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Abstract: An efficient regional hybrid ensemble-variational (EnVar) data assimilation method using
the global-ensemble-model-augmented error covariance is proposed and preliminarily tested in this
study. This method uses the global ensemble error covariance as the complementary low-resolution
regional ensemble error covariance. The high-resolution dynamic ensemble mean is used as the
first guess in hybrid EnVar and then re-centered to the updated high-resolution dynamic ensemble
perturbations after minimization analysis. In this study, the proposed method is implemented into the
Weather Research and Forecasting Model’s (WRF) data assimilation system coupled with the ensemble
transform Kalman filter (ETKF) and preliminarily tested for numerical weather prediction during
the Mei-Yu season over eastern China. It is found that the experiment containing fewer regional
dynamic ensemble members but augmented with global ensemble error covariance obtains similar
results to the experiment containing many more regional dynamic ensemble members. However, the
former experiment only takes up one third of the latter experiment’s computational cost. The method
proposed in this study also outperforms the 3DVar, hybrid EnVar using the pure global ensemble
error covariance, as well as the hybrid EnVar using regional ETKF ensemble with a smaller size.
The method proposed in this paper effectively combines the contributions of the ensemble error
covariance from both the global and the regional models to produce better initial conditions for the
regional WRF data assimilation system.

Keywords: hybrid EnVar; background error covariance; global-ensemble-model-augmented error
covariance; WRFDA

1. Introduction

Data assimilation aims to optimally combine the model background with observations, then
produce initial conditions for numeric weather forecast (NWP). Modern data assimilation includes
variational and ensemble methods [1]. The variational method updates the first guess using the static
background error covariance, which is full rank but usually derived with assumptions of isotropy
and homogeneity in space and time [2–4]. The ensemble method with flow-dependent background
error covariance is fully nonlinear because of the cross-variable covariance but suffers the sample error
problem. Thus, a hybrid ensemble-variational (EnVar) method that combines two kinds of background
error covariance in a variational framework has been proven to be significantly beneficial to NWP [5,6].
On one hand, there have been many studies of different hybrid schemes in global NWP [7–9]. On the

Atmosphere 2020, 11, 365; doi:10.3390/atmos11040365 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://www.mdpi.com/2073-4433/11/4/365?type=check_update&version=1
http://dx.doi.org/10.3390/atmos11040365
http://www.mdpi.com/journal/atmosphere


Atmosphere 2020, 11, 365 2 of 19

other hand, it has been also demonstrated that the hybrid EnVar method is suitable for regional
models [10–13].

The ensemble error covariance is usually severely rank deficient due to the computational
limitations that cause a much smaller ensemble size than model state vector [14–17]. To compensate
for the rank deficiency problem, several studies focused on ensemble sampling methods that increase
ensemble size without significantly increasing the computational cost have been conducted. It was found
that the time-expanded or time-lagged sampling methods can be used to introduce flow-dependent
error covariance by reducing the number of integration runs needed to produce ensembles with the
desired sample size [18–21]. Kretschmer et al. (2015) improved the performance of an ensemble Kalman
filter by adding a collection of ‘climatological’ perturbations to the forecast ensemble mean to increase
the size of the ensemble at analysis time [22]. Some researchers also replaced the high-resolution
ensemble with a low-resolution one to reduce the computational cost. For example, Gao and Xue
(2008) proposed EnKF with a single high-resolution forecast and a low-resolution ensemble [23], and
then the dual-resolution ensemble technique was extended to the hybrid EnVar framework [13,24].
The background error covariance estimated from the low-resolution ensemble is introduced to update
the deterministic high-resolution forecast, which is used as the first guess. The ensemble analysis
mean is then replaced by the high-resolution analysis after the ensemble perturbations are updated
separately. Wu et al. (2017) applied the global ensemble forecasts from the EnKF component of the
National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) in a regional
hybrid EnVar data assimilation system [25]. They found that the global ensemble error covariance has
the dynamical consistency to be used in the regional model. Thus, the regional system completely
avoids running ensemble forecasts itself and improved the forecast compared to the pure 3DVar.
A similar method was later used in the Regional Deterministic Prediction System in Environment
Canada [8]. However, although evolving the ensemble at a lower resolution significantly reduces
the computational cost, it may decrease the accuracy of the analysis. In addition, most ensemble
data assimilation develops and advances algorithms for ensembles with all members having the
same resolution and using the same model. Rainwater and Hunt (2013) presented a mixed-resolution
local ensemble transform Kalman filter which takes its background error covariance from a linear
combination of a low-resolution ensemble and a high-resolution ensemble without the computational
cost of running the entire ensemble at a high resolution [26], which was similar to the hybrid EnVar
method except that they used the sample covariance of the mixed-resolution ensembles instead of
using a static climatological background error covariance.

Inspired by Rainwater and Hunt (2013) [26], Kretschmer et al. (2015) [22], and
Wu et al. (2017) [25], an efficient regional hybrid EnVar data assimilation method using the
global-ensemble-model-augmented error covariance was proposed and preliminarily tested in this
study. This work used the global ensemble error covariance as the low-resolution one, extending
Rainwater and Hunt (2013) [26] from the EnKF framework to the hybrid EnVar framework. Similarly
to Kretschmer et al. (2015) [22], our work used the high-resolution dynamic ensemble forecast mean as
the first guess in the hybrid EnVar data assimilation and then re-centered the analysis to the updated
high-resolution dynamic ensemble perturbations. In addition, differently from the work of Kretschmer
et al. (2015) [22] that used the climatological perturbations derived from the static background error
covariance to augment the regional dynamic ensemble error covariance in an EnKF framework, this
study applied the global EnKF ensemble error covariance as the augment, which has been proven to
have a similar dynamic consistence to the regional ensemble error covariance [25]. Furthermore, this
study is mainly focused on the hybrid EnVar framework. While the global ensemble used in their
study has a resolution of approximately 36 km, our regional analysis resolution was 12 km. The global
low-resolution part of the mixed-resolution method was functionally similar to the dual-resolution
hybrid EnVar data assimilation.

The mixed-resolution data assimilation can be used to combine the information in a small,
high-resolution ensemble with a large, low-resolution global ensemble, which can produce a better
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analysis than either resolution produces by itself [26]. In this study, besides the regional ensembles, the
flow dependent error covariance contributed from the global ensembles will be applied to help produce
better initial conditions for the regional data assimilation system, with the assumption that they can
provide useful information to improve the large-scale components of the regional background error
covariance. Meanwhile, both the ensemble error covariance and the ensemble mean from the regional
ensemble will be used in the regional model to help define the smaller-scale part of the background
error covariance.

In this study, we implemented the proposed method into the Weather Research and Forecasting
Model’s Data Assimilation (WRFDA) system coupled with the ensemble transform Kalman filter
(ETKF) scheme and tested it for numerical weather prediction over eastern China using the regional
model Weather Research and Forecasting Model (WRF). The rest of the paper is organized as follows.
In Section 2, the methodology of the proposed method and the global ensemble used in this study are
introduced. Section 3 details the experimental set-up and design. Section 4 presents the results of the
experiments. Finally, the conclusion and discussion are provided in Section 5.

2. Methodology

2.1. The Hybrid EnVar and ETKF Schemes

The formula of the hybrid EnVar built in WRFDA is written as the following [10]:

J(δx1,α) =
1
β
·
1
2
δxT

1 B−1δx1 +
1

1− β
·
1
2
αTA−1α+

1
2
(d−Hδx)TR−1(d−Hδx) (1)

where δx1 is the analysis increment associated with the static background error covariance. The second
term is associated with the ensemble background error covariance. α is the ensemble extended control
variable. A defines the spatial covariance of α. d = yo

−Hxb is the innovation. It is noted that the
analysis increment of the hybrid EnVar is the sum of two terms, defined as

δx = δx1 +
N∑

n=1

(
αn ◦ xe

n,b

)
(2)

where the second term is the analysis increment associated with the flow-dependent background error
covariance and the symbol ◦ is an element-wise multiplication or Schur product. N is the ensemble
size. xe

n,b is the nth ensemble perturbation normalized by
√

N − 1:

xe
n,b = (xn,b − xb)/

√

N − 1 (3)

in which xn,b is the nth ensemble member and xb is the dynamic ensemble mean.
The WRFDA system also includes an ETKF scheme, which is used to generate the ensemble

perturbations [10]. The equation is as follows:

x = xeΠC(Γ + I)−1/2CT (4)

where C and Γ are the eigenvector matrix and the eigenvalue matrix of the (HXe)TR−1HXe, respectively.
I is the identity matrix. Π =

√
c1c2 . . . ci is the inflation factors, and ci satisfies the equation

d̃T
i d̃i = Tr

(
R−1HciPe

i H
T + I

)
(5)

where d̃i = R−1/2yi −HX
b
i is the “innovation” normalized by observation error covariance matrix R.

Pe
i is the ensemble background error covariance matrix. Tr represents the trace of a matrix.
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2.2. The Globally Augmented Regional Hybrid EnVar Method

Inspired by Equations (13) and (14) in Rainwater and Hunt (2013), we formulated the globally
augmented hybrid EnVar method proposed in this study as the following:

J(δx1,α) = 1
β

1
2δxT

1 B−1δx1 +
1

1−β
1
2 < αr,αg >T A−1 < αr,αg >

+ 1
2 (d−Hδx)TR−1(d−Hδx)

(6)

where αr and αg are the regional and global augmented ensemble error covariance, respectively.
Specifically, the total analysis increments in the proposed method are modified to the following equation:

δx = δx1 +

Nr∑
n=1

(αn,r ◦ xe
n,r) + L

Ng∑
n=1

(αn,g ◦ xe
n,g) (7)

Here, Nr represents the number of regional ensembles and Ng represents the number of global
ensembles. αr and αg are the ensemble extended control variable vectors for regional and global
applications respectively. xe

n,r and xe
n,g are ensemble perturbations calculated using the regional

ensemble and global ensemble, respectively. L is a transformation operator that maps the global
ensemble error covariance from the spectral space of global model (NCEP GFS in this study) to the
grid space of regional model (WRF in this study). Thus, the proposed method will obtain benefits from
increased ensemble size, without correspondingly increasing the number of forecasts carried out.

A complete regional hybrid EnVar data assimilation system with global-ensemble-model-augmented
error covariance (Figure 1) can be described at the practical level as follows: (1) the high-resolution
regional ensemble is first created and evolved to the analysis time; (2) the global ensemble forecasts
valid at the analysis time are also obtained and processed for the regional model (as will be described
in next subsection); (3) the high-resolution regional ensemble mean is then calculated and updated
using the global-ensemble-model-augmented error covariance according to Equations (4) and (5); (4)
meanwhile, the regional high-resolution ensemble forecasts are also updated using the ETKF scheme;
(5) the dynamic analysis ensemble members updated by the regional ETKF are then re-centered with
the hybrid EnVar analysis and evolved to the next analysis time; and (6) the cycle is repeated.

Although this method is proposed to compensate for the rank deficient problems of the ensemble
error covariance by increasing the ensemble members at a low computational cost, it has some potential
added benefits for regional data assimilation. Since the global ensemble forecasts are initialized from the
global ensemble data assimilation system which assimilates all of the available observations—including
the satellite radiance covering most of the earth, especially the ocean area—and has been best tuned,
the global ensemble error covariance includes much more accurate large-scale information but lacks
mesoscale information. On the contrary, the regional ensemble error covariance has the mesoscale
information that is important for the prediction of high impact weather, but the local error may
increase rapidly during the cycling run. The combination of the global and regional ensemble error
covariance not only reduces the computational cost required by the ensemble forecasts, but also
increases the degrees of freedom of the ensemble error covariance and introduces more accurate
large-scale error information that can better constrain the regional data assimilation. In addition,
an ensemble composed of forecasts evolved at different resolutions and even with different models may
better characterize forecast uncertainty than a single resolution ensemble and single model ensemble
within given computation constraints [26].
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-augmented error covariance.

2.3. The NCEP Global Ensemble and Its Process for WRFDA

In this study, we used the operational NCEP Global Ensemble Forecast System (GEFS) data
generated from the Global Data Assimilation System (GDAS) to produce the augmented ensemble error
covariance for the regional hybrid EnVar data assimilation. The NCEP eighty-member T574 global EnKF
ensemble is of about 36 km in grid spacing, with a vertical resolution of 64 levels [27,28]. The ensemble
is updated using a “state of art” EnKF system four times a day (every 6 h), which assimilates all
available observations including satellite radiance and has been best tuned. Then, the analysis of the
80 EnKF ensemble members from the previous cycle is re-centered by a global hybrid EnVar analysis
and used to initialize the global ensemble perturbations.

The extended control variables in this study for the hybrid EnVar of WRFDA system include the
horizontal wind components, potential temperature, specific humidity, and surface pressure. Thus,
only the atmospheric component of the GEFS output is needed. Since the NCEP GFS model and
the WRF model use different data formats, a transformation operator is used to map the ensemble
perturbations in spectral space to grid space.
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3. Experiment Designs and Configurations

In this study, version 3.9 of the Advanced Research WRF [29] (Skamarock et al., 2008) was used to
produce a numerical weather forecast over a computational domain spanning the eastern China area
(Figure 2). The horizontal grid spacing is 12 km (225 × 225 grid points). The domain is configured with
45 vertical levels and a 50 hPa model top. The physical parameterizations used in this study include
the Morrison double-moment microphysics scheme, the Rapid Radiative Transfer Model for Global
Climate Models longwave and shortwave radiation schemes with aerosol and ozone climatology,
the Mellor–Yamada–Janjic planetary boundary layer scheme, the Noah land surface model, and the
Tiedtke cumulus parameterization.
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Five parallel experiments employing different methodologies were conducted. The first experiment
used the basic 3DVar method with the static background error covariance to better show the advantage
of hybrid EnVar in the different forms presented in this study (hereafter “3DVar”). The second
experiment used the hybrid EnVar method with the flow-dependent background error covariance
coming from the 80-memeber global ensemble forecasts only (hereafter “GE-HDA”). The third
experiment used the regional hybrid EnVar with the flow-dependent covariance contributed from the
regional ETKF ensemble forecasts using 20 ensemble members (hereafter “RE20-HDA”). The fourth
experiment used the method proposed in this study, which combined the 20-member regional ensemble
and the 80-member global ensemble (hereafter “GE/RE20-HDA”). Finally, as a reference, the fifth
experiment used the regional ETKF to provide the flow-dependent ensemble error covariance but with
60 dynamic ensemble forecasts for the hybrid EnVar data assimilation system (hereafter “RE60-HDA”).
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To create the initial conditions in the first forecast cycle, the NCEP GFS analysis data were
interpolated onto the 12 km experimental domain (Figure 2) at 0000 UTC 20 June 2017. In the following
cycles, the initial conditions were provided by analyses generated by the data assimilation experiments;
the lateral boundary conditions were provided by the 6-hourly GFS analysis. The initial prior ensemble
members for the first ETKF analysis were 6 h WRF forecasts initialized at 0000 UTC 20 June 2017
using the so-called “random_CV” method, by adding random noises to the 3DVar analysis in control
variable space [30] to develop a flow-dependent structure of background error covariance. The first
analyses occurred at 0600 UTC 20 June 2017 using the previous 6 h forecasts as backgrounds. The data
assimilation cycle with a 6 h interval for each experiment continued until 1200 UTC 30 June 2017
(Figure 3).

The static background error covariance used in this study was constructed by the so-called NMC
(National Meteorology Center) method [2], which takes the differences between 12 h forecasts and 24 h
forecasts valid at the same times averaged over at least a month to compute the static background
error covariance. In this study, covariance localization was applied to suppress the impact of ensemble
error covariance on the analysis increments and reduce the spurious correlations due to sampling error
in ensemble-based data assimilation. For the regional ETKF scheme, an adaptive inflation method was
also applied to the posterior analysis perturbations [10].
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Figure 3. A flow chart of the cycling data assimilation experiment.

A variety of upper-air and surface observations were assimilated in this study (Figure 4).
Radiosonde observations of temperature, pressure, specific humidity, and wind were assimilated as well
as aircraft reports (AIREP) of temperature and wind. Besides, satellite-derived wind (SATOP), surface
observations from surface synoptic observation (SYNOP), and aviation routine weather report (METAR)
platforms were also assimilated. Observations were taken within a 1.5 h data assimilation window
for each analysis, and all observations were assumed to be valid at the analysis time. Data sorting,
quality control, and observational error assignment for each experiment were performed through the
observation preprocessing module (i. e. OBSPROC) of WRFDA. The observations of innovations that
exceeded five times the observation error were rejected before the minimization iterations.
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4. Results

4.1. Single Observation Test

The single observation test can help in understanding the working principles of different data
assimilation schemes; this is because their analysis increments can reflect the dynamic structure of the
background error covariance used in the data assimilation. In this subsection, the analysis increments
of the single observation tests for different experiments were investigated. A single observation of
specific humidity was assumed to be located at the center of the model domain at the 850 hPa level at
0000 UTC 23 June 2017. The innovation (observation minus background) of the water vapor mixing
ratio was 1 kg/kg. The observation error was set to 0.001 kg/kg. The 6 h forecast after 3 days of
6-hourly cycle assimilating the full set of observations was used as the background (i.e., the first
guess). It can be seen the 3DVar humidity increment (Figure 5) is isotropic and uniform, showing
little correlation with the background weather situation. The four hybrid data assimilation methods
are characterized by anisotropy and a non-uniformity of the analysis increments, which indicates the
flow-dependent characteristics corresponding to the humidity contours of the background field with
varying degrees. It can also be seen that the distribution range and magnitude of the GE-HDA analysis
increments are the smallest, which may be because the flow-dependent background error covariance
from the global ensemble contains less mesoscale information. The incremental distribution range of
RE20-HDA experiment is larger but with much more noise. The incremental magnitude of RE20-HDA
is small, which can be caused by the underestimation of the ensemble error covariance. The analysis
increments of the RE60-HDA experiment have the largest distribution range and magnitude, reflecting
the relatively larger ensemble error covariance. The analysis increments of GE/RE20-HDA are close to
RE60-HDA in terms of distribution range and magnitude, showing the advantage of a larger ensemble
and the combination of global and regional ensembles.
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Figure 5. The analysis increments of the water vapor mixing ratio (shaded; kg/kg) of the single
observation test. The weight coefficient of the ensemble error covariance is 100%. The localization scale
is 400 km. The solid black lines are contours of the background water vapor mixing ratio at analysis
time. ((a) 3DVar; (b) RE20-HDA; (c) GE-HDA; (d) GE/RE-HDA; (e) RE60-HDA).
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4.2. Verification against the European Centre for Medium-Range Weather Forecasts (ECMWF) Analysis

Forecast experiments are commonly used to investigate the performance of a data assimilation
system in a statistical framework. Thus, the root mean squared error (RMSE) performance of
the deterministic forecasts of all data assimilation experiments over the 10-day-long period was
investigated in this subsection. The deterministic forecast of each experiment was initialized from
the ensemble analysis mean or 3DVar analysis sharing the same physical parameterization schemes.
The RMSE of the forecast against the ECMWF analysis was calculated. For the deterministic forecast,
the bottom boundary condition and lateral boundary were created from the 6-hourly GFS analysis
data. Furthermore, the lateral boundary conditions were also updated according to the atmospheric
analysis update.

Figure 6 shows the average analysis RMSEs profiles for the five configurations, which measure the
differences of wind components U and V, temperature T, and water vapor Q between the experimental
analyses and the ECMWF analyses, respectively. It can be seen that for the wind field, temperature
field, and water vapor fields, the analysis RMSEs of the four hybrid EnVar experiments are clearly
smaller than the 3DVar. The results of the GE-HDA and RE20-HDA are generally close, but the former
are better at the upper levels while the latter are better at lower levels. This indicates that the global
ensemble error covariance is more accurate at upper levels but lacks mesoscale information at lower
levels. Conversely, the regional ensemble error covariance can provide more accurate mesoscale
information at lower levels. This may be because of the finer surface conditions, higher resolution,
greater number of local observations, and better suited physical parameterization tuned for the local
area in the regional model. These conditions have much more positive impact on the model at lower
levels. The RE60-HDA and GE/RE20-HDA schemes are apparently better than the other three data
assimilation schemes, obtaining similar results at lower levels. Besides, the GE/RE20-HDA has a clearly
lower RMSE at upper levels (100–500 hPa), while the temperature and water vapor fields of RE60-HDA
are slightly better.

The error of the first guesses from the short-term forecasts during the cycling period is usually used
to evaluate the performance of a data assimilation system. It is necessary to verify the 6 h deterministic
forecasts that are similar to the first guess for the next cycle since the cycling interval is 6 h in this study.
It can be seen from Figure 7 that for the wind field and the water vapor field, the basic characteristics
of the analysis field are generally continued. However, the difference between experiments becomes
closer than the analysis fields because of the influence of the model error. For the temperature field,
the GE/RE20-HDA and RE60-HDA work best at upper levels. However, the temperature field of
RE20-HDA is, overall, the worst for the 6 h forecast field, which is different from the analysis field.
For the humidity field, the RMSE of GE-HDA and RE20-HDA is basically the same. For the wind field,
however, RE20-HDA has no advantages at lower levels compared with GE-HDA, indicating that the
impact of sampling error and the underestimation of covariance caused by the limited ensemble size
on the forecast gradually becomes larger.

Shown in Figure 8 are the time series of average analysis RMSE against ECMWF analysis at
500 hPa for U, V, T, and Q of five experiments from 20 to 30, June 2017. It can be seen that the RMSE
of the four hybrid EnVar analysis fields is significantly smaller than the RMSE of the 3DVar data
assimilation experiments. It is also found that RE60-HDA and GE/RE20-HDA are obviously superior
to the other three experiments. For wind and humidity fields, GE/RE20-HDA is clearly better than
RE60-HDA; for temperature fields, these two methods are equally effective. In addition, it can be seen
that the RMSE of the humidity field is gradually increasing with the analysis cycle, but the humidity
error of the GE/RE20-HDA method is relatively much slower, showing its advantage in producing
better initial conditions.
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4.3. Rainfall Forecast Skill Scores

Three rainfall forecast verification metrics were used in this study to evaluate the rainfall forecast
skill of five experiments. The rainfall forecasts were verified using the rainfall observations from the
China Hourly Merged Precipitation Analysis Data at 0.1◦ × 0.1◦ grid (Shen et al., 2014). The rainfall
scores were aggregated over the forty-two 24 h forecasts during the experimental period. This is a
persistent heavy rainfall case lasting throughout the experimental period during the Meiyu season that
occurred over Jianghuai (the middle and lower reaches of the Yangze River) area. The first verification
metric is the Fractions Skill Score (FSS), which ranges between 0 and 1, with 0 representing no overlap
and 1 representing complete overlap between forecast and observed events, respectively. The FSS is
one of the neighborhood verification methods (Roberts & Lean, 2008), and the influence distance of the
neighborhood used in this study is set to 20 km. The second metric is the Equitable Threat Score (ETS),
which is commonly known as the Gilbert Skill Score (GSS). The ETS ranges from −1/3 to 1, with 0 or
negative values indicating no skill and 1 a perfect score. Different from the FSS, the ETS measures the
fraction of observed events that are correctly predicted, adjusted for the frequency of hits that would
be expected to occur simply by random chance. The third metric is the Bias Score (BS, also known
as Frequency Bias). It ranges from 0 to infinity with 1 representing the perfect score of BS. The BS
measures the ratio of the frequency of forecast events to the frequency of observed events, indicating
whether the forecast system has the tendency to overpredict (BS > 1) or underpredict (BS < 1) rainfall
events [31].
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Figure 9 shows the FSS, ETS, and BS as a function of threshold for 24 h accumulated rainfall.
For the FSS score, it can be seen that the GE/RE20-HDA generates the best results; for the ETS score,
the RE60-HDA obtains the highest score overall. For torrential rain with a threshold larger than
100 mm, the ETS and FSS of GE/RE20-HDA are the highest, but its bias is also the largest; the rainfall
forecast bias of the GE/RE20-HDA is the smallest within the precipitation threshold of 100 mm. It can
be seen that, for a precipitation threshold larger than 120 mm, the RE20-HDA becomes worse than
3DVar, which may be caused by the poor representation of the weather error structure (i.e., sampling
error) for heavy rainfall due to the limited ensemble size. The rainfall forecast skill scores, as a function
of forecast range with a threshold of 25 mm every 6 h, are presented in Figure 10. It can be seen that
the GE/RE20-HDA experiment still obtains the highest score, and produces the smallest forecast bias.
The RE60-HDA is slightly worse than the GE/RE20-HDA scheme, but their results become relatively
much closer. The 3DVar is the worst among all the data assimilation schemes, while the RE20-HDA
and GE-HDA schemes are equally effective and better than 3DVar.
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Figure 10. The rainfall forecasting scores with a threshold of 12.5 mm/6 h as a function of forecast
leading time for the (a) Fraction Skill Score (FSS), (b) Equitable Threat Score (ETS), and (c) Bias Score (BS).
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4.4. Computational Cost Analysis

The main reason for using the global-ensemble-model-augmented error covariance in the hybrid
EnVar data assimilation is to increase the ensemble members without significantly increasing the
computational cost. Compared with 3DVar, the additional computational cost of traditional hybrid
EnVar data assimilation methods usually comes from the following three steps: (1) the Kalman filter
analysis; (2) the ensemble integrations; and (3) the computation of extended control variables in
the variational cost function. The first two steps take up most of the additional computational cost.
However, the augmented global ensemble makes the first two steps much easier and helps produce
better analysis with similar or even reduced computational time. Furthermore, the computational cost
of extended control variables in the variational cost function is negligible compared with the EnKF
analyses and ensemble integrations.

Table 1 lists the wall clock time used by each configuration in a single data assimilation cycle
run including the computation of ensemble error covariance, the variational run, and the ensemble
run using 120 CPU processors on a Linux workstation. The wall clock time of the deterministic
forecast and the pre-process for gribbed GFS data are not included because all experiments share
the same time cost in these two steps. We can see that the 3DVar only uses 1 min 16 s of the wall
clock time. Compared to 3DVar, the GE-HDA adds only about 4 min to the wall clock time because
of the computation of extended control variables and the computing of the global error covariance,
as well as the format conversion of the global ensemble data, but the improvement to the quality of
analysis is significant, which has been shown in the above sub-sections. However, the ETKF-based
experiments (RE20-HDA, GE/RE20-HDA and RE60-HDA) add the ensemble forecast run and the
corresponding Kalman filter analysis; as a result, the RE20-HDA produces a result comparable to
that with GE-HDA method but uses 32 min 49 s of wall clock time, while GE/RE20-HDA produces
a much better result but uses a similar time to RE20-HDA. In this study, the experiment containing
20 regional ensemble members (which is usually viewed as the minimal size for an ensemble data
assimilation system) augmented with 80 global ensemble members obtains results similar to those
from the experiment containing 60 regional members. However, the former only takes up about one
third of the cost of the latter experiment. Such computational cost savings are very important for
real-time implementations of operational NWP systems. The cost savings can be used to increase
the model resolution, leading time or domain coverage. Obviously, besides the augmented global
ensemble, increasing the regional ensemble members can help to further improve the results because
of the much more accurate mesoscale information and lesser rank deficiency. However, this may bring
an extra burden for computational cost. The regional ensemble members for operational applications
may depend on the practical computing resources of operational centers case by case.

Table 1. The computational cost of each data assimilation configuration.

Experiment 3DVar GE-HDA RE20-HDA GE/RE20-HDA RE60-HDA

cost 1 min 16 s 5 min 38 s 32 min 49 s 36 min 15 s 103 min 28 s

5. Conclusions and Discussion

An efficient regional hybrid EnVar data assimilation method using the
global-ensemble-model-augmented error covariance was proposed and preliminarily tested
in this study. This work used the global ensemble error covariance as the low-resolution covariance,
and used the high-resolution dynamic ensemble forecast mean as the first guess in hybrid EnVar data
assimilation, and then re-centered the analysis to the updated high-resolution dynamic ensemble
perturbations. We implemented the proposed method into the WRFDA coupled with ETKF scheme
and tested it for numerical weather prediction over eastern China. In this study, the experiment
containing small regional ensemble members augmented with global ensemble members obtains
results similar to those from the experiment containing relatively larger regional members. However,
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the former only takes up one third of the computational cost of latter experiment. The method
proposed in this study also outperforms the 3DVar, hybrid EnVar with pure global ensemble error
covariance, as well as the hybrid EnVar with a small size ETKF ensemble. The method proposed
in this paper effectively combines contributions from both the global and the regional ensembles to
produce better initial conditions for the regional WRF data assimilation system.

The aim of this paper is to propose a method for improving the performance of hybrid EnVar data
assimilation through effectively increasing the rank of the flow-dependent part of the background error
covariance by including the information from a global ensemble. In this study, the large-scale part of
the ensemble error covariance was contributed by the global ensemble. On a practical level, this part
can also be provided by a larger domain ensemble of lower resolution that covers the high-resolution
area. One of the main limitations of the global ensemble error covariance used in regional hybrid data
assimilation is that the global ensembles are not updated frequently. For example, we can obtain the
3-hourly global ensemble from the NCEP GEFS. But for the hourly rapid update system, the 3-hourly
global ensemble is not enough. In this situation, we can utilize the interpolation of the 3-hourly global
ensemble to the hourly global ensemble as Yang et al. (2017) [32] did, the time-expanded ensembles as
Zhao et al. 2015 [19] did, or a time-lagged ensemble as Wang et al. 2017 [21] did. Furthermore, as the
resolution of global ensemble in time and space will be increased in the future, the augmented global
error covariance can be used for the rapid updated regional convective-permitting NWP. In addition,
we used a combined background error covariance from different ensembles to update the regional
analysis mean but not the regional ensemble perturbations. How the high-resolution regional ensemble
perturbations will be influenced by the global or low-resolution regional ensemble error covariance
may need further study.
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