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Abstract: This research focuses on evaluating the High-Resolution Model Intercomparison Project
(HighResMIP) simulations within the framework of the Coupled Model Intercomparison Project
(CMIP) Phase 6 (CMIP6). We used seven of its consortiums to study how CMIP6 reproduced the
West African precipitation features during the 1950–2014 historical simulation periods. The rainfall
event was studied for two sub-regions of West Africa, the Sahel and the Guinea Coast. Precipitation
datasets from the Climate Research Unit (CRU) TS v4.03, University of Delaware (UDEL) v5.01,
and Global Precipitation Climatology Centre (GPCC) were used as observational references with the
aim of accounting for uncertainty. The observed annual peak during August, which is greater than
200, 25, and 100 mm/month in the Guinea Coast, the Sahel, and West Africa as a whole, respectively,
appears to be slightly underestimated by some of the models and the ensemble mean, although all
the models captured the general rainfall pattern. Global climate models (GCMs) and the ensemble
mean reproduced the spatial daily pattern of precipitation in the monsoon season (from June to
September) over West Africa, with a high correlation coefficient exceeding 0.8 for the mean field and
a relatively lower correlation coefficient for extreme events. Individual models, such as IPSL and
ECMWF, tend to show high performance, but the ensemble mean appears to outperform all other
models in reproducing West African precipitation features. The result from this study shows that
merely improving the horizontal resolution may not remove biases from CMIP6.

Keywords: CMIP6 HighResMIP; evaluation; ensemble mean; models; West African precipitation

1. Introduction

The West African region is one of the most densely populated regions in the world, with close
to 400 million inhabitants in 2018 [1]. Most of its key economic sectors, such as agriculture, power
generation, and industry, strongly depend on the climate, of which seasonal rainfall forms a key
component [2,3]. The study of climate and its change over the region is challenging because the region
is vulnerable to low adaptive capacity to observed climate change [4] and because there are variations
in the observed precipitation dataset from one location to another [5–8]. The fifth assessment of the
Intergovernmental Panel on Climate Change (IPCC) [9] reported that most of the African region lacks
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sufficient observational data to provide conclusions on trends in annual precipitation over the past
century, but beyond these challenges, research has shown that there might be a wetter core rainfall
season with a small delay to the rainy season by the end of the 21st century. Several studies have shown
that climate change may have an intense impact on agriculture, construction, power generation, and the
health sector, so information gleaned from a climate model evaluation will benefit the African region.

To improve climate change knowledge and detect the effect of changes in the past, present,
and future, global climate models (GCMs) under the supervision of the Coupled Model Intercomparison
Project (CMIP) were established by modeling groups globally [10]. Climate model data are accessible
through the World Climate Research Program (WCRP), which supervises the various phases of the
CMIP [11]. This effort has been in place for the past more than 20 years to gradually improve the
understanding of climate science. When CMIP phase 3 (CMIP3) was released, the horizontal resolution
was 250 km in the atmosphere and 150 km in the ocean [12] but seven years later, CMIP phase 5
(CMIP5) was released with an improved resolution of 150 km and 100 km for the atmosphere and ocean,
respectively [13]. Activities of several modeling groups are coordinated under a single framework for
a specific phase of CMIP so that previous efforts are not replicated and to minimize the operational
and computational burden. Data standards, such as metadata and governing structures, have been
adopted by the Earth System Grid Federation (ESGF) that was designed to provide access to CMIP
model outputs hosted by several institutions around the world [10].

Simulating precipitation in West Africa using a GCM with low to medium resolution has shown
noticeable deficiencies [14,15]. Low- to medium-resolution GCMs from CMIP3 and CMIP5 were not
able to incorporate the drivers of regional precipitation, such as orography and the role of vegetation,
and have shown major discrepancies in reproducing precipitation due to synoptic, sub-synoptic,
and mesoscale convective systems [16]. The issue of resolution has led to the extensive use of
statistical or dynamical downscaling to improve the resolution over a region. Downscaling methods,
while useful for regionally resolved climate information, can have high levels of uncertainty due to
regional climate model (RCM) physics or uncertainties from driving GCMs [17,18] under particular
conditions [19]. High-resolution models are more capable of simulating mesoscale convective systems
than coarse-resolution models and are therefore able to represent multi-scale interactions [20,21].
Moreover, they are able to represent diurnally forced circulations and modulated rainfall due to
orography [22,23]. The introduction of multiple model simulations at fine resolutions (25–50 km) in
the High-Resolution Model Intercomparison Project (HighResMIP) is timely, as it could significantly
improve the confidence in CMIP6 models used to devise adaptation strategies under a changing
climate. The vertical resolution was focused on in the HighResMIP, as the main aim of this model is to
determine the robust benefits of increased horizontal model resolution based on multi-model ensemble
simulations [24].

This study makes use of CMIP6 HighResMIP GCMs with the aim of ascertaining whether
the improved resolution of CMIP6 can capture precipitation features of the West African region.
The analyses are segmented into four sections: The first section examines how HighResMIP simulates
the annual cycle of precipitation, the second section analyzes mean climatology, the third session
evaluates trends from 1950 to 2014, and in the final section, we use daily data to evaluate extreme
events (R95p) over the region, as suggested by Alexander et al. [25].

Due to the low density of rain gauge networks over West Africa, the use of a gridded dataset for
proxies to observation has gained momentum and it is now an important method, especially in the
context of understanding and evaluating the quality of climate models in reproducing precipitation
features. To alleviate uncertainties that may arise from different approaches being employed to obtain
gridded datasets, the use of more than one gridded observational dataset has been prescribed for
reliable climate data assessment studies [26,27].
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2. Study Area, Model Dataset, Evaluation, and Statistical Analysis

2.1. Study Area

West Africa consists of 16 countries: Benin, Burkina Faso, Cape Verde, Gambia, Ghana,
Guinea-Bissau, Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo.
In this study, West Africa is defined as the region distributed within longitude 20◦ W–20◦ E and latitude
0◦–30◦ N (Figure 1). Here, we refer to it as two climatic zones: The Sahel (north of 15◦ N) and the
Guinea Coast (south of 15◦ N).
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Figure 1. Map of the study domain showing the elevation of the study area. The division between
Sahel and Guinea Coast is outlined by the red line.

2.2. Model Datasets

The daily precipitation of the historical simulations for the period 1950–2014 from seven
high-resolution models (see Table 1) was used in this study. The data are archived at the Earth System
Grid Federation (ESGF) website under CMIP6 HighResMIP (https://esgf-node.llnl.gov/search/cmip6/).

Table 1. Brief description of the global climate models (GCMs) used in this study.

Model Institute(s) Model Name Short Name Country Resolution

Centre National de Recherches
Meteorologiques;
Centre Europeen de Recherche et
de Formation Avancee en Calcul
Scientifique

CNRM-CM6-1 CNRM France 0.5◦ × 0.5◦

European Centre for
Medium-Range Weather Forecasts ECMWF-IFS-LR ECMWF UK 1◦ × 1◦

Institute Pierre Simon Laplace IPSL-CM6A-ATM-HR IPSL France 0.7◦ × 0.5◦

Meteorological Research Institute MRI-AGCM3-2-H MRI Japan 0.56◦ × 0.56◦

Max Planck Institute for
Meteorology MPI-M-MIP-ESM1.2-XR MPI Germany 0.47◦ × 0.47◦

Japan Agency For Marine-Earth
Science and Technology;
Atmosphere and Ocean Research
Institute, University of Tokyo;
National Institute for
Environmental Studies;
Riken Center for
Computational Science

NICAM16-8S NICAM Japan 0.28◦ × 0.28◦

Met Office, Hadley Centre MOHC-HadGEM3-GC31-HM HADGEM United Kingdom 0.35◦ × 0.23◦

https://esgf-node.llnl.gov/search/cmip6/
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2.3. Model Evaluation

Due to the sparse observation precipitation datasets over West Africa, data from the daily Global
Precipitation Climatology Centre (GPCC) 2018 version (https://opendata.dwd.de/climate_environment/
GPCC/html/fulldata-daily_v2018_doi_download.html), and monthly data from the University of
Delaware (UDEL) v5.01 (https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.htm) and Climate
Research Unit (CRU) TSv4.03 (https://crudata.uea.ac.uk/cru/data/hrg/) were used in this study as
the observation data with which to evaluate the ability of GCMs to reproduce precipitation and to
account for the observation uncertainty. GPCC data are a rain-gauge-based gridded precipitation
dataset with a horizontal resolution of 1◦ × 1◦ [28]. The dataset has a quality control program to
check for errors in the precipitation data received all over the world. We used it in this study to
evaluate how the high-resolution GCMs simulate daily climatology and extreme events over the study
area. CRU TS v4.03 and UDEL v5.01 are produced at 0.5 km resolution by the Climate Research Unit,
School of Environmental Sciences, University of East Anglia, and the Centre for Climate Research
and Department of Geography, University of Delaware, respectively; these were used to examine the
performance of the GCMs in simulating the annual cycle and trend of precipitation. Due to differences
in the horizontal resolution of each dataset (see Table 1), we re-gridded using a bilinear interpolation
method so that each model’s datasets have the same grid resolution as the observation data.

2.4. Statistical Analysis

The arithmetic average of each CMIP6 dataset was taken as the ensemble mean. A Taylor diagram
and spatial analysis were used to evaluate climatology and extreme events, while temporal plots
were used for annual precipitation cycle and trend analysis. We calculated the mean bias for both
climatology and extreme events using

Mean Bias = Dm − Do (1)

R95p Mean Bias = DR95p
m −DR95p

o (2)

where Dm is the mean of each model, Do is the mean of the observation dataset, DR95p
m is the mean of

the 95th percentile of each model, and DR95p
o is the mean of the 95th percentile of the observation.

The ability of the CMIP6 models to simulate precipitation trends from one period to the other
was investigated by subtracting precipitation values for 1955–1984 and 1985–2014. The changes were
compared and differences at p < 0.10 were considered significant. The standardized anomaly in each
model was analyzed to determine the trends and to study how each model simulates the wet and dry
season with respect to the observation. The standardized anomaly was calculated using

standardized anomaly =
(
R−R

)
÷ std (3)

where R is the raw time series, R is the mean of the time series, and std is the standard deviation.
Extreme precipitation (R95p) and its return levels were extracted by calculating the 95th percentile

from the daily datasets.

3. Results and Discussion

3.1. Annual Cycle

Figure 2a–c presents the annual cycle of precipitation over the Guinea Coast, Sahel, and West
Africa as a whole. The amount of rainfall in the monsoon season (June–September) is higher in the
Guinea Coast than the Sahel. The individual GCM and ensemble mean captured the high/low rainfall
over the Guinea Coast and Sahel adequately. The observed annual peak during August was greater
than 200, 25, and 100 mm/month in the Guinea Coast, Sahel, and West Africa as a whole, respectively.
This appears to be slightly underestimated by some of the models and the ensemble mean, although

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-daily_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-daily_v2018_doi_download.html
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.htm
https://crudata.uea.ac.uk/cru/data/hrg/
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all models captured the general rainfall pattern. In the Guinea Coast (Figure 2a), the length of the rainy
season was from May to October, with peak rainfall in August; this observation was well captured
by most GCMs, and was also noted by Abatan [29], although the GCMs show some variation in the
intensity of precipitation. The NICAM and MRI models simulated early onset and late cessation.
In comparison, the IPSL model appears to perform well over the Guinea Coast and West Africa with
an exact peak in precipitation during August (Figure 2a,c), while the NICAM model simulates the
pattern of precipitation over the Sahel sub-region better than others (Figure 2b).
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3.2. Mean Climatology

Figure 3 depicts the spatial distribution of daily precipitation from June to September. Most of the
models adequately captured daily precipitation over the region, with rain bands from 3 to 24 mm/day.
There was slight to moderate variation in the amount of precipitation simulated by the models with
respect to the GPCC. The daily rainfall pattern was well simulated by the GCMs and the ensemble mean.
The majority of areas with less than 8 mm/day precipitation, and the areas with most precipitation
(i.e., Guinea high-ground including its sub-region and southern Nigeria) were captured adequately.
Over the southeast and southwest areas of West Africa, daily precipitation was above 20 mm/day, and
this was reproduced by the GCMs and ensemble mean; these findings were also reported by [30–35].
Figure 4 shows the deviation of the ensemble mean and its constituent values from observations.
The ensemble mean, ECMWF, CNRM, HADGEM, and MPI showed moderate underestimation in the
range of 1–5 mm/day precipitation, while IPSL, MRI, and NICAM showed consistent overestimation
of precipitation in the Guinea Coast ranging from 1–6 mm/day. There were moderate overestimations
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in Jos, Nigeria by the CNRM, and IPSL models ranging from 3–4 mm/day, but the MRI and NICAM
models overestimated by more, ranging from 10–12 mm/day. The ensemble mean, followed by the
ECMWF model, outperformed other models, with less deviation from observational data.
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We further evaluated the performance of HighResMIP of CMIP6 using a Taylor diagram, which
quantitatively measures how well the simulated and observed patterns match each other in terms of
spatial correlation coefficient, root-mean-square error (RMSE), and the ratio of standard deviation [36].
As shown in Figure 5, the ensemble mean and its members showed a high spatial correlation coefficient
exceeding 0.8. The RMSEs relative to the observation were below 0.5 for all simulations except
CNRM. The ratios of standard deviations between the simulations and the observation were around
1. In comparison, the ECMWF model had the highest spatial correlation and the lowest RMSEs,
followed by the ensemble mean; MRI seems to perform better in terms of the standard deviation,
which is the closest to the observation, followed by CNRM and the ensemble mean. These results
demonstrate that both the ensemble mean and individual models have a strong performance in
simulating spatial patterns of precipitation over West Africa, and the ensemble mean outperforms its
constituent members overall.
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3.3. Trend Analysis

Climate change is an important aspect of climate study and mean climatology alone may not
be sufficient to reveal if a model can simulate climate change [37]. The precipitation from the
historical periods 1955–1984 and 1985–2014 simulated by the CMIP6 were subtracted to quantify the
percentage of the West African region (grid) that has experienced a significant decrease or increase
in precipitation. Table 2 presents the results of the analysis. Observations show that some grids are
exhibiting decreasing/increasing trends, while some are showing no significant change. The extent of
the trend is not the same between CRU TSv4.03 and UDEL v5.01. CRU TSv4.03 shows that 32% of the
grids had a significant decrease in precipitation, while 1% of the grids had a significant increase and
67% of the region showed no significant precipitation change. UDEL v5.01 shows 18% of the grids had
a significant decrease, while 82% of the region had no significant precipitation change. The uncertainty
in interpolation could cause a variation in the precipitation estimates [38]. In contrast with observation,
ECMWF shows 17% of the grids had precipitation increase, with 23% of the grids showing precipitation
decrease, while 60% of the region showed no significant precipitation change. NICAM had 4% of the
grids showing increasing trends, with 21% of the grids showing decreasing trends, while 75% of the
grids showed no significant change. Among the simulations, NICAM outperformed in simulating
observed decreasing trends among the grids. In this analysis, ensemble mean did not outperform
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individual models, and this could be attributed to the low performance of its members in capturing
the change.

Table 2. The difference in precipitation between 1955–1984 and 1985–2014 presented as a percentage.

Models Positive Negative No Change

CRU 1.0 32.0 67.0

UDEL 0.0 18.0 82.0

ENSEMBLE 23.0 8.0 69.0

ECMWF 17.0 23.0 60.0

CNRM 39.0 2.0 59.0

HADGEM 12.0 8.0 80.0

1PSL 17.0 8.0 75.0

MPI 25.0 10.0 65.0

MRI 45.0 3.0 52.0

NICAM 4.0 21.0 75.0

The ability of GCMs to capture observed trends during the 1950s to 2000s using standardized
precipitation anomaly is presented in Figure 6. As shown by the observations, there was a decreasing
trend from the 1950s to the mid-1980s and then turned to slightly increasing trend afterwards.
Furthermore, the two observation datasets showed wet and dry periods during the 1950s to 1960s and
the 1970s to 1980s, respectively, as also noticed by [39]. Most of the GCMs and the ensemble mean
captured the observed trends as well as wet and dry periods. IPSL outperformed in capturing the
observed trends, in wet and dry periods. The performance of the GCMs depicts their capabilities in
simulating the wet and dry periods, which are regular features of West African precipitation.

3.4. Extreme Precipitation Event

Extreme event analysis is an important aspect of climate change, as many of the regions usually
have excess rainfall that frequently leads to flooding. The performance of the GCMs used to estimate
it will aid the preparation for such events. Figure 7 presents the spatial pattern of extreme events
in the study area. Observations showed more than 60 mm/day precipitation over coastal areas of
Sierra Leone, Liberia, and Nigeria. The remaining part of the Guinea coast had from 30 to 40 mm/day.
In comparison with the observational data, the ensemble mean and its constituent models showed
a similar pattern of extreme precipitation; however, there was consistent underestimation by most
models throughout the Guinea coast, except for the NICAM model, which overestimated precipitation
in most of the region. Figure 8 shows the magnitude of deviation of the GCMs and ensemble mean
from observation in simulating extreme events. The ensemble mean and its constituents showed
moderate positive and negative bias (+6 mm/day and −6 mm/day) over the Sahel sub-region. Over the
Guinea coast, a negative bias with moderate to high magnitude was predominant, varying from −6 to
−30 mm/day for the ensemble mean, and ECMWF, CNRM, HADGEM, IPSL, MPI, and MRI models.
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A deeper understanding of the performance of each CMIP6 model in reproducing the spatial
pattern of extreme precipitation event was performed using the Taylor diagram (Figure 9). As observed
in Figure 9, the majority of CMIP6 models and the ensemble mean showed a spatial correlation
coefficient of 0.4 to 0.7, with the exception of HADGEM. The RMSEs of the CNRM, ECMWF, IPSL,
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MPI, and MRI models were less than 1, while the ratio of standard deviation between the observation
and simulation data was also around 1. The contrast showed that the ensemble mean had the highest
spatial correlation and lowest RMSE. The NICAM model appeared to perform better with regard
the ratio of the standard deviation, having the closest value to the observation. This analysis shows
that the majority of the seven HighResMIP models used can simulate the spatial pattern of extreme
precipitation events over West Africa, and the ensemble mean outperformed any single model.
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3.5. Return Level

The precipitation return level for the 30-year period of 1985–2014 is shown in Figure 10 for the
observation and the GCMs with ensemble mean. The observational data showed return levels of the
extreme events at up to 80 mm/day of precipitation over most of the Guinea Coast and the southernmost
part of the Sahel, with the highest return level over the Guinea high ground. The ensemble mean,
ECMWF, CNRM, HADGEM, IPSL, MPI, and MRI underestimated the return level over most regions,
with the highest overestimation by the NICAM model for the Guinea coast. The MRI and HADGEM
models performed well over the Guinea high ground. The deviation of the GCMs from observations
of the extreme events’ return level based on grids is shown in Table 3. The IPSL model showed that
21% of the grids were underestimated and 77% of grids showed no significant change, while the MRI
and HADGEM models both underestimated 22% of grids, while 78% showed no significant change.
The ensemble mean did not perform well in this analysis because most of the GCMs failed to capture
the extreme events (R95p) return levels.

Table 3. Return level percentage grid change between the observation and GCMs.

GCM Positive Negative No Change

Ensemble 0.0 41.0 59.0

ECMWF 0.0 27.0 73.0

CNRM 0.0 33.0 67.0

HADGEM 0.0 22.0 78.0

IPSL 1.0 21.0 77.0

MPI 0.0 34.0 66.0

MRI 0.0 22.0 78.0

NICAM 45.0 1.0 54.0
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4. Conclusions

In this study, we evaluated the precipitation simulation performance of seven models from the
CMIP6 HighResMIP over the West African region. Several metrics were employed to determine the
performance of the HighResMIP models over the study region. The main objective was to evaluate the
impact of the models’ new high-resolution feature in representing the precipitation characteristics of
the West African region. The evaluation results from the annual cycle showed that the ensemble mean
and its constituent models adequately reproduced the annual precipitation pattern. Most models’
simulations underestimated the magnitude of precipitation, except for the IPSL and NICAM models,
which appeared to overestimate precipitation over the Guinea high ground. Most of the models
simulated August as the peak of precipitation over the two homogenous regions and the whole of
West Africa. The ensemble mean most closely matched the observed annual pattern of precipitation,
and therefore outperformed the individual models. In further analysis, a comparison of the simulated
spatial distribution of precipitation with observational data showed that the ensemble mean and its
members reproduced the pattern of precipitation over most of the rainy areas (Guinea high-ground
and Nigeria’s coastal region). A Taylor diagram was used to examine quantitatively how the model
simulations and observational data matched with each other. While the results showed that the
capacity of individual models cannot be discarded, the ensemble mean outperformed its ensemble
members. The performance of the HighResMIP in simulating reduced precipitation over some grid
areas was also examined. In this aspect, NICAM outperformed other models. The standardized
anomaly was used to determine precipitation trends and the result showed that the wet and dry
periods are well simulated by the majority of the GCMs, while IPSL is the highest performing model
among the ensemble members. The anomaly of R95p was used to plot a Taylor diagram to evaluate
the performance of the HighResMIP GCMs in terms of simulating extreme events. Most of the models
had a relatively low correlation with the observational dataset and a root-mean-square error of less
than 1; in this analysis, the ensemble mean performed better than others. The spatial distribution of
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the extreme events and return level was also investigated, and most of the models underestimated the
extreme events, except the NICAM model. This typical feature from NICAM suggests that the highly
simulated extreme events might be closely related to the high resolution. Although attributing such an
extreme behavior from NICAM goes beyond the scope of this paper, this result provides evidence that
high-resolution GCMs without regional components such as topography, vegetation, or waterbodies
may be biased in providing accurate and regionally resolved climate information. This study was
limited to the seven available HighResMIP models; with the release of more models, there may be
a more robust evaluation in the future. The unavailability of corresponding projection data for the
climate models used precluded the assessment of future projections with respect to precipitation over
West Africa, but this remains a highly relevant task for future studies in the region.
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