maximum, a pronounced
overprediction occurs in LINens, while the overprediction
was alleviated in LINprt_ref, consistent with the results in
Figures 6(b) and 6(c).

To determine the cause of the overprediction in
northwestern Georgia (along approximately 34.4°N) in
LINens member 2, the vertical distributions of hydrome-
teors and their terminal velocities are examined (Figure 8).
Along 34.4°N, LINens member 2 has the smallest meridional
average qh in the mid-levels. However, this member pro-
duces the largest falling speeds of both hail and rainwater
among the examinedmembers.,erefore, the overestimated
terminal velocities result in overpredicted precipitation in
LINens member 2. Otherwise, the smaller qh in this member
should have produced smaller precipitation amounts with
terminal velocities identical to that of LINprt_ref member 2.
In addition, the rainwater terminal velocity in LINprt_ref
member 2 is also smaller than that of MY2ens member 2 in
northwestern Georgia, which leads to the precipitation in-
tensity in LINprt_ref member 2 being closer to the obser-
vation. ,is situation is also valid for the comparison
between MY2prt_ref and MY2ens. ,e above results imply
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that the terminal velocities yielded by a two-moment scheme
are not necessarily perfect; thus, the stochastic perturbation
approach applied to hydrometeor terminal velocities could
aid in the skill of precipitation forecasting. However, no-
tably, the overpredicted precipitation in MY2ens does not
have to result from inaccurate terminal velocities; the
contents of hail and rain may be overestimated, which can
also cause a large amount of precipitation.

4.2.2. Kansas Case. ,e benefits from stochastically per-
turbing the terminal velocities yielded by the Lin scheme are
again found in the Kansas case in terms of the RMSE of
hourly precipitation (Figure 9(a)) and the areal accumulated
precipitation (Figure 9(b)). Additionally, the ensemble
spread is still insensitive to the terminal velocity perturba-
tions. In this case, the overprediction of areal accumulated
precipitation occurs in all experiments; thus, most members
in LINprt_ref_K, which allows a terminal velocity bias,
produce areal accumulated precipitation values that are close
to the observations, compared to that of LINens_K. ,e
similar trends in the precipitation error and areal precipi-
tation amount in LINprt_ref_K and LINens_K (Figure 9(a)
and 9(b)) imply that the smaller precipitation error is mainly
attributable to the better prediction of the areal precipitation
amount in LINprt_ref_K.

,e better precipitation amount forecast in LINpr-
t_ref_K corresponds to a smaller bias (Figure 9(c)) and a
precipitation frequency that is close to the observations;
an example at 03 UTC is shown in Figure 9(d). Unlike
LINprt_ref_K, MY2prt_ref_K does not outperform
MY2ens_K in terms of the precipitation error
(Figure 9(a)) and the areal accumulated precipitation
(Figure 9(b)). However, MY2prt_ref_K still produces a
smaller bias than MY2ens_K, indicating that the impact of
terminal velocity perturbations on the MY2 scheme is
similar in both cases, although the precipitation forecast
skill with the terminal velocity perturbations depends on
the case. ,e reliabilities of the probability forecasts in the
Kansas case (not shown) are low in all cases, indicating
again that terminal velocity perturbations mainly con-
tribute to improvements in the predicted precipitation
amount. To determine the plausible causes of the con-
sistent outperformance of perturbing terminal velocities
in the Lin scheme and the case-dependent performance of
terminal velocity perturbations in the MY2 scheme, we
qualitatively examined the precipitation structure in all
experiments for the Kansas case.

For each ensemble, the member having the smallest
precipitation RMSE in the ensemble at 03 UTC was selected
for the qualitative analysis. In Figure 10, all precipitation
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forecasts capture the observed precipitation band oriented in
the southwest-northeast direction at 01 UTC and two
precipitation peaks at 02 UTC and 03 UTC, but there is
clearly displacement in all forecasts. Although the precipi-
tation distributions of members in LINprt_ref_K and
LINens_K look similar, member 10 in LINprt_ref_K pro-
duces less spurious precipitation than member 9 in LIN-
ens_K. Further examination (not shown) indicates that, in
member 10, negative perturbations (before resampling)
prevail in the third forecast hour in northeastern Kansas,
which results in lower terminal velocities in that area; thus,
the spurious precipitation amount is smaller in the
LINprt_ref_K member than that in LINens_K. ,e heavy
rainfall areas (red areas in Figures 10(a), 10(c), 10(e), 10(g),
10(i), and 10(k)) are also intuitively smaller in the LINpr-
t_ref_K member, which is consistent with the result in

Figure 9(d) that the precipitation frequency of LINprt_ref_K
is closer to the observations than that of LINens_K for
precipitation greater than 10mm·h− 1. Since the Lin scheme
often overestimates precipitation due to the unrealistically
high terminal velocities, using stochastically perturbed but
systematically smaller terminal velocities often helps pre-
cipitation forecasts.

Although the MY2 scheme members look similar
throughout the forecast period, they differ in their details,
especially at 03 UTC. At that time, the spurious precipitation
area is smaller in member 9 in MY2prt_ref_K than in
member 2 in MY2ens_K, which contributes to the smaller
RMSE of the former than that of the latter (not shown).
However, this better forecast occurs only in a few members,
as shown in Figure 9(a). In most members inMY2prt_ref_K,
the spurious precipitation areas are slightly larger than those
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Figure 8: Vertical cross-sections of qr (red solid, g·kg− 1), qs (green solid, g·kg− 1), qh (blue solid, g·kg− 1), and their corresponding terminal
velocities (dot-dashed, m·s− 1) at 0230 ZUTC along 34.4°N for (a) LINens, (b) LINprt_ref, (c) MY2ens, and (d) MY2prt_ref. Values shown in
this figure are the meridional averages between 34.2°N and 34.6°N.
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inMY2ens_K at 03 UTC (not shown); this is the reason that
the mean areal accumulated precipitation is slightly larger
in MY2prt_ref_K than in MY2ens_K. Moreover, com-
paring Figures 9(d) and 6(d), symmetrically perturbing the
terminal velocities in the MY2 scheme tends to produce
more light rain (<4mm·h− 1), which implies that the
symmetric perturbations tend to suppress the fall speeds of
precipitation hydrometeors.,is result is not contradictory
to the fact that both MY2 scheme experiments overestimate
the areal accumulated precipitation because these

experiments produce larger precipitation areas than the
observations. Additionally, the observed precipitation
peaks at 02 UTC and 03 UTC (Figures 10(f ), 10(h), 10(j),
and 10(l)), especially for the south peak, are often
underestimated by the MY2 scheme members. ,is result
differhs from that in the Alabama case where precipitation
is often overestimated, implying that symmetrically per-
turbing the terminal velocities may not help the precipi-
tation prediction skill of the MY2 scheme when the
precipitation peak is underestimated.
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Figure 9: ,e same as in Figure 6, except for LINens_K, MY2ens_K, LINprt_ref, and MY2prt_ref_K.
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5. Summary and Conclusions

,e focus of this work was on the impact of stochastically
perturbing the terminal velocities of hydrometeors on
convective-scale ensemble forecasts of precipitation. An
idealized supercell case was first employed. With this case
and assuming that the MY2 scheme was the truth, the re-
lationship between the precipitation and terminal velocities
was investigated. After determining the perturbation am-
plitudes that minimized the terminal velocity difference
between the Lin scheme and MY2 scheme, ensemble fore-
casts with stochastic perturbations of terminal velocities
were performed and evaluated. Finally, the forecast skills of
stochastically perturbing the terminal velocities were ex-
amined for both the one-moment and two-moment schemes
with two real cases.

In terms of the results in Section 4, several conclusions
were obtained: (i) compared to the MY2 scheme, the ter-
minal velocities of snow and hail are approximately 3 times
larger in the Lin scheme, which is an important source of the
overestimated precipitation in the Lin scheme experiments;
(ii) for the Lin scheme, it is better to perturb the terminal
velocities using perturbations smaller than 1.0, but note that
these error characteristics depend on other parameters, such
as the intercept parameters in the microphysics scheme; (iii)
the Lin scheme often overestimates precipitation due to
overestimating the terminal velocities; thus, symmetrically
perturbing terminal velocities by 25% around their original
values cannot effectively reduce the precipitation error when
the Lin scheme is used; (iv) for the MY2 scheme, the use of

symmetric terminal velocity perturbations within ±25%
reduces the precipitation error in the case when the MY2
scheme overestimates precipitation; this perturbation ap-
proach is ineffective in cases when precipitation is
underpredicted.

As a preliminary work on terminal velocity pertur-
bations, the potential benefits of using this type of per-
turbation were demonstrated. However, the experimental
designs and results have many limitations; thus, it is not
possible to establish a ranking of the configurations in
terms of probabilistic forecast skill. First, two real cases
are insufficient to confirm that terminal velocity pertur-
bations can produce statistically significantly better per-
formances than those without terminal velocity
perturbations. Second, only a 3 h forecast was performed
due to the computational limitation. Although the 3 h
forecasts are sufficient for the scope of this work, the
corresponding results are insufficient for longer-term
forecasts, especially long-lived precipitation event fore-
casts. Longer forecast duration has to be considered for
the comprehensive evaluation of the terminal velocity
perturbations. In addition, the error characteristics of
terminal velocities depend on many microphysical pa-
rameters, such as the intercept parameter and hydro-
meteor density; thus, the terminal velocity error
characteristics obtained in this work may not be valid for
other one-moment schemes. Finally, initial perturbations
have not been considered but are essential in studies
examining improvements in the probabilistic skill of this
terminal velocity perturbation scheme.
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Data Availability

,e Advanced Regional Prediction System (ARPS) can be
downloaded at http://www.caps.ou.edu/ARPS/arpsdown.
html, the GFS data are available at https://www.ncdc.
noaa.gov/data-access/model-data/model-datasets/global-
forcast-system-gfs, and the radar data can be downloaded at
https://www.ncdc.noaa.gov/nexradinv/.
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