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Abstract: The dynamical tropopause is the interface between the stratosphere and the troposphere,
whose variation gives indication of weather and climate changes. In the past, the dynamical tropopause
height determination mainly depends on analysis and diagnose methods. While, due to the high
computational cost, it is difficult to obtain tropopause structures with high spatiotemporal resolution
in real time by these methods. To solve this problem, the statistical method is used to establish the
dynamical tropopause pressure retrieval model based on Fengyun-4A geostationary meteorological
satellite observations. Four regression schemes including random forest (RF) regression are evaluated.
By comparison with GEOS-5 (the Goddard Earth Observing System Model of version 5) and
ERA-Interim (European Center for Medium-Range Weather Forecasts Reanalysis-Interim) reanalysis,
it is found that among the four schemes, the RF-based retrieval model is most accurate and reliable
(RMSEs (root mean square errors) are 25.99 hPa and 43.05 hPa, respectively, as compared to GEOS-5
and ERA-Interim reanalysis). A series of sensitivity experiments are performed to investigate
the contributions of the predictors in the RF-based model. Results suggest that 6.25 µm channel
information representing the distributions of the potential vorticity and water vapor in upper
troposphere has the greatest contribution, while 10.8 and 12 µm channels information have relatively
weak influences. Therefore, a simplified model without involving a brightness temperature of 10.8
and 12 µm can be adopted to improve the calculation efficiency.

Keywords: dynamical tropopause pressure; statistical retrieval; random forest regression; Fengyun-4
geostationary meteorological satellite

1. Introduction

The tropopause is like a “two-way valve” separating the stratosphere and the troposphere,
controlling the exchange of mass, water vapor, and chemical species between the two parts of
atmosphere [1,2]. Its structural variations can be seen as both representations of the atmospheric
circulation adjustment in the mid-latitudes and tropics and the human-induced climate changes [3].
Therefore, as a key area for studying weather, climate, and atmospheric composition, the tropopause
has attracted the attention of a large number of scientists over the past few decades [2–7]. Continuous
monitoring of the tropopause height has also become a major concern in weather and climate research.

In earlier studies, scientists observed significant differences in temperature distributions in the
atmosphere on both sides of the tropopause, i.e., temperature generally decreases in the troposphere
and increases in the stratosphere with altitude. By using this feature, WMO (World Meteorological
Organization) proposed a method to determine the tropopause height with lapse rate of temperature
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in 1957 [8]. The tropopause determined by this method is now commonly referred to as the thermal
tropopause [8]. Because only temperature profiles are needed for calculation, much of the observations,
e.g., radiosonde [9,10], radar [11] and satellite observations [12], as well as numerical model data [13,14]
can be used to get the thermal tropopause height.

In addition to temperature, scientists have found that the vertical distributions of many of the
physical quantities such as ozone, potential vorticity, and water vapor on both sides of the tropopause
are also significantly different [15–17]. Therefore, according to the discontinuity characteristics of these
physical quantities, some new definitions of the tropopause are proposed. The dynamical tropopause
is one of them, which is determined based on the relationship between the tropopause height and
the potential vorticity. In general, the potential vorticity (PV) distribution has the characteristics of
increasing with latitude and height [16,18]. It is generally less than 1 PVU (1 PVU = 10−6 m2

·s−1
·K·kg−1)

in the troposphere, but more than 4PVU in the stratosphere. Therefore, isosurfaces with absolute
values between 1 PVU and 4 PVU are usually chosen to indicate the “dynamical tropopause” [18].
The PV reflects the constraint of the atmospheric thermodynamic structure on the vorticity change.
According to the Ertel Equation (1), it can be expressed algebraically as the product of absolute vorticity
and static stability [19].

P = α(ζ+ f )·∆θ (1)

where P represents the PV, α represents the specific volume, ζ and f represent the relative vorticity and
geostrophic vorticity, respectively, θ is the potential temperature, and ∆θ is the static stability. In light
of the practical uses of the PV, the indicative significance of the dynamical tropopause for weather and
climate changes is more explicit than the thermal tropopause.

Historically, dynamical tropopause determination was based on an analysis method, which used
potential vorticity change between the troposphere and stratosphere [20]. At present, the determination
of the dynamical tropopause height is mainly dependent on the numerical model by using diagnose
or analytical methods [16,21,22]. Nielsen–Gammon, for example, once used NCEP-GDAS (the global
gridded data produced by the global data assimilation system of the National Centers for Environmental
Prediction) reanalysis data to determine the global dynamical tropopause height by synthetically
making a diagnose of the PV and temperature distributions [16]. Zurita–Gotor and Vallis proposed
and established a “rigid lid” model to simulate the dynamical and thermodynamical processes of the
dynamical tropopause [23]. In addition to obeying the principle of conservation of the PV, the role
of drag processes associated with ageostrophic motion is considered in this model. The dynamical
tropopause height is estimated by analytical methods in a quasi-geostrophic frame. However, in practical
application, due to the high computational cost, it is difficult to continuously obtain the dynamical
tropopause height with a high spatiotemporal resolution in real time based on these methods.

Following the successful launch and operational use of the world’s first geostationary
meteorological satellite, geostationary satellite data have been widely applied in weather and climate
research. During the use of satellite data, scientists have found that the spectral energy emitted in
certain wavelength ranges can well characterize the distributions of PV and water vapor between
the upper troposphere and the lower stratosphere, which can be used for dynamical tropopause
research. In recent years, some scholars have used water vapor channel data from GOES, MSG,
and Fengyun-2 geostationary satellites to identify and track tropopause folding (sometimes called
tropopause breaks) [24–26]. The “Fengyun-4” series of geostationary satellites are the latest generation
of geostationary meteorological satellites in China [26]. As the first satellite of Fengyun-4 series,
Fengyun-4A was successfully launched on 11 December 2016 and has so far been in stable operation for
three years. The instrument performance is comparable to the GOES-R and Himawari series, the latest
generation of geostationary meteorological satellites in the United States and Japan [27]. With respect
to the radiative imager carried by Fengyun-2 series of satellites, the previous generation geostationary
satellites of China, the Advanced Geostationary Radiative Imager (AGRI) on board the Fengyun-4A
satellite has been added with ten spectral channels which expand the spectral range from 0.55–12.5 µm
to 0.45–13.8 µm. Except for the visible and near-infrared channels, the horizontal resolution of the
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subsatellite point of the medium–longwave infrared channels are increased from 5 km to 4 km, and a
complete observation of the Chinese region and the Eastern Hemisphere can be conducted every
15 min and 1 h, respectively. The use of these observations will facilitate the continuous and stable
monitoring of the dynamical tropopause height in these regions.

The methods for quantitative inversion of atmospheric parameters based on satellite data can be
divided into two categories: physical and statistical. For the quantitative inversion of atmospheric
parameters under all-sky conditions, if the physical method is adopted, it is necessary to consider the
characteristics of complex scenarios such as clouds and aerosols in the atmosphere when making a
high-precision radiation transmission calculation. However, the calculation process is quite complicated.
By contrast, the statistical method is relatively intuitive. In this paper, we aim to establish an optimal
statistical retrieval model for dynamical tropopause pressure measurements based on Fengyun-4A
observations and evaluate its performance in weather and climate research.

The next section describes the statistical regression methods and data used. Section 3 presents the
evaluation results of the retrieval models on the qualitative and quantitative basis. Section 4 compares
the contributions of the different factors in the inversion model to discuss the possibility of model
simplification. A summary of the main results is provided in the final section (Section 5).

2. Materials and Methods

2.1. Data

Data used in this paper include Fengyun-4A/AGRI multispectral observations and numerical
model data. The time span of the whole datasets is from 1 August 2017 to 31 December 2018.

The spectral range of Fengyun-4A/AGRI is 0.45–13.8 µm, a total of 14 channels (refer to http:
//satellite.nsmc.org.cn/PortalSite/Default.aspx). In this study, four longwave infrared channels, i.e.,
two water vapor channels (central wavelengths of 6.25 µm and 7.1 µm), and the two infrared
window channels (wavelengths of 10.8 µm and 12 µm) will be used for the dynamical tropopause
pressure retrieval.

The reanalysis dataset of NCEP-GDAS is the global gridded data produced by the global data
assimilation system (GDAS) of National Centers for Environmental Prediction (NCEP). It has a
temporal resolution of 6 h, a spatial resolution of 0.25◦, and 31 levels in the vertical direction (refer to
https://rda.ucar.edu/datasets/ds083.3). Only the temperature profiles from the dataset will be used for
the dynamical tropopause pressure inversion.

In addition, two kinds of numerical model data are used in this study. One is GEOS-5/MERRA-2,
the other is ERA-Interim global reanalysis data. The former is a new atmospheric reanalysis of the
modern satellite era produced by NASA’s Global Modeling and Assimilation Office, which focuses on
historical climate analyses [28]. The dynamical tropopause pressure and some other 2D parameters with
a temporal resolution of 1 h and a spatial resolution of 0.5◦ × 0.625◦ are stored in the M2T1NXSLV dataset
(refer to https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV_5.12.4/summary?keywords=tropopause).
The profiles of atmospheric parameters, such as wind, temperature, and humidity, are stored in
the M2I3NPASM dataset (refer to https://disc.gsfc.nasa.gov/datasets/M2I3NPASM_5.12.4/summary?
keywords=potential%20vorticity), which has 42 vertical levels, with the temporal resolution of 3 h and
the spatial resolution of 0.5◦ × 0.625◦, respectively.

ERA-Interim is the global gridded reanalysis data produced by European Centre for Medium-Range
Weather Forecasts (ECMWF). In this study, we use the dataset in the potential vorticity coordinate.
It includes air pressure, geopotential height, wind, and temperature, with a time resolution of 6 h
and a spatial resolution of 0.75◦. The available dataset has only one layer in the vertical direction, i.e.,
the 2-PVU isosurface (refer to https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pv/).
Of these two types of data, only the dynamical tropopause pressures from GEOS-5/MERRA-2 during
1 August 1–31 December 2017 are used for training the inversion model in this study. The rest of the
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data for other time periods (i.e., 1 January 1–31 December 2018) are used for accuracy assessment
and evaluation.

2.2. Methods

The core of the statistical inversion method is to establish the relationship between the predicted
quantity and the predictors through statistical regression. The relationship between predicted quantity
and the predictors can be summarized into two types: linear and nonlinear. Almost all the current
statistical regression methods can be used to solve the linear relationship between variables, while the
nonlinear relationship is relatively complex, and the regression models based on different statistical
regression schemes may be quite different. In order to obtain an optimal inversion model, the present
study attempts to establish the Fengyun-4A tropopause pressure retrieval model by evaluating the
performances among the multivariate linear regression (MvLR), K-nearest neighbor (KNN), gradient
boosted decision trees (GBDT), and random forest (RF) regression schemes. The four methods are
briefly introduced below.

2.2.1. Linear Regression

The multivariate linear regression method (hereinafter referred to as the linear regression) is to
assume a linear relationship between the predicted quantity and the predictors. For a linear regression
model with N dimensional eigenvalues, its function can be expressed as [29]:

hω(X) =ωX (2)

where ω is a N × 1-dimensional model parameter and X is a M ×N-dimensional matrix. M and N
represent the number of samples and the number of eigenvalues of a sample, respectively. ω is
obtained by solving the loss function of eigenvalues and dependent variable. The loss function can be
expressed as:

J(ω) =
1
2
(Xω− Y)T(Xω− Y) (3)

where Y is M× 1 dimensional dependent variable matrix. In this study, the least square method is used
to solve the loss function. At the same time, in order to prevent the model from overfitting, we add the
L2 regularization term to the linear model. Its algebraic form is expressed as:

J(ω) =
1
2
(Xω− Y)T(Xω− Y) +

1
2
α||ω||22 (4)

where α is a constant coefficient and is set to 0.03 in this study.

2.2.2. KNN Regression

KNN (K-nearest neighbor) regression (hereinafter referred to as the KNN method) is a
nonparametric regression method [30,31], which achieves statistical regression by measuring the
distances between eigenvalues of a new instance and those of the instances in the training sample set.
Therefore, the number of parameters in the KNN regression algorithm is uncertain, and it will increase
with the size of training sample set. According to the distances, the first K instances in the sample set
that are closest to the new instance are selected, and the prediction results are obtained by weighted
average of these instances. Generally, the larger the K value, the more it can suppress the influence of
noise so that the accuracy of prediction results is improved. The K value is normally set no larger than
20. In this study, the K value is set to 20 for the best accuracy. The distance between a pair of instances
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is generally calculated using the Euclidean distance or Manhattan distance method. In this study, the
Euclidean distance [31] is used, and its algebraic form is as follows:

d(x, y) =

√√ n∑
k=1

(xk − yk)
2 (5)

where d(x, y) is the distance between the two instances x and y; the xk and yk represent the k eigenvalue
of the instances.

2.2.3. GBDT Regression

GBDT (gradient boosted decision trees) regression is an iterative decision tree algorithm (hereinafter
referred to as the GBDT method), which consists of multiple decision trees. The final decision is
made by adding up outputs from all trees [32,33]. The core of this statistical regression method is to
use a gradient boosting algorithm for optimizing the loss function. This algorithm is proposed by
Freidman [32,33]. Its algebraic expression is:

rk = −

[
∂L(y, f (x))
∂ f (x)

]
f (x)= fk−1(x)

(6)

where rk is the residual error estimation of the k decision tree, while f (x) is the decision tree function,
and L(y, f (x)) is the loss function between the decision trees and the predicted variable. In the algorithm,
the negative gradient of the loss function is used as the residual error estimation of the current model,
and the leaf values of the k decision tree are obtained by fitting the residual error. Then the k decision
tree is updated by using the linear search to estimate the values of the leaves. After many iterations,
the regression model made up with multiple decision trees is finally obtained. Because the gradient
boosting algorithm is used in the GBDT regression method, it can better prevent the regression model
from overfitting and make the model more generalized [34]. In this study, a total of 50 decision trees
are used in the GBDT regression algorithm.

2.2.4. RF Regression

The random forest regression algorithm (hereinafter referred to as the RF method) is proposed
by Breiman as an ensemble learning method specifically for high-dimensional data [35]. The core
objectives of this algorithm are to reduce the variance by means of averaging (or other means of
merging), thereby enhancing the performance of the overall model. In the process of constructing
the regression model, a bootstrap method is applied to the data in the sample set to extract multiple
samples from the original dataset. In this way, many different data subsets are obtained. The size of a
sample subset is generally smaller than the original sample set. Normally, K sample subsets correspond
to K decision trees. On the basis of these sample subsets, the eigenvalues are then randomly selected
to generate different decision trees. Generally, the number of the selected eigenvalues in a specific
decision tree is the square root of the total eigenvalues. Because the combination of eigenvalues in
each tree is different, it will help the final model not to be determined by a specific predictor or a
predictors combination. Thus, it can effectively improve the representativeness of the regression model
to the sample set and reduce the risk of overfitting. When the random forest regression model is used
for prediction, the predicted quantity is the aggregation of the outputs from all trees. In order to be
compared with the results based on the GBDT method, the quantity of total decision trees is also set to
50 in the RF algorithm.

2.3. Process Flow

The first step for a statistical regression is to select the predictors related to the predicted variable
to construct the training sample set. Figure 1 shows the 6.25 µm water vapor channel cloud map of
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Fengyun-4A superimposed with air pressure, specific ratio of water vapor, static stability, wind field,
and relative vorticity at the dynamical tropopause from GEOS-5/MERRA-2 reanalysis. One can see
that the dark regions with high brightness temperature (TBB) on the satellite water vapor channel
image over mid and high latitudes coincide with the high pressure, low specific humidity and stability,
as well as the positive vorticity regions at the dynamical tropopause. While in the areas having low
brightness temperature (i.e., the gray-white regions on the water vapor channel map), the situation is
just the opposite. In addition, compared with the distribution of wind field, it can be seen that the
areas with large pressure gradients at the dynamical tropopause are mainly concentrated in the vicinity
of the subtropical upper-level jets (Figure 1d).

Numerous studies have shown that the TBBs of water vapor channels, such as 6.25 and 7.1 µm
channels on Fengyun-4 satellites, are very sensitive to the changes of water vapor in the upper and
middle troposphere associated with features such as jet streams, turbulences, and upper troughs (Table 1).
By using these features, Wimmers and Moody proposed a new remote sensing parameter by combining
the brightness temperature of satellite water vapor channel with the numerical prediction temperature
field and termed it as remotely sensed specific humidity (or altered water vapor, abbreviation AWV) [36].
As described in their paper, the AWV product has a very good correlation with the PV distribution,
which can be used to quantitatively study the variation characteristics of the dynamical tropopause.
In this study, the NCEP-GDAS global model temperature fields were used to calculate the altered
brightness temperature of two water vapour channels in the algorithm.

Table 1. Physical bases of the predictors used in dynamical tropopause retrieval models.

Variables. Physical Bases

TBB6.25 µm Upper-tropospheric water vapor content, upper-level jets, turbulence
AWV6.25 µm Upper-tropospheric water vapor content, upper-tropospheric potential vorticity

TBB7.1 µm Mid-tropospheric water vapor content, upper-level jets, turbulence
AWV7.1 µm Mid-tropospheric water vapor content, mid-tropospheric potential vorticity
TBB10.8 µm Convection, cloud-top height, columnar water vapor content
TBB12.0 µm Convection, cloud-top height, columnar water vapor content

In addition, observations from infrared split window channels, such as 10.8 and 12 µm channels
of Fengyun-4 satellites, can also be used to indicate the water vapor distribution in the atmosphere.
Unlike the two water vapor channels, they reflect the columnar water vapor content, which can be
combined with the two water vapor channels to differentiate the layer of the water vapor. Moreover,
the infrared window channels have the advantages on determining cloud-top height and characterizing
convection intensity in terms of cloud-top temperature (Table 1). As documented in many studies,
stratospheric–tropospheric exchange has relevance to deep convection [37]. Therefore, the observations
of these channels are selected to be used as the predictors for the dynamical tropopause pressure retrieval.

Based on the above, we randomly pick the dynamical tropopause pressure as the predicted
quantity from GEOS-5/MERRA-2 dataset from 1 August to 31 December 2017. Meanwhile, through the
spatiotemporal matching, the time, latitude, longitude, TBB (brightness temperature) and AWV (altered
water vapor) values with the same time and position as the sampling points in the GEOS-5/MERRA-2
are extracted from the Fengyun-4A/AGRI 6.25, 7.1, 10.8, and 12.0 µm channel observations as the
predictors. The resulting training sample set consists of about 8.8 million valid records.
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Figure 1. (a) Dynamical tropopause pressure (color shadings) derived by GEOS-5/MERRA-2 reanalysis
on 0600 UTC 11 Sept 2018; and the brightness temperature imagery of 6.25 µm channel of Fengyun-4A
overlaid by the (b) specific ratio of water vapor lower than 1 × 10−3 g·kg−1 (color contours) (c) the static
stability ≤1 × 10−1 km−1 (color contours with an interval of 1 × 10−2 km−1), and (d) the horizontal
wind (yellow vectors) and positive relative vorticity ≥1 × 10−5 s−1 (color contours) at the dynamical
tropopause shown in Figure 1a.

In the second step, based on the constructed training sample set, four statistical regression
methods introduced in Section 2.2 are implemented to obtain the dynamical tropopause pressure
retrieval models.

In step 3, new observations, including observing time, longitude and latitude, and the TBB and
AWV values of the 6.25 µm and 7.1 µm channel, as well as the TBB values of the 10.8 µm and 12.0 µm
channels of Fengyun-4A/AGRI are input into the four retrieval models obtained in step 2 to calculate
the dynamical tropopause pressure. The flow chart is shown in Figure 2.
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Figure 2. Flowchart of the Fengyun-4A dynamical tropopause pressure retrieval based on
statistical methods.

3. Results

3.1. Comparison of Four Retrieval Models

Figure 3 shows the Fengyun-4A dynamical tropopause pressure distribution on 0600 UTC 11
September 2018 obtained by using four statistical retrieval methods. Similar to the GEOS-5/MERRA-2
dynamical tropopause pressure distribution shown in Figure 1a, the dynamical tropopause pressure
obtained by the four retrieval models generally increases from the equator to the poles, with the
maximum gradients occur between 30◦–45◦ in the two hemispheres. Subregional comparisons show
that the results obtained by the four methods differ less in the low latitudes, but larger in the middle and
high latitudes. One can see that in the retrieval results based on the RF method and the KNN method,
there are three commas-shaped high pressure zones arranged from west to east in the middle and high
latitudes in the Northern Hemisphere, which are consistent with GEOS-5/MERRA-2 results in both
intensity and location. Compared with the satellite images of the same time, there are cyclone clouds that
developed in front of (to the east of) these three commas-shaped high-pressure zones. This phenomenon
is considered to be a manifestation of a mass of dry cold air with high potential vorticity intruding into
the troposphere from the stratosphere, which is often referred to as “tropopause folding (break)” or
“dry intrusion” in meteorology. At present, many studies have shown that “tropopause folding” not
only can promote the development of subtropical cyclones [38,39] but may also stimulate the convection
initiation and influence the structure of convective systems [40]. In comparison, the strengths of
these three high-pressure zones in the results obtained by linear regression and GBDT methods are
obviously weak, especially the magnitude of the high pressure zone over Mongolia is significantly
underestimated by the two inversion models. In the Southern Hemisphere, two high-pressure zones,
one in the east-west direction and the other in the north-south direction can be seen between 30◦–60◦S
in all the inversion results except in that derived by the linear regression method.
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We further use standard statistical methods to quantitatively evaluate the four retrieval models.
Equations are as follows:

MBE =
1
N

N∑
i=1

∅′i , (7)

RMSE =
[ 1
N − 1

∑N

i=1

(
∅′i

)2
]1/2

, (8)

σ =
[ 1
N

∑N

i=1

(
∅′i

)2
]1/2

, (9)

R =
Cov(X, Y)
σxσy

(10)

where X, Y represent the retrieval and the observed samples, respectively. ∅′i is the bias between a
retrieval and an observation; σx is the standard deviation among the retrieval results; and Cov(X, Y) is
the covariance between retrievals and observed samples. The MBE, RMSE, and R represent the mean
bias error, the root mean square error, and correlation coefficient, respectively.

Figure 4 shows the MBEs, RMSEs, standard deviations, and correlation coefficients between the
inversion results of four models and GEOS-5/MERRA-2 reanalysis, respectively. The accuracy of the
inversion results obtained by the RF method is the highest among the four models, which has a RMSE
of 22.7 hPa, a standard deviation of 16.65 and an average deviation of 0.44 hPa, and a correlation
coefficient of 0.9609. Next are the inversion methods based on KNN and GBDT, whose RMSEs are 25.51
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and 30.52 hPa, with standard deviations of 18.07 and 21.15 hPa, MBEs of −0.5033 and −0.3384 hPa,
and correlation coefficients of 0.9503 and 0.9281, respectively. The inversion model based on linear
regression showed the worst performance, having a RMSE of 42.43 hPa, a standard deviation of
28.27 hPa, MBE of −3.8737 hPa, and a correlation coefficient of 0.857. The above results show that there
is a nonlinear relationship between the dynamical tropopause pressure and the predictors extracted
from satellite observations. Therefore, it is difficult to obtain the accurate results by a linear method.
Moreover, although both the GBDT and the RF method are regression statistical analysis methods
based on ensemble decision trees, the accuracy of the results obtained by the RF-based inversion model
is obviously better than that from the GBDT-based model. This result suggests that the use of different
rather than same eigenvalues combinations to generate each decision tree may help to improve the
representativeness of the inversion model to the relationship between predictors and the predicted
variable, and thus enhance the generalization ability of the retrieval model.
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Figure 4. Comparisons of the mean bias errors (MBE, blue line), root mean square errors (RMSE,
black line), standard deviations (σ, green line) and correlation coefficients (R, red line) between the
retrievals for the dynamical tropopause pressure on 0600 UTC 11 September 2018 obtained by four
statistical retrieval models.

In addition, we also compare the performance of the four methods in two typical latitudinal
zones: low latitudes (0◦–30◦) and mid latitudes (30◦–60◦). From Table 2 it can be seen that the
performance of the four methods varies in different latitude zones. Generally, the inversion accuracy
within midlatitudes is overall lower than that in low latitudes. While the correlation is better than that
in low latitudes. The average RMSEs and standard deviations of the four models within midlatitudes
are about 17.25 hPa and 10.7 hPa larger than they are in low latitudes. Nevertheless, whether for the
whole area or for a specific latitudinal zone, the RF-based inversion model has the highest accuracy
among the four methods.

Table 2. Statistical parameters (MBE: mean bias error; RMSE: root mean square error; σ: standard
deviation; R: correlation coefficient) of tropopause pressure (in hPa) retrieved by different regression
schemes in two latitudinal zones: low latitudes (0◦–30◦) and midlatitudes (30◦–60◦).

Method

Latitudinal
Zone

0◦–30◦ 30◦–60◦

MBE (hPa) RMSE (hPa) σ (hPa) R MBE (hPa) RMSE (hPa) σ (hPa) R
Linear 11.983 27.75 17.35 0.530 −25.60 49.85 32.37 0.814
GBDT −3.237 19.03 13.61 0.734 0.8645 39.23 24.59 0.846
KNN −3.031 17.73 12.69 0.762 0.705 31.86 21.41 0.895

RF −1.784 15.65 11.77 0.838 1.942 28.22 19.74 0.919
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The variations of the global tropopause are major concerns in stratospheric–tropospheric exchange
and climate change research [19,41,42]. These studies bring a higher requirement not only for data
accuracy but also for their long-term stability. In the following section, we will make a further
assessment of the accuracy and stability of the RF-based retrieval models to evaluate the reliability
of the data obtained by this inversion method in weather and climate application research. For this
purpose, we use the RF-based inversion model to obtain a 1-year Fengyun-4A hourly dynamic
tropopause pressure during 1 January–31 December 2018. On basis of this dataset, the quantitative
and qualitative evaluation will be made.

3.2. A Yearly Validation

Firstly, we make a comparison of the 1-year Fengyun-4A retrieval dynamic tropopause pressure
dataset with the GEOS-5/MERRA-2 reanalysis in the same period. As in Section 3.1, we calculate
the MBEs, RMSEs, standard deviations, and the correlation coefficients between the two datasets
according to Equations (7)–(10), respectively (Figure 5). From the statistical results of the whole year,
the deviations between the two data sets change relatively small month by month suggesting no
obvious trend of the errors growing with time. The annual mean deviation is 0.549 hPa, the root mean
square error is 25.99 hPa, the standard deviation is 18.94 hPa, and the correlation coefficient is 0.955.
The above facts show that the Fengyun-4A dynamical tropopause pressure inversion model based on
RF method has high accuracy and strong stability.
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Figure 5. A yearly distributions of the (a) mean bias error (MBE, blue dots); (b) root mean square error
(RMSE, black dots); (c) standard deviation (σ, green dots); and (d) correlation coefficient (R, red dots)
between the GEOS-5/MERRA-2 and Fengyun-4A derived tropopause pressure in 2018.

We also compare this dataset with the dynamical tropopause pressure obtained from ERA-Interim
reanalysis. As shown in Figure 6, the annual mean deviation between the two datasets is −31.08 hPa,
the root mean square error is 43.05 hPa, the standard deviation is 27.29 hPa, and the correlation
coefficient is 0.959. That is, Fengyun-4A derived dynamical tropopause pressure (height) relative to
the ERA-Interim results are overall low (high). The reason for this result could be related to the model
using the dynamical tropopause pressure from GEOS-5/MERRA-2 as the true value during the retrieval
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model training. Yet, the definition criterion for the GEOS-5/MERRA-2 dynamical tropopause differs
from that adopted by the ERA-Interim. To test it, we recalculated the annual and zonal mean potential
vorticity profiles taken from GEOS-5/MERRA-2 in the three tropopause coordinates (Figure 7).
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Figure 7. The annual and zonal mean (80◦S–80◦N, 25◦–180◦E) tropopause-relative profiles of potential
vorticity in the ERA-Interim (black dashed line), GEOS-5/MERRA-2 (black solid line) and Fengyun-4A
(red solid line) derived tropopause coordinates.

The mean absolute value of the PV at the ERA-Interim dynamical tropopause is 2 PVU, while the
mean PV values at Fengyun-4A and GEOS-5/MERRA-2 derived dynamical tropopause are nearly
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3.5 PVU. Generally, the larger the absolute PV value is, the lower (higher) the pressure (height) of the
PV isosurface. Therefore, Fengyun-4A derived tropopause pressure shows the characteristics overall
lower than the ERA-Interim results. Nevertheless, as implied by the correlation coefficients, the spatial
distributions of the three datasets maintain a high consistency. Therefore, theoretically, the structural
characteristics of the dynamical tropopause and its variations as revealed by any of the three data sets
should be basically the same.

3.3. Vertical Distribution Relative to Dynamical Tropopause

To test this assumption, by using the same method for obtaining tropopause-relative profiles of
the PV in the three tropopause coordinates (i.e., the derived dynamical tropopause from ERA-Interim,
GEOS-5/MERRA-2 reanalysis and Fengyun-4A) as described in the previous section, we recalculated
the vertical profiles of the potential temperature, water vapor specific ratio, and wind speed relative
to the three derived dynamical tropopauses (Figure 8). It can be seen that the potential temperature
(water vapor) increases (decreases) with height on both sides of the three types of dynamical tropopause,
and the absolute values of their vertical change rates reach the maximum within the layer of 0.4 km
above the tropopause (Figure 8a,b). Because the dynamical tropopause obtained by Fengyun-4A is
quite close to that from GEOS-5/MERRA-2, it can be seen that the temperature and water vapor are
distributed quite similar in these two types of tropopause coordinate systems. As compared with
such distributions, the temperature within lower stratosphere will be underestimated, while the upper
tropospheric humidity will be overestimated in the ERA-Interim tropopause coordinate system.
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Figure 8. The annual zonal mean (80◦S–80◦N, 25◦–180◦E) tropopause-relative profiles of (a) potential
temperature (K), (b) specific ratio of water vapor (g kg−1), and (c) wind speed (m s−1) in the ERA-Interim
(black dashed line), GEOS-5/MERRA-2 (black solid line), and Fengyun-4A (red solid line) derived
tropopause coordinates.

As for the vertical distribution of wind speed, the wind speed above the three types of dynamical
tropopause all decrease with height. Same as the vertical distributions of the potential temperature and
water vapor, the maximum vertical change rate of wind speed also occurs within the layer of 0.4 km
above the tropopause (Figure 8c). The distributions of wind speed profiles below the tropopause
however, are slightly different in the three types of tropopause coordinate systems. In the Fengyun-4A
and GEOS-5/MERRA-2 tropopause coordinate systems, the wind speed profiles below the tropopause
increase with height and reach the maximum at a level about 1 km below the tropopause. While, in
the ERA-Interim tropopause coordinate system, the wind speed profile below the tropopause always
shows a trend of increasing with height. In that case, the wind speed core appears at the tropopause.
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3.4. Comparison of Seasonal Variation

The seasonal variations of the dynamical tropopause pressure derived by Fengyun-4A and
ERA-Interim are compared. As can be seen, although there are significant differences in the dynamical
tropopause heights obtained from the two datasets in some specific locations, e.g., the tropopause
pressures over the Arctic region in Figures 9a and 9c are about 350 hPa and 320 hPa, respectively, with a
difference of 30 hPa (~0.8 km), their spatial distributions and seasonal variations are highly consistent
(Figure S1). That is, the tropopause pressures increase poleward, with the maximum pressure gradient
moving with the season within 30◦–45◦ (Figure 9). During the Northern Hemisphere’s winter months,
the maximum pressure gradient appears near 30◦N while it moves northward to 45◦N in summer.
In addition, a significant high pressure center ranging from northeast China to northern Japan in the
Northern Hemisphere is clearly seen during DJF (December, January, and February) in the tropopause
pressure fields of two data sets. Comparison with 500 hPa weather map, the maxima pressure region
coincides with a cyclonic circulation. Affected by it, the cold airflows behind the upper-level trough
met with the warm and moist air flows in the middle and lower reaches of the Yangtze River in China
causing a wide range of extreme cold weather and snow storm over this region during January and
February of 2018 [43].
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reanalysis and (c,d) Fengyun-4A satellite observations.

From the above analysis, we can see that the dynamical tropopause pressure derived by
Fengyun-4A using the RF-based retrieval model have high consistency with the reanalysis data
in spatiotemporal characteristics, thus can be further used in weather and climate research.
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4. Discussion

Although the inversion model based on the RF method has good performance and strong
robustness, its computational efficiency is relatively poor among the four models, especially when
having many predictors. In this section, we will discuss the contribution of each factor in the RF-based
dynamical tropopause pressure inversion model and analyze the possibility of model simplification.

Figure 10 shows the contribution scores (value range: 0–1, the closer the value is to 1, the greater
the contribution is) of the nine predictors used for establishing the inversion model. Among the nine
factors, the AWV (altered water vapor) of 6.25 µm channel has the largest contribution, followed
by the latitude information, the brightness temperatures of 7.1 µm and 6.25 µm channels, longitude
information and the AWV of 7.1 µm with contribution scores of about 0.563, 0.222, 0.084, 0.034, 0.033,
and 0.025, respectively. The rest factors including brightness temperature of 10.8 µm and 12 µm
channels as well as time have contribution scores of about 0.01.
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Figure 10. Contribution scores of the predictors in the RF-based Fengyun-4A dynamical tropopause
pressure retrieval model.

To further analyze the influences of these factors on the inversion accuracy, five sensitive
experiments are implemented to respectively simulate the effects of removing latitude, time, brightness
temperature of 10.8 µm and 12 µm channels, the AWV and brightness temperature of 6.25 µm, and those
of 7.1 µm channel on the calculation accuracy (Table 3). Here we use CNTL to represent the control
run, that is, the retrieval made by the full inversion model including all the nine predictors. The other
sensitive experiments are carried out on the basis of the control run by removing individual variables
in the inversion model.

Table 3. Description of experiment design.

Experiment Description

CNTL
Retrieval model is built based on predictors of time, latitude, longitude, TBBs of 10.8 µm,

12 µm, 6.25 µm, 7.1 µm, and the AWVs of 6.25 µm and 7.1 µm
NTIM Remove time
NLAT Remove latitude
NCLD Remove TBBs of 10.8 µm and 12 µm
NHWV Remove TBB and AWV of 6.25 µm
NMWV Remove TBB and AWV of 7.1 µm

The inversion models obtained from the above five sensitive experiments are tested with
Fengyun-4A observations on 0600UTC 11 September 2018 and compared to the GEOS-5/MERRA-2
reanalysis to perform the quantitative verification. As shown in Table 4, error brought by the NHWV
run is the largest among six experiments. The RMSE produced by the NHWV run is about 35.74 hPa,
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and the correlation coefficient is about 0.89. The NLAT run has the second largest error, followed by
the NMWV run. The RMSEs of NLAT and NMWV runs are about 34.12 hPa and 32.81 hPa, and their
correlation coefficients are 0.90 and 0.91, respectively. The errors from NCLD and NTIM runs are the
smallest whose RMSEs are 30.94 hPa and 26.19 hPa, and the correlation coefficients are 0.9229 and
0.94, respectively.

Table 4. Root mean square errors and correlation coefficients between GEOS-5/MERRA-2 and
Fengyun-4A derived dynamical tropopause pressure on 0600 UTC 11 September 2018 obtained by six
experiment schemes listed in Table 2 (sample number: N = 67,796).

Statistics CNTL NTIM NLAT NCLD NHWV NMWV

RMSE (hPa) 22.7 26.19 34.12 30.94 35.74 32.81
Correlation 0.96 0.94 0.9077 0.9229 0.8947 0.9123

Combined with the physical bases of the variables listed in Table 1, the above results suggest
that the dynamical tropopause pressure is mainly affected by the PV and water vapor distributions in
the upper troposphere. In addition, it has a closed relationship with the latitudinal zone and the PV
and water vapor distributions in the middle troposphere. The influences of time and convection on
dynamical tropopause height are relatively small. As mentioned by many previous studies, tropopause
height has notable seasonal variations, but its diurnal variations are not quite obvious and consistent
everywhere [44]. Therefore, the local time information on the observation points becomes insignificant.
As for convection, although it is recognized that deep convection can affect the height of the tropopause,
for the global tropopause, the effect of local deep convection on tropopause height is weak [13].
The calculation speed test shows that the simplified model without 10.8 µm and 12 µm brightness
temperature factors can increase the inversion speed by 5% as compared to using the full model
under the same computation environment. Therefore, according to the actual calculation accuracy
requirements, a simplified model can be adopted to reduce the calculation amount to meet the time
efficiency requirement.

5. Conclusions

Dynamical tropopause is the discontinuity surface of potential vorticity (PV), which has indication
for weather and climate change. A continuous monitoring of this region is therefore of importance.
The inversion models of Fengyun-4A dynamical tropopause pressure are established by using linear
regression, KNN, GBDT, and RF methods, respectively. After making a comprehensive comparison,
it is found that the inversion model based on the RF method is optimal among the four inversion
models. On the basis of this model, a 1-year dynamical tropopause pressure dataset is generated by
using a whole year multispectral data of Fengyun-4A geostationary satellite in 2018. The dataset is then
verified against GEOS-5/MERRA-2 and ERA-Interim reanalysis data of the same period. As indicated
by the quantitative and qualitative evaluations, the RF-based inversion model is able to retrieve the
pressure of the dynamical tropopause with the absolute PV value of 3.5 PVU using Fengyun-4A satellite
observations under all-sky conditions.

Due to the different definition criterion between the GEOS-5/MERRA-2 and ERA-Interim derived
dynamical tropopause, the deviation between Fengyun-4A and ERA-Interim derived results is slightly
larger than that between Fengyun-4A and GEOS-5/MERRA-2 results. Annual mean RMSEs and
standard deviations between the former two are about 43.05 hPa and 25.99 hPa, while those for
the latter two are 27.29 hPa and 18.94 hPa, respectively. The vertical distribution characteristics
of atmospheric parameters, such as temperature, water vapor, wind, and PV in three tropopause
coordinate systems, as well as seasonal variations of the three derived tropopauses maintain a high
consistency except for some differences in detail, which we should be aware of when making a
quantitative analysis of the stratospheric–tropospheric mass fluxes exchanges. Overall, the results
herein suggest that the dynamical tropopause pressure derived from Fengyun-4A geostationary



Remote Sens. 2020, 12, 1600 17 of 19

meteorological satellites based on the RF method can basically meet the requirements of weather and
climate researches and applications.

To examine the possibility of model simplification, we make a further analysis of the influences of
ignoring latitude, time, brightness temperature of 10.8 µm and 12 µm channels, the AWV and brightness
temperature of 6.25 µm, and those of 7.1 µm channel in the RF-based retrieval model on the inversion
accuracy. The results show that 6.25 µm channel information characterizing the PV and water vapor
distribution in upper troposphere contributes the most in the retrieval model, followed by the latitudinal
and 7.1 µm channel information. In contrast, the local time information and the 10.8 µm and 12 µm
channel brightness temperature factors, which hint for convection in term of cloud-top temperature,
have relatively little effect on retrieval accuracy. Therefore, in practice, with consideration of the actual
calculation accuracy requirements, a simplified model without involving time information or 10.8 µm
and 12 µm brightness temperature factors can be adopted to improve the calculation efficiency.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/10/1600/s1,
Figure S1: The meridional distributions of tropopause height during four seasons in 2018 (DJF: December,
January, and February; MAM: March, April, and May; JJA: June, July, and August; SON: September, October,
and November) based on a) ERA-Interim reanalysis; b) Fengyun-4A retrievals.
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