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Subseasonal-to-seasonal (S2S) prediction is a highly regarded skill around the world. To improve the S2S forecast skill, an S2S
prediction project and an extensive database have been established. In this study, the European Center for Medium-Range
Weather Forecasts (ECMWF) model hindcast, which participates in the S2S prediction project, is systematically assessed by
focusing on the hindcast quality for the summer accumulated ten-day precipitation at lead times of 0–30 days during 1995–2014 in
eastern China. Additionally, the hindcast error is corrected by utilizing the preceding sea surface temperature (SST). )e metrics
employed to measure the ECMWF hindcast performance indicate that the ECMWF model performance drops as the lead time
increases and exhibits strong interannual differences among the five subregions of eastern China. In addition, the precipitation
forecast skill of the ECMWF hindcast is best at approximately 15 days in some areas of Southeast China; after correcting the
forecast error, the forecast skill is increased to 30 days. At lead times of 0–30 days, regardless of whether the forecast error is
corrected, the root mean square errors are lowest in Northeast China. After correcting the forecast error, the performance of the
ECMWF hindcast shows better improvement in depicting the quantity and temporal and spatial variation of precipitation at lead
times of 0–30 days in eastern China. )e false alarm ratio (FAR), probability of detection (POD), and equitable threat score (ETS)
reveal that the ECMWF model has a preferable performance at forecasting accumulated ten-day precipitation rates of ap-
proximately 20∼50mm and indicates an improved hindcast quality after the forecast error correction. In short, adopting the
preceding SST to correct the summer subseasonal precipitation of the ECMWF hindcast is preferable.

1. Introduction

Traditional weather forecasting is limited to 2 weeks and is
mainly influenced by atmospheric initial conditions [1–3].
Seasonal climate predictability is substantially affected by the
underlying boundary forcing, such as sea surface temper-
ature (SST) and land surface anomalies [4–6]. Subseasonal
forecasting, which fills a gap between traditional medium-
term weather and seasonal climate forecasting, is signifi-
cantly influenced by both atmospheric initial conditions and
boundary forcing [7, 8]. Compared to weather and seasonal
climate forecasting, subseasonal forecasting is considered a

“predictability desert” [9] and is at a relatively early stage of
development [8]. Recently, some studies have shown the
potential sources of subseasonal predictability, such as the state
of El Nino-Southern Oscillation (ENSO) [10], the Madden-
Julian Oscillation (MJO) [11–13], initial soil moisture con-
ditions [14, 15], snow cover [16] and sea-ice conditions [17],
stratosphere-troposphere interactions [18, 19], and tropical-
extratropical teleconnections [20, 21].

Under the background of global warming, extreme
weather events, especially droughts and floods in summer,
are relatively frequent and continuous over China. )ese
extreme weather events not only directly affect the growth
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and yield of crops but also pose threats to people’s lives and
the national economy. Skillful subseasonal forecasting is of
great significance for reducing the losses caused by mete-
orological disasters. )erefore, whether the goal is to fill the
“predictability gap” or to achieve disaster prevention and
mitigation, providing accurate forecasts on a subseasonal
timescale is extremely vital. Dynamic forecasting models
have been used in subseasonal forecasting, and multiple
global ensemble prediction systems have been assessed.
)ese prediction systems presented a higher precipitation
forecast skill in the first week than in the following three
weeks, and the skill dropped with an increase in the lead time
[13, 22, 23]. Additionally, many dynamic forecasting models
derived useful forecast skills of the MJO at lead times of 2-3
weeks and beyond [24–27]. )e statistical forecast method is
another popular tool for subseasonal forecasting. A spa-
tial–temporal projection model was adopted to forecast
10–30 days of low-frequency precipitation, and the results
showed that the forecast skill is approximately 20–25 days in
most of China [28, 29]. In recent years, to improve the
subseasonal-to-seasonal (S2S) forecast skill and understand
this timescale, the World Weather Research Program
(WWRP) and World Climate Research Program (WCRP)
established the S2S prediction research project [9, 30]. )is
project aimed to establish an extensive database, which
currently archives near-real-time forecasts and hindcasts
(reforecasts) up to 60 days from one research institute and
ten operational centers [8]. Currently, the S2S database has
been adopted for research on different subseasonal issues.
)e forecast skill of the boreal summer intraseasonal os-
cillation (BSISO) was assessed using the S2S database, and
the results showed that the forecast skill of the BSISO reaches
up to 10–24.5 days when using the ensemble mean and that
the performance of the European Center for Medium-Range
Weather Forecasts (ECMWF) model is the best [31]. Ad-
ditionally, the hindcast quality of the subseasonal global
precipitation from 11 S2S models was evaluated, which
revealed that the forecast performance of an S2S model is the
highest in the first week and that the ECMWF hindcast
boasts the best forecast capability [32]. Liang and Lin [10]
analyzed the forecast skills of the 2-meter air temperature
(T2m), 500 hPa geopotential height (Z500), and precipita-
tion for the Environment and Climate Change Canada
(ECCC) model. )ey showed that the forecast skills of T2m
and Z500 reach up to 4 weeks (26–32 days), while the
forecast skill of precipitation is limited to 5–11 days in
summer over East Asia. )e capabilities of the ECMWF,
National Centers for Environmental Prediction (NCEP),
and China Meteorological Administration (CMA) models at
forecasting summer subseasonal precipitation in the North
American (NAM), West African (WAM), and Asian (AM)
summer monsoon regions were also explored [33]. More-
over, the hindcasts of 11 S2S models were assessed to in-
vestigate the influence of the MJO on the forecast skill of the
winter T2M over China [34]. According to previous studies,
the 11 S2S models are considered the main tools for pro-
viding forecasts on the S2S timescale. However, the forecast
capability of the ECMWF model was found to be superior
among the 11 S2S models regarding precipitation. In China,

extreme precipitation events are frequent and continuous.
)erefore, investigating the performance of the ECMWF
model at forecasting summer subseasonal precipitation in
China and correcting the forecast error to improve the
forecast performance therein is very meaningful.

As one of the vital forcing sources of the atmospheric
circulation, the SST has a strong memory, and its persistence
plays an important role in climate change. For many years,
the relationship between the preceding SST of the global
ocean and summer precipitation in China has been widely
studied. Fu et al. [35] indicated a high correlation between
the preceding SST, especially from March to May in the
Pacific Ocean, and summer precipitation in the Huaihe
River Basin. Regarding the forcing of the preceding SST, SST
anomalies in the midlatitude North Atlantic and subtropical
southeastern Pacific in spring were found to strongly in-
fluence summer precipitation in Northeast China [36, 37].
Deng et al. [38] revealed that precipitation in the first annual
rainy season from April to June in South China is affected by
the SST ahead of two months in the South China Sea, the
Western Pacific Ocean, and the Arabian Sea. In addition,
studies have shown that the SST forcing over the Indian
Ocean, Pacific Ocean, and Atlantic Ocean in spring can
cause summer precipitation anomalies in China [39, 40].
Wang and Zhang [40] used the distribution of specific
preceding SSTs globally as a signal factor to predict summer
precipitation in China, and the use of this factor effectively
improved the accuracy of the prediction. Hence, the pre-
ceding SST anomaly forcing is a significant indicator of the
precipitation forecasting in China. In this paper, based on
the relationship between the preceding SST and summer
subseasonal precipitation in China, the forecast error of the
ECMWF S2S model will be corrected to enhance the per-
formance of the model.

Section 2 presents the data and methods. In Section 3,
the performance of the ECMWF model at forecasting
summer subseasonal precipitation is assessed, and the
forecast error of the ECMWF model is corrected using the
preceding SSTduring 1995–2014 in eastern China.)e main
summary and discussion are shown in Section 4.

2. Data and Methods

2.1. Data. In this study, the hindcast performance of the
ECMWF S2S model at forecasting summer subseasonal
precipitation in eastern China is evaluated, and the forecast
error is corrected. )e data used for the model evaluation
and error correction are as follows:

(1) Hindcast data at a spatial resolution of 1.5° ×1.5°
from the ECMWF, the Japan Meteorological Agency
(JMA), and the CMA provided by the S2S database.
)is database is archived at ECMWF (http://apps.
ecmwf.int/datasets/data/s2s/) and CMA (http://s2s.
cma.cn/) [8]. )ree hindcast models provide pre-
cipitation estimates, and Table 1 shows their main
features. Because this research mainly studies sum-
mer precipitation, the hindcast covers the period
fromMay to August.)e ECMWFmodel runs for 46
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days starting from May 14th over the period of
1995–2014; the JMA model runs for 33 days starting
fromMay 10th over the period of 1981–2010; and the
CMAmodel runs for 60 days starting fromMay 14th
over the period of 1994–2014. )e common years of
all three hindcasts are 1995–2010. For comparison
purposes, the CMA hindcast takes only the forecast
time of the ECMWF hindcast.

(2) China’s Ground Precipitation 0.5° × 0.5° Gridded
Dataset (V2.0) supplied by the National Meteoro-
logical Information Center of the China Meteoro-
logical Administration covering the time period
from May 1995 to September 2014. To unify the
spatial resolution of the precipitation and observa-
tion data from the three hindcast experiments, a 1.5°
latitude and longitude grid is interpolated to a 0.5°
latitude and longitude grid.

(3) Monthly sea surface temperature data (HadISST)
[41] with a spatial resolution of 1° × 1° covering the
period from April 1995 to June 2014 from the Met
Office Hadley Center. Due to the limitation on at-
mospheric predictability, subseasonal predictions
are not as accurate (to the day or the hour) as weather
forecasts. Combined with previous research
achievements in subseasonal forecasting, the hind-
casts of the S2S models are processed as accumulated
ten-day precipitation forecasts.

2.2. Methods. Many statistical measures, such as the
Pearson correlation coefficient (RR), the anomaly cor-
relation coefficient (ACC), the total error, and the vari-
ance ratio, are commonly used in the forecasting business
to evaluate the forecast performance of a model. In this
paper, six kinds of metrics, namely, the Pearson corre-
lation coefficient, root mean square error (RMSE),
standardized RMSE, false alarm ratio (FAR), probability
of detection (POD), and equitable threat score (ETS), are
utilized to quantitatively evaluate the hindcast experi-
ments’ performance. )e correlation coefficient is used to
evaluate the models’ forecast performance by charac-
terizing the consistency of the temporal or spatial vari-
ation between the hindcast experiment precipitation and
the observed precipitation. In addition, the RMSE is
adopted to reveal the forecast performance of the hindcast
experiments by calculating the error between the hindcast
and observed precipitation. Moreover, for the purpose of
eliminating the geographical effect of precipitation over
eastern China, the standardized RMSE is adopted. )e
formulas of the Pearson correlation coefficient, RMSE,
and standardized RMSE are given as follows:

R �
􏽐

N
i�1 Fi − F( 􏼁 Oi − O( 􏼁

������������

􏽐
N
i�1 Fi − F( 􏼁

2
􏽱 �������������

􏽐
N
i�1 Oi − O( 􏼁

2
􏽱 ,

(1)

RMSE �

��������������

1
N

􏽘

N

i�1
Fi − Oi( 􏼁

2

􏽶
􏽴

, (2)

StandardizedRMSE �

������������������

(1/N) 􏽐
N
i�1 Fi − Oi( 􏼁

2
􏽱

O
, (3)

where F(O) is the precipitation of the S2S hindcast ex-
periment (observation data), i refers to a temporal or
spatial point, and N indicates the number of temporal or
spatial points. F(O) expresses the average value of the
hindcast (observation) data at N discrete points. )e
temporal correlation coefficient (TCC) and spatial corre-
lation coefficient (SCC) are both calculated by (1). A high
TCC (SCC) value indicates that the hindcast and observed
precipitation have significant similarity between their
temporal (spatial) variations, while a low RMSE value
indicates close agreement between the hindcast and ob-
served precipitation quantities.

)e FAR, POD, and ETS values based on a 2× 2 contin-
gency table (a: hindcast≥ threshold and observation≥ thres-
hold events, b: hindcast≥ threshold and observation< threshold
events, c: hindcast< threshold and observation≥ threshold
events, and d: hindcast< threshold and observation< threshold
events) [42] are used to assess the forecast performance of the
accumulated ten-day precipitation from the hindcast experi-
ments in detecting rainfall events. )e FAR� b/(a+b) and
POD� a/(a+ c) indicate the fraction of rainfall events that are
false alarms and correctly detected, respectively. )e
ETS� (a−He)/(a+b+ c−He) measures the overall fraction of
rainfall events that are correctly diagnosed by the hindcast
experiments. He� (a+ c) (a+b)/n, and n represents the total
number of observations. FAR� 0, POD� 1, and ETS� 1 in-
dicate a perfect forecast.

Chen and Lin [43] once proposed a correction method
to improve the forecast performance of summer precip-
itation for the dynamical climate prediction system over
China. )is method uses the correlation between the
ENSO cycle and the model’s systematic biases, where the
model’s systematic biases are divided into three different
categories according to the ENSO cycle: El Niño years, La
Niña years, and normal years. )en, the three categories of
systematic biases are subtracted from the predicted pre-
cipitation to obtain the corrected predictand. Based on the
method developed by Chen and Lin [43], we plan to

Table 1: )e main hindcast (reforecast) feature of ECMWF, JMA, and CMA S2S models [8].

Model Time range Resolution Reforecasts (Rfc) Rfc frequency Rfc period Rfc size Ocean coupled Sea-ice coupled
ECMWF Days 0–46 Tco639/Tco319, L91 On the fly 2/week Past 20 years 11 Yes No
JMA Days 0–33 TL479/TL319, L100 Fixed 3/month 1981–2010 5 No No
CMA Days 0–60 T106, L40 Fixed Daily 1994–2014 4 Yes Yes
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establish a similar error correction scheme. Because the
preceding SST is the signal factor of summer precipitation,
this study attempts to correct the hindcast error by using
the relationship between the preceding SST and the
forecast error for the summer accumulated ten-day pre-
cipitation. )e ECMWF model subseasonal forecast
performance for the accumulated ten-day precipitation
from June to August is mainly studied in this paper.
Consequently, to correct the hindcast error more effec-
tively, the monthly SST is selected to correct the monthly
accumulated ten-day precipitation estimates. )e
ECMWF S2S model should forecast precipitation starting
from May to obtain the subseasonal estimate of the ac-
cumulated ten-day precipitation from June to August.
)erefore, the monthly SST, which is one month ahead of
the precipitation estimate, cannot be obtained when the
SST is used to correct the hindcast error. In this case,
considering the influence of the preceding global SST on
summer precipitation and retaining the memory of SST
preferably, this study mainly selects SST, which is two
months ahead of the precipitation estimate, as the signal
factor.

)e error correction scheme of this study is given as
follows. First, select the regions where the ECMWF
hindcast precipitation should be corrected. )en, calculate
the monthly RMSE between the ensemble mean and ob-
served summer accumulated ten-day precipitation for the
ECMWF hindcast in these regions. Second, to learn the
relationship between the preceding SST and forecast error,
calculate the TCC between the monthly RMSE, which is
attained from the previous step, and the monthly SST,
which is two months ahead of the RMSE (for example,
calculate the TCC between the precipitation RMSE of June
and the monthly SSTof April). )ird, select the largest area
where the TCC exceeds the 95% confidence level
(TCC> 0.44 or TCC < −0.44) as a key SST region. )e SST
of this key region is calculated into a regional average and
then into a standardized SST, where the standardized SST is
calculated as follows:

standardized SST �
Xt − X
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where X is the monthly SST, t refers to each year from 1995
to 2014, T indicates the number of years from 1995 to 2014,
and X is the mean value of X among the T years. )e SST is
standardized to have a mean of zero and a standard de-
viation of one, where the purpose of standardization is to
highlight SST anomalies. Next, according to the stan-
dardized SST, the 20 years from 1995 to 2014 are divided
into three categories. )at is, the years in which the
standardized SST is more than 1 are defined as k � 1; the
years in which the standardized SST is less than −1 are
defined as k� 2; and the years in which the standardized
SST is more than −1 and less than 1 are defined as k � 3.
Finally, the average error between the ensemble mean and
observed summer accumulated ten-day precipitation for
the ECMWF hindcast is calculated when k � 1, k � 2, and
k� 3. )e formula is given as follows:
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F
∗
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where F(O) is the precipitation of the ECMWF hindcast
(observation), j refers to the hindcast point, and Ek indicates
the average error between the hindcast and observed pre-
cipitation when k� 1, k� 2, and k� 3. In (6), F∗j,k and Fj,k are
the corrected and uncorrected ECMWF hindcast precipi-
tation, respectively.

3. Results and Discussion

3.1. ECMWF S2S Hindcast Performance for Summer Sub-
seasonal Precipitation over Eastern China. In this section,
the summer subseasonal precipitation hindcast quality of
the ECMWF S2S model is evaluated for eastern China.
Figure 1 exhibits the spatial distribution of the TCC be-
tween the hindcast and observed summer subseasonal
precipitation for the ECMWF, JMA, and CMA models
during 1995–2010. Obviously, the TCC values drop with an
increase in the lead time, which means that the forecast
performances of the models weaken as the lead time in-
creases. When the lead times are 15–20 days, the TCC is less
than 0 over most of western China, which indicates that the
model forfeits its forecast performance in these regions. In
addition, the useful forecast skills of the models are con-
sidered as the TCC exceeds the 95% confidence level; the
threshold values of the useful forecast skills for the
ECMWF and CMAmodels are both 0.40, and the threshold
value for the JMA model is 0.67. Figure 1 shows that the
ECMWF hindcast achieves a useful forecast skill for the
summer accumulated ten-day precipitation over most of
China at a lead time of approximately 5 days and tends to
exhibit the best performance among the three models in
China (Figures 1(a)–1(e)). Additionally, the ECMWF
model has the best forecast performance in Southeast
China, except for the Tibetan Plateau, and the useful
forecast skill up to 15 days in some areas of this region. For
the JMA hindcast quality, because the sample size of the
JMA dataset is small, although the TCC values of the JMA
model are high, there are few areas in which the TCC values
can exceed the 95% confidence level (Figures 1(f )–1(j)).
)e CMA model shows the worst performance among the
three models (Figures 1(k)–1(o)). Figures 1(c)–1(e) show
that the performance of the ECMWF hindcast experiment
is regionally powerful in eastern China at lead times of
10–20 days. )at is, the ECMWF hindcast has a compar-
atively high correlation score in Southeast China, North
China, and the eastern half of Northeast China and a
relatively low score in the Huaihe River and the western
part of Northeast China. Consequently, this paper mainly
analyzes the forecast performance of summer subseasonal
precipitation for the ECMWF S2S hindcast experiment in
eastern China and establishes an error correction scheme to
enhance the model’s performance.
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According to the above characteristics, the region east of
107°E in China can be divided into five subregions. Figure 2
shows these five subregions: Southeast China (Reg1,
18°N–30°N, 107°E–125°E), the Huaihe River Basin (Reg2,
30°N–37°N, 107°E–125°E), North China (Reg3, 37°N–43°N,
107°E–125°E), the western half of Northeast China (Reg4,
43°N–53.5°N, 107°E–125°E), and the eastern half of
Northeast China (Reg5, 40°N–53.5°N, 125°E–135°E).

When the performance of the ECMWF hindcast is
compared to the performance of the JMA and CMA

hindcasts, the lead times are 0–20 days because the JMA
hindcast time range is 0–33 days and the hindcast is pro-
cessed as the accumulated ten-day precipitation in the fu-
ture. Hence, when the performance of the ECMWF hindcast
is analyzed separately, increased lead times up to 30 days are
allowed. To reveal the interannual variation of the ECMWF
S2S hindcast performance, the variations in the TCC be-
tween the ECMWF ensemble mean and observed summer
accumulated ten-day precipitation with time in the five
subregions of eastern China (Reg1–Reg5) at the different
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Figure 1: )e multiyear average (1995–2010) of the TCC between the ensemble mean and observed summer accumulated ten-day
precipitation for ECMWF (a–e), JMA (f–j), and CMA (k–o) S2S hindcast experiments at the lead times of 0, 5, 10, 15, and 20 days in China.
)e dots represent TCC exceeding 95% confidence level. )e lower right part of the figure is an administrative zoning map of the South
China Sea.
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forecast lead times are shown in Figure 3. )e TCC values of
the ECMWF S2S model all have strong interannual differ-
ences in the five subregions. )is means that the perfor-
mance of the ECMWF hindcast is comparatively superior in
some years, while in other years, the performance is rela-
tively weak. For example, in Southeast China (Reg1), the
TCC values exceed 0.3 at a lead time of 20 days in 2003, 2007,
2010, and 2013; however, the TCC values are lower than 0.3
at a lead time of 6 days in 1997, 2002, and 2006 (Figure 3(a)).
In addition, the years in which the ECMWF hindcast dis-
plays a relatively superior performance are different among
the five subregions.

3.2. Forecast Error Correction of the ECMWF Hindcast.
After evaluating the detailed features of the ECMWF
hindcast performance in the five subregions of eastern
China, it is obvious that the hindcast performance of the
ECMWF model has considerable deficiencies and should be
further enhanced. Accordingly, correcting the forecast error
of the ECMWF hindcast is crucial. )e error correction
scheme employed for this purpose is shown in Section 2.2.

Based on the first and second steps of the proposed error
correction scheme, the TCC between the monthly precipi-
tation RMSE and monthly SST at lead times of 0, 5, and 10
days in Southeast China (Reg1) is given in Figure 4, and the
SST is two months ahead of the RMSE. )is figure reveals a
high correlation between the monthly RMSE and the two
preceding months of SST. )e spatial distributions of the
TCC in Reg1 at the other lead times and those in Reg2–Reg5
at the lead times of 0–30 days are not given. It is evident that
the high-correlation areas (TCC exceeding the 95% confi-
dence level) are different regardless of which variable (the
lead time, subregion, or month) is changed. For example,
Figure 4(a) shows that there is a significant positive cor-
relation (TCC> 0.44) between the June RMSE of the ac-
cumulated ten-day precipitation in Southeast China (Reg1)

and the April SST in the eastern Pacific Ocean. )is result
indicates that the June RMSE of precipitation is high in
Southeast China (Reg1) when the April SST is abnormally
warm in the eastern Pacific Ocean. )is high correlation
reveals a strong interaction between the monthly RMSE of
precipitation and the two preceding months of SST. Chen
and Lin [43] utilized the correlation between the ENSO cycle
and their studied model’s systematic biases to correct the
forecast error. Consequently, according to the high corre-
lation between the precipitation RMSE and two preceding
months of SST, the forecast error for the summer accu-
mulated ten-day precipitation can be corrected by the
preceding SST.)en, the largest area where the TCC exceeds
the 95% confidence level is selected as a key region of the
preceding SST to correct forecast error; the black rectangles
in Figure 4 represent the key regions. To correct the forecast
error effectively, the precipitation RMSE should be classified.
Because the preceding SST anomalies of key regions can
cause precipitation RMSE anomalies, the preceding SST
anomalies are classified first to achieve the classification of
the precipitation RMSE. )e preceding SST is calculated by
(4) to obtain the standardized SST and reveal the preceding
SSTanomaly. In this paper, the standardized SST is classified
into three categories, which are described in Section 2.2.
Based on these three standardized SST categories, the av-
erage error between the hindcasts and observations for each
category is calculated; the formula is shown in (5). Finally,
the average errors of the three categories are subtracted from
the ECMWF hindcast to obtain the corrected hindcast
precipitation.

3.3. Summer Subseasonal Precipitation Forecast Performance
of the Error-Corrected ECMWF S2S Model Experiment in
Eastern China. Based on the abovementioned error cor-
rection scheme, the ensemble mean summer subseasonal
precipitation estimated from the ECMWF S2S hindcast
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Figure 2:)e region east of 107°E in China is divided into five subregions which are denoted by the black dashed rectangles. )e lower right
part of the figure is an administrative zoning map of the South China Sea.
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experiment at lead times of 0–30 days in the five subregions
of eastern China was corrected. Consistent with the as-
sessment of the performance of the three S2S hindcast ex-
periments, the spatial distribution of the TCC is adopted to
evaluate the summer subseasonal precipitation forecast
performance of the error-corrected ECMWF hindcast. Be-
cause Figure 1 shows the TCC of the ECMWF hindcast only

at lead times of 0–20 days, to compare the performance of
the ECMWF S2S hindcasts with and without error cor-
rections at lead times of 0–30 days in eastern China, Figure 5
displays not only the TCC of the corrected ECMWF S2S
hindcast at those lead times in eastern China but also the
TCC of the uncorrected ECMWF. )e TCC values between
the ensemble mean and observed precipitation for the
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Figure 3: Interannual variation (1995–2014) of the TCC between the ensemble mean and observed summer accumulated ten-day pre-
cipitation for ECMWF S2S hindcast experiment at the lead times of 0–30 days in five subregions (a-e) of eastern China. (a) Reg1, (b) Reg2,
(c) Reg3, (d) Reg4, and (e) Reg5.
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ECMWF hindcast are similar to the TCC values between the
corrected and observed precipitation for the ECMWF
hindcast at lead times of 0–5 days in eastern China. )is
result reveals that the performance of the error-corrected
ECMWF hindcast is only slightly better than that of the
uncorrected hindcast at lead times of 0–5 days, whichmay be
because the performance of the uncorrected ECMWF
hindcast experiment is excellent at lead times of 0–5 days.
Before the error correction, there is a negative correlation
between the ensemble mean and observed summer accu-
mulated ten-day precipitation for the ECMWF S2S hindcast
experiment at lead times of 10–30 days in some regions of
eastern China. However, the negative TCC values are in-
creased to 0.1-0.2 after correcting the forecast error. In
Southeast China (Reg1), the TCC regions exceeding the 95%
confidence level are expanded after the error correction at
lead times of 10–30 days. In addition, the useful forecast skill
of the ECMWF hindcast increases from 15 days to 30 days
after correcting the forecast error in some areas of Southeast
China (Reg1). After correcting the forecast error at lead
times of 10–30 days, it is obvious that the hindcast per-
formance of the ECMWF model is significantly enhanced,
and most regions show a correlation score of approximately
0.2-0.3.

)e RMSE is a measure of the ECMWF hindcast ac-
curacy that reveals forecast deficiencies that the TCC does
not indicate. )e spatial distributions of the RMSE for the

ECMWF hindcasts with and without error corrections
obtained by comparing the summer accumulated ten-day
precipitation from the observation data at different lead
times over the period of 1995–2014 in eastern China is
exhibited in Figure 6. It is obvious that the RMSE values
gradually increase with increasing lead time, especially in
Southeast China (Reg1). In addition, the ECMWF hind-
casts with and without error corrections show significantly
similar spatial distributions of the RMSE.)e RMSE values
decrease from southeast to northwest in eastern China; this
pattern may arise because the forecast error of the ECMWF
hindcast is proportional to the magnitude of the precip-
itation rate [44, 45]. Comparing the RMSE for the ECMWF
hindcast experiments with and without error corrections,
it can be found that the RMSE values decrease obviously
after correcting the ECMWF hindcast error. )is result
indicates that the performance of the ECMWF hindcast is
improved after correcting for the forecast error. Overall,
according to the spatial distributions of the TCC and
RMSE, the error-corrected ECMWF hindcast exhibits
higher agreement with the observed summer accumulated
ten-day precipitation than the ECMWF hindcast without
an error correction with regard to the quantity and tem-
poral variation of precipitation over eastern China. )is
result reveals that adopting the preceding SST to correct
the summer subseasonal precipitation for the ECMWF
hindcast is feasible.
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Figure 4: )e spatial distribution of TCC (1995–2014) between southeast China (Reg1) monthly RMSE and monthly SST which is two
months ahead of RMSE at the lead times of 0, 5, and 10 days. (a, d, g))e TCC between the RMSE of Jun and the SSTof Apr (b, e, h))e TCC
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To reveal the difference in the interannual variation
performance between the ECMWF hindcasts with and
without error corrections, the interannual variations
(1995–2014) of the TCC between the error-corrected and
observed precipitation for the ECMWF hindcast at lead
times of 0–30 days in the five subregions of eastern China are
shown in Figure 7. Comparing Figures 3 and 7, it is not
difficult to find that the performance of the ECMWF
hindcast is improved after correcting the forecast error.
However, the performance of the error-corrected ECMWF

hindcast also has a strong interannual difference. )e TCC
values of the ECMWF hindcasts without an error correction
are low in some years, and the TCC values are still relatively
low in those years after correcting the forecast error.
Conversely, the years with high TCC values have higher
TCC values after correcting the error. Although the TCC
values are enhanced in most years at lead times of 0–30 days
over the five subregions, the correlation scores are similar for
the ECMWF hindcasts with and without error corrections in
some years. For example, the TCC value is similar for the
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Figure 5: )e multiyear average (1995–2014) of the TCC between the ensemble mean and observed summer accumulated ten-day
precipitation for error-uncorrected (a–d and i–k) and error-corrected (e–h and l–n) ECMWF S2S hindcast experiment with lead times of 0,
5, 10, 15, 20, 25, and 30 days in the eastern China.)e dots represent TCC exceeding 95% confidence level. )e lower right part of the figure
is an administrative zoning map of the South China Sea.
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ECMWF hindcasts with and without error corrections in
2009 over the western part of Northeast China (Reg4).

Figure 8 shows that the TCC between the ECMWF
hindcast and the observed summer accumulated ten-day
precipitation with and without error corrections changes
with the lead time in the five subregions of eastern China
during 1995–2014. )is figure reveals that the forecast
performance of both ECMWF hindcasts (with and without
error corrections) drops with an increase in the lead time in
each subregion. Comparing the variation curves of the TCC
values for the ECMWF hindcasts with and without error
corrections, we discover similar change trends and that the
TCC values for the error-corrected hindcasts are higher than

those for the hindcasts without error corrections at lead
times of 0–30 days. Moreover, after the hindcast precipi-
tation is corrected, the TCC values increase more distinctly
as the lead time increases. Although the useful forecast skill
(TCC∼0.4) of the error-corrected hindcast only increases by
1-2 days compared to the uncorrected hindcast and is
limited to 8 days in every subregion (Figure 8), the forecast
skill increases by approximately 15 days in some parts of
Southeast China (Reg1) (Figure 5). In addition, the TCC
values of the uncorrected ECMWF hindcast are less than 0.1
at lead times of 15–30 days in the Huaihe River (Reg2) and
Northeast China (Reg4 and Reg5), while the TCC can ap-
proach a relatively high value of 0.2 after correcting the
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Figure 6: As in Figure 5, but for RMSE.
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forecast error. )e forecast skill with TCC values of 0.15∼0.2
is enhanced (0.25∼0.3) in Southeast China (Reg1) at lead
times of 20–30 days, while the skill increases least signifi-
cantly in North China (Reg3) after the forecast error
correction.

)e changes in the forecast performance of the uncor-
rected and corrected ECMWF hindcasts with the lead time

in depicting the quantity of precipitation are shown in
Figure 9. From Figure 9, the standardized RMSE values
between the ensemble mean and observed summer accu-
mulated ten-day precipitation for the ECMWF S2S hindcasts
decrease to a certain degree after correcting the hindcast
error. )is means that the performance of the ECMWF
hindcast is improved after correcting the forecast error.
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Figure 8: )e TCC between the ensemble mean and observed summer accumulated ten-day precipitation for error-uncorrected and error-
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Figure 9: Continued.
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Additionally, Figure 9 exhibits significantly less forecast
error in the eastern part of Northeast China (Reg5) than in
the other four subregions. )e standardized RMSE values
exhibit the greatest decrease in North China (Reg3) and the
smallest decrease in the eastern part of Northeast China
(Reg5) after correcting the forecast error. In addition, the
change trend of the standardized RMSE values for the
uncorrected ECMWF hindcast is slightly consistent with
that for the corrected ECMWF hindcast at lead times of 0–30
days.

)e performance of the ECMWF hindcasts with and
without error corrections has been evaluated by describing
the agreement between the hindcasts and observations with
regard to the temporal variation and quantity of precipi-
tation. Figure 10 exhibits the SCC between the ensemble
mean and observed summer accumulated ten-day precipi-
tation for the uncorrected and corrected ECMWF S2S
hindcasts. )is figure shows the agreement between the
hindcasts and observations regarding the spatial variation of
precipitation at lead times of 0–30 days. )e SCC values
increase after correcting the forecast error, which indicates
that the performance of the ECMWF hindcast is pro-
nouncedly improved in depicting the agreement in the
spatial variation between the hindcasts and observations.
Although the SCC values exhibit greater increases in
Southeast China (Reg1) and the Huaihe River (Reg2), rel-
atively high SCC values are observed in North China (Reg3)
after correcting the forecast error at lead times of 0–30 days.

To evaluate the performance of the uncorrected and
corrected ECMWF hindcasts for different precipitation
rates, Figure 11 shows the results of the FAR, POD, and ETS
with different accumulated ten-day precipitation thresholds
for the uncorrected and corrected hindcasts in the five
subregions of eastern China during 1995–2014. According to
the different precipitation rates of the five subregions, the
ranges of the accumulated ten-day precipitation threshold
are different among these subregions. )e precipitation
thresholds of Southeast China (Reg1) are 10, 20, 50, 100, and

150mm, while the thresholds of the Huaihe River (Reg2),
North China (Reg3), and the eastern half of Northeast China
(Reg5) are all 10, 20, 50, and 100mm, and the thresholds of
the western half of Northeast China (Reg4) are 10, 20, and
50mm. For the FAR (Figures 11(a)–11(e)), the scores in-
crease with increasing lead time, especially when the pre-
cipitation threshold exceeds 20mm. In addition, the
uncorrected ECMWF hindcast results in increasing FAR
scores with an increasing threshold, and the forecast skill is
the worst for thresholds greater than 20∼50mm. Comparing
the FAR scores of the five subregions under the same
threshold, the scores are the lowest in Southeast China
(Reg1), so the skill of the ECMWF hindcast is the best in this
subregion. After correcting the forecast error, the FAR
scores decrease, and the decrease is more obvious for
thresholds greater than 20mm. For the POD (Figures 11(f )–
11(j)), the scores gradually decrease with increasing lead
time, especially when the precipitation threshold exceeds
20mm. )e forecast skill of the ECMWF hindcast decreases
with increasing lead time. Additionally, the hindcast results
in decreasing POD scores with an increasing threshold, and
the scores are the worst for thresholds greater than
20∼50mm. Consistent with the analysis of the FAR score,
the POD scores also show a better hindcast skill in Southeast
China (Reg1) than in the other subregions. )e POD scores
are enhanced after correcting the forecast error, and the
increment is more obvious for thresholds greater than
20mm. However, there are also some instances in which the
POD scores decrease after correction; for example, the scores
for the corrected hindcast are lower than those for the
uncorrected hindcast in North China (Reg3) when the
thresholds are 20 and 50mm. For the ETS (Figures 11(k)–
11(o)), the forecast skill of the hindcast decreases as the lead
time increases. )e skill of the uncorrected hindcast is low
for low precipitation thresholds (thresholds< 20mm) in
each of the five subregions, and the skill is also low for high
thresholds (thresholds> 50mm) in Southeast China (Reg1)
and North China (Reg3). In addition, the ETS scores reveal
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Figure 9: As in Figure 8, but for standardized RMSE. (a) Reg1, (b) Reg2, (c) Reg3, (d) Reg4, and (e) Reg5.
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Figure 10: As in Figure 8, but for SCC. (a) Reg1, (b) Reg2, (c) Reg3, (d) Reg4, and (e) Reg5.
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Figure 11: Continued.
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Figure 11: Continued.
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Figure 11: Continued.
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Figure 11: Continued.
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that the best forecast skill corresponds to Southeast China
(Reg1). Comparing the ETS scores of the uncorrected and
corrected hindcasts, the scores of the corrected hindcast are
obviously higher than those of the uncorrected hindcast, and
the forecast skill of the ECMWF hindcast is enhanced after
the error correction. Combining the three scores of the FAR,
POD, and ETS reveals that the ECMWF hindcast tends to
have a higher forecast skill for precipitation rates of ap-
proximately 20∼50mm over eastern China.

4. Conclusions

In this study, the ECMWF model hindcast, which partici-
pates in the S2S prediction project, is assessed. )e focus is
placed on the performance of the model in forecasting
summer subseasonal precipitation at lead times of 0–30 days
over the period of 1995–2014 in eastern China, and the
hindcast error is corrected to improve the capability of the
ECMWF hindcast.

)e performance of the ECMWF hindcast is relatively
superior among the JMA, CMA, and ECMWF S2S
models. )e ECMWF hindcast shows a higher temporal
correlation at lead times of 0–5 days, and its precipitation
forecasting quality decreases gradually with an increas-
ing lead time. )e agreement between the ECMWF
hindcast and observed summer accumulated ten-day
precipitation with regard to the temporal variation of
precipitation reveals that the performance of the
ECMWF hindcast is regionally powerful. )e highest
temporal correlation is always reflected in Southeast
China (Reg1), and the useful forecast skill of the hindcast

is approximately 15 days in some areas of this subregion.
In addition, the performance of the ECMWF hindcast has
strong interannual differences among the five subregions
of eastern China. )e TCC values indicate that although
the performance of the ECMWF model is relatively su-
perior among the three S2S models, the forecast quality
has considerable deficiencies and should be further
enhanced.

)is paper adopts the correlation between the monthly
RMSE of precipitation and the two preceding months of
SST to correct the forecast error and improve the per-
formance of the ECMWF model. After correcting the
forecast error, the agreement in the temporal variation
between the ECMWF hindcast and the observed summer
accumulated ten-day precipitation is enhanced slightly at
lead times of 0–5 days and significantly at lead times of
10–30. Besides, the forecast skill of the ECMWF hindcast is
still the best in Southeast China (Reg1), and the useful skill
is increased to approximately 30 days in some areas of this
subregion. )e spatial distribution of the RMSE reveals
that regardless of whether the forecast error is corrected,
the RMSE values gradually increase with increasing lead
time, especially in Southeast China (Reg1), and the RMSE
values decrease from southeast to northwest in eastern
China. After correcting the forecast error, the forecast
error decreases significantly, which means that the per-
formance of the ECMWF hindcast is improved. )e
agreement between the hindcasts and observations re-
garding the temporal variation and quantity of precipi-
tation is improved significantly after correcting the
forecast error, which means that adopting the preceding
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Figure 11:)e FAR, POD, and ETS in (a, f, and k). Reg1; (b, g, and l). Reg2; (c, h, andm). Reg3; (d, i, and n). Reg4; (e, j, and o). Reg5 of eastern
China from error-uncorrected and error-corrected ECMWF S2S hindcast experiment for rainy events exceeding 10, 20, 50, 100, and 150mm
over ten days at the lead times of 0–30 days, and the period is 1995–2014. Purple, blue, green, orange, and red lines represent the results of error-
uncorrected ECMWF hindcast for rainy events exceeding 10, 20, 50, 100, and 150mm over ten days. Purple, blue, green, orange, and red dashed
lines indicate the results of error-corrected ECMWF hindcast for rainy events exceeding 10, 20, 50, 100, and 150mm over ten days.

18 Advances in Meteorology



SST to correct the precipitation error can effectively im-
prove the performance of the ECMWF hindcast. Com-
paring the interannual variations of the TCC between the
hindcasts and observed precipitation for the uncorrected
and corrected models, it is not difficult to find that the
performance of the ECMWF hindcast has a strong in-
terannual difference regardless of whether the forecast
error is corrected. )e performance of the error-corrected
ECMWF hindcast is improved among the five subregions
in most years at lead times of 0–30 days; the useful forecast
skill can increase to as high as 30 days in some years. After
correcting the forecast error, the useful skill of the
ECMWF hindcast increases by 1-2 days in every subregion
but increases by 15 days in some areas of Southeast China
(Reg1), and the TCC values increase more distinctly
(approximately 0.1) as the lead time increases. In addition,
the forecast error exhibits the greatest decrease in North
China (Reg3), and a significantly lower forecast error
appears in the eastern part of Northeast China (Reg5) after
the correction. Additionally, the performance of the
ECMWF hindcast is pronouncedly improved in depicting
the agreement in the spatial variation between the hind-
casts and observed precipitation after correcting the
forecast error. )e SCC increases the most in Southeast
China (Reg1) and the Huaihe River (Reg2), while the SCC
is higher in North China (Reg3) than in the other sub-
regions. )e FAR, POD, and ETS scores indicate that the
hindcast has a preferable forecast skill for accumulated
ten-day precipitation rates of approximately 20∼50mm.
After an error correction, most FAR scores are reduced,
and most POD and ETS scores are increased in eastern
China.

In summary, adopting the correlation between the
monthly RMSE of precipitation and the two precedingmonths
of SSTcorrects the ECMWF hindcast error; consequently, the
precipitation forecast skill of the ECMWF S2S hindcast is
improved significantly, and the forecast performance is the
best in Southeast China (Reg1). Based on the analysis of the
ECMWF hindcast performance in this study, we plan to
determine the reasons why the capability of the ECMWF
hindcasts exhibits strong interannual differences and then
establish a scheme to eliminate these interannual differences.
)is will be an additional approach to improve the precipi-
tation forecast performance of ECMWFhindcast experiments.
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datasets/data/s2s/ and http://s2s.cma.cn/. )e Chinese daily
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