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Abstract 

Due to restrictions on the long period ranges of Pacific decadal oscillation (PDO) and the 

limited amount of winter wheat yield data in China, there is little knowledge or 

understanding of the effects of PDO on winter wheat production in China. To fill this 

knowledge gap, we simulated over one hundred years of winter wheat yields using a 

process-based crop model over eight locations in the dominant winter wheat-producing 

area across China during 1902–2014. By using the continuous wavelet transform (CWT), 

we found that winter wheat yields had inter-annual variability (4- and 8-year periods) and 

interdecadal oscillations (22-year and over 50-year). The cross wavelet transform (XWT) 

results indicated that interdecadal variations of winter wheat yields and PDO were in 
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phase. The interdecadal variation components of PDO and winter wheat yields from 1902 

to 2014 show that when PDO was in the positive (negative) phase, winter wheat yields 

tended to increase (decrease) by using the ensemble empirical mode decomposition 

(EEMD) method. The interdecadal variations of winter wheat yields were significantly 

associated with PDO and the mean correlation coefficient was 0.83. The contribution rate 

of PDO on winter wheat yields was approximately 11%. The interdecadal variation in 

winter wheat production was principally determined by the interdecadal oscillation in 

April precipitation and December temperature, which was modulated by the phase change 

of PDO. The mean correlation coefficient was -0.50 and 0.59, respectively. This is 

because during the negative (positive) phase of PDO, more (less) April precipitation and 

lower (higher) December temperature in the study area occur, whereas an increase in 

April precipitation and lower December temperature adversely affect winter wheat 

production. This study can aid governments and farmers to recognize the hazards of 

excess April precipitation and low December temperature in negative PDO years. 

Overall, the decadal variation in winter wheat yields due to PDO facilitates the prediction 

of winter wheat yields, and PDO influences crop growth by modulating large-scale 

oscillation patterns. 

Keywords: PDO, interdecadal variability, winter wheat, crop yield. 

1 Introduction 

The climate variation has significant impacts on crop production and increases risk 

in crop management (Nicholls, 1997; Hoogenboom, 2000; Rosenzweig et al., 2001; Ren 

et al., 2019). A substantial body of literature in China describes research into the effects 

of climate change on winter wheat production and crop yields (Song et al., 2019; Ren et 

al., 2019; Huang et al., 2020). Recent studies have focused on the teleconnections 

between large-scale climate patterns and crop management (Li et al., 2020; Tian et al., 

2015; Brown, 2013; Jarlan et al., 2014; Iizumi et al., 2014; Maxwell et al., 2013; Shuai et 

al., 2013, 2016). For instance, Shuai et al. (2013) pointed out that El Niño-Southern 

Oscillation (ENSO) has significant impacts on wheat yields, and more rainfall in El Niño 



years leads to a decrease in wheat yields. Climate indices have serious impacts on flood-

induced agricultural loss across China. Zhang et al. (2016) demonstrated that ENSO could 

be taken as a suitable predictor for flood-affected and flood-destroyed crop areas across 

China. Significant influences of Pacific decadal oscillation (PDO) and the North Atlantic 

Oscillation (NAO) events on agricultural floods are identified mainly in the coastal 

provinces of southeast China; while in central China, cold Atlantic Multidecadal 

Oscillation (AMO) and cold NAO tend to influence flood-affected and flood-destroyed 

crop areas in coastal provinces of east China. Studies into the effects of large-scale 

teleconnections on local climate will be conducive to improving crop management 

(Baigorria, 2008; Bannayan, 2010). Previous studies have mainly focused on the impacts 

of ENSO or several climate signals on crop management (Shuai et al., 2013, 2016), but 

normally in recent decades. It should be noted here that the teleconnection between 

multidecadal climate patterns and crop management can potentially improve future 

predictions of crop yield risks (Tian et al., 2015), and accurate long-range predictions of 

weather conditions are necessary to develop optimal agricultural strategies. 

PDO is the dominant mode of the North Pacific. It has been described as the leading 

empirical orthogonal function of North Pacific sea surface temperature (SST) anomalies 

(Trenberth, 1990, 1994; Mantua et al., 1997). There are two phases of PDO. A positive 

phase occurs when the Aleutian low is deeper and negative SST anomalies occur in the 

north central Pacific; the negative phase is the opposite (Mantua et al., 1997). PDO 

appears to undergo rapid transitions between extended periods of the opposite phase every 

few decades or so (Mantua et al., 1997; Minobe, 1997; 1999). It has a profound influence 

on various components of the climate (Newman et al., 2016): PDO affects decadal climate 

variations over East and South Asia (Yu et al., 2015; Fan and Fan, 2017); PDO also drives 

North American droughts (Zhao et al., 2017; McCabe et al., 2012) and Australian rainfall 

anomalies (Sun et al., 2015; Arblaster et al., 2002), and, most recently, the climate 

warming hiatus (Kosaka et al., 2013). Crop production and available water resources are 

also influenced by PDO (Mantua et al., 1997; Miller et al., 2004). The effects of PDO on 

the Chinese climate have been well documented (Ma and Fu, 2006; Qian and Zhou, 2014; 



Li et al., 2010; Zhou et al., 2013; Ma, 2007; Ding et al., 2014). For example, a warm PDO 

phase can result in above-normal precipitation over South China and continuing drought 

over North China (Ma, 2007; Zhou et al., 2013; Yang et al., 2017). Huang et al. (2020) 

suggested that the future projections of the South Asian summer monsoon (SASM) also 

depend on the PDO phase transition, because the positive phases of PDO often lead to 

decreased SASM rainfall (Krishnamurthy and Krishnamurthy, 2014). In the positive 

phase, the winter temperature increases in China (Ding et al., 2014; Xu et al., 2019). 

Recent studies in many countries have investigated relationships between PDO 

teleconnections and crop yields. For example, in the southeastern United States, winter 

crop production is strongly correlated with decadal climate indices, and the negative PDO 

phase is associated with a low wheat yield (Tian, 2015). There is a pronounced increase 

in corn and soybean yields in Missouri when El Niño and a positive PDO phase occur 

together (Henson, 2017). However, similar studies that relate PDO cycles to crop 

production are not extensive in China, and the links are inconclusive. Huang et al. (2017) 

investigated the atmospheric circulation underlying changes in rice production in Jiangsu 

province due to meteorological disasters and found that PDO significantly influenced 

those changes. Liu et al. (2017) examined the impact of floods on agriculture in the 

Poyang Lake basin and investigated relationships with climate indices and found that 

PDO had no significant influence. PDO is a major factor in decadal climate prediction 

(Qin et al., 2018), therefore the possibility of nexus between PDO and other 

meteorological factors provides an opportunity to observe and understand the effects of 

climate patterns on crop production. 

China is the world’s largest wheat producer and provides about one-fifth of the 

global total. Even a small change in yields could have large global effects (Dawe, 2009; 

Simelton, 2011). Crop production is susceptible to variations in climate (Simelton, 2011). 

Climate variability in China is dominated by the East Asian monsoon (EAM) (Chen et 

al., 2019; Wang and Chen, 2014; Ding and Chan, 2005), which is significantly influenced 

by PDO (Wang et al., 2007, 2008a). However, owing to the long period ranges of PDO 

and the scarcity of statistical yield data in China, given the complexities involved in this 



issue, the impacts of PDO on winter wheat yields in China and the possible mechanism 

underlying the impact remain little understood (Tian et al., 2015; Fan and Fan, 2017; 

Huang et al., 2020). 

To fill this knowledge gap, over one hundred years of winter wheat yields were 

simulated by utilizing a dynamic process crop growth model over eight representative 

locations in the dominant winter wheat-producing provinces across China. Since 

variability in crop yields is driven by numerous factors apart from climate fluctuations 

and agronomic management, such as sow data, cultivar choice and plant density (Tian et 

al., 2015), in this study, the DSSAT 4.7 CERES-wheat model was used to analyze the 

response of winter wheat yields to PDO by keeping all other factors constant over time. 

The completely observed weather data over multiple decades are difficult to obtain, so 

reanalysis data were used as a surrogate for inputs into the crop model in this study 

(Cammarano et al., 2013; Tian et al., 2015). The main goals of this study were to use 

wavelet transforms and ensemble empirical mode decomposition (EEMD) filters to 

investigate interdecadal climate variations and the drivers associated with PDO for effects 

on winter wheat yields in China. Then, we identified mechanisms by which different 

phases of PDO affected winter wheat yields. The outcomes of the study will provide a 

useful reference for predicting crop yields. 

2 Materials and methods 

2.1 Data 

The major winter wheat growing regions are located in east-central parts of China, 

including Shandong, Henan, Hebei, Jiangsu, Hubei, Shanxi, Shaanxi and Anhui provinces 

(Song et al., 2019). In this study, we selected eight representative locations that (1) were 

located in the main producing areas of winter wheat, (2) were geographically different, 

(3) had good records of crop data for 1950–2014 (Figure 1). Historical annual winter 

wheat yield data (in kg/ha) from 1950 to 2014 were provided by the National Bureau of 

Statistics (http://data.stats.gov.cn/index.htm), which were used as a basis for comparison 

with the simulation results. Crop yields can be increased with advanced agricultural 

http://data.stats.gov.cn/index.htm


techniques and additional production inputs; winter wheat yields were linearly detrended 

and adjusted to a 2000 baseline using a linear trend analysis technique to eliminate the 

effects of these activities (Swanson and Nyankori, 1979; Hollinger and Carlson, 2001; 

Xiong et al., 2008). 

Monthly data on precipitation, maximum temperature, minimum temperature and 

number of wet days for 0.5º×0.5º grid resolution grids from 1902 to 2014 were obtained 

from the Climatic Research Unit (CRU TS 4.04) (http://www.cru.uea.ac.uk/data). 

Monthly maximum temperature and minimum temperature were interpolated to daily 

values by using spline interpolation (Vetterling and Press, 1992; Tao et al., 2009). 

Monthly precipitation is interpolated to daily values using a weather generator with total 

monthly precipitation and wet days as inputs. The occurrence of daily rainfall is described 

by a Markov chain and then a gamma distribution function is applied to fit the amount of 

rainfall on a rainy day (Geng et al., 1986). Studies have shown that simulations using 

interpolated and observed daily data are nearly identical (Tao et al., 2009; Gerten et al., 

2004; Shuai et al., 2016). Daily solar radiation for each grid were obtained from NOAA-

CIRES 20th Century Reanalysis V2c 

(https://www.psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html). PDO time series 

data from 1902 to 2014 were obtained from the Joint Institute for the Study of the 

Atmosphere and Ocean (JISAO) by downloading from 

http://research.jisao.washington.edu/pdo/. 

2.2 Crop simulation 

Crop simulation was performed using the DSSAT 4.7 CERES-wheat model. Input 

requirements for CERES-wheat include weather and soil conditions, plant characteristics 

and crop management (Hunt et al., 2001). The Generalized Likelihood Uncertainty 

Estimation (GLUE) program of DSSAT was used to estimate the cultivar coefficients of 

the winter wheat. The coefficients of a representative cultivar were estimated iteratively 

by running the model with an altered coefficient and comparing the simulated outputs 

with observed values until they matched as closely as possible. For this study, the model 

http://www.cru.uea.ac.uk/data
https://www.psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html
http://research.jisao.washington.edu/pdo/


was calibrated and validated using trial data from eight representative locations for winter 

wheat (from 2005 to 2014). Figure 2 shows the relationship between the observed and 

simulated values of yields; the root mean square error (RMSE) between the observed and 

estimated yields was 18.17%, and the estimated values agreed well with the observed 

values. The calibrated cultivars are shown in Table 1. 

Soil Characteristics were specified for crop model simulations at each site based on 

Jin et al. (1995). The agricultural soils of the main producing area of winter wheat are 

primarily sandy-loam of medium depth, with neutral pH and low-to moderate level of 

organic carbon (Rosenzweig et al., 1999). The wheat model was simulated with a rained 

(non-irrigated) scheme and with no nitrogen (N) stress. The planting density was 200 

plants m-2. Winter wheat in China is usually sown in October or November and harvested 

in the following May and June. The planting dates were chosen as average planting dates 

for these eight locations (Table 1) according to Zhuang et al. (2018). The soil water 

content was initialized in the model before the sowing date to avoid any variability in 

water carry-over effects. 

2.3 Wavelet method 

The wavelet method is based on the assumption that climate variation patterns result 

from nonstationary processes in which variance, frequency, and oscillation duration vary 

over time (Grinsted et al., 2004). Recently, wavelet transforms have been used in 

correlation analysis between nonstationary time series in different fields, such as 

climatology and hydrology (Liang et al., 2010; Rahman and Islam, 2019). Earlier studies 

that have shown relationships between crop yield and teleconnection indices implicitly 

assumed that time series represent stationary processes and so used correlation- or 

regression-based models. The continuous wavelet transform (CWT) is a commonly used 

technique to detect localized variation in a time series. The cross wavelet transform 

(XWT) is a powerful method of testing for relationships between two time series. A 

detailed discussion of CWT and XWT is given in Torrence and Compo (1998). 



The CWT of a discrete sequence Χn is defined as the convolution of Χn with a scaled 

and translated version of Ψ0(η): 
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where s is the wavelet scale, n is the localized time index, (*) indicates the complex 

conjugate, δt is the sampling interval, N is the number of points in the time series, and 

|Wn(s)|2 is defined as the wavelet power spectrum, which expresses the amplitude of the 

time series in a given wavelet scale (Lafrenière and Sharp, 2003). The mother wavelet is 

Ψ0(η); the Morlet wavelet, which consists of a plane wave modulated by a Gaussian 

window, was used in this study: 
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where ω0 is dimensionless frequency, and η is dimensionless time. By averaging the 

wavelet power spectrum over the period, we obtain the global wavelet spectrum: 
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For two time series X and Y, with wavelet transforms WnX(s) and WnY(s), the cross 

wavelet spectrum of X and Y is defined as WnXY(s) = WnX(s)WnY*(s), where WnY*(s) is the 

complex conjugate of WnY(s). The cross wavelet transform is defined as |WnXY(s)|. 

The cone of influence (COI) is that region of the wavelet spectrum in which edge 

effects become important. It is chosen so that a discontinuity at the edge drops by a factor 

e−2 to ensure that edge effects are negligible before this point. The 95% confidence level 

of the power spectrums was assessed against the null hypothesis that the time series was 

generated as red noise (Torrence and Compo, 1998). 

2.4 Ensemble empirical mode decomposition 

To detect the relationship between PDO and winter wheat yield on interdecadal 

scales, the EEMD method was used. EEMD is a pre-processing data-adaptive filter for 

time series datasets that increases the robustness of noisy data and guarantees that the 



decomposition is insensitive to noise. EEMD is suitable for analyzing meteorological 

data, which are usually nonstationary and nonlinear, and contain noise (Huang and Wu, 

2008; Wu and Huang, 2009; Liu and Zhou et al., 2019). It has been used to distinguish 

the interdecadal variations in temperature, precipitation, drought index, etc., and the 

results shows clear physical significance (Qian and Zhou, 2014; Yang et al., 2017). In 

this study, EEMD was used to extract interdecadal variation components from the PDO, 

winter wheat yield and climate factors (mean temperature and precipitation) from 1902 

to 2014. EEMD was also used to determine the timings of the phase transitions in the 

PDO index; data for the years analyzed in the study were divided into three negative 

phases (1906–1924, 1945–1975 and 2003–2014) and two positive phases (1925–1944 

and 1976–2002). 

The contribution rate of PDO to winter wheat yields (q) is quantified by: 

                            100%W CY Yq
Y
−

= ×                    (4) 

where Yw and Yc are the averages of winter wheat yields during the warm and cold 

phases of PDO, respectively. Y is the average of raw winter wheat yield. 

3 Results 

3.1 Variability of winter wheat yields 

The continuous wavelet transform (CWT) of annual winter wheat production for 

each site is shown in Figure 3. Winter wheat yield was dominated by the decadal 

variability with a 22-year period in eight representative locations, and there were shorter 

4-year and 8-year periods of variability in most wheat-growing sites. The wavelet power 

spectrums of winter wheat yields were high from the 1920s to the 1940s, with a 4-year 

period in Nanjing, Wuhan and Shijiazhuang. Winter wheat yield showed an inter-annual 

variability with an 8-year period in Nanjing, Hefei, Shijiazhuang, Wuhan, Zhengzhou and 

Xi’an from the 1920s to the 1950s, and there was an 8-year period in Jinan, Zhengzhou, 

Xi’an and Taiyuan from the 1980s to the 1990s. The wavelet power spectrums of winter 

wheat yields were relatively high from the 1940s to the 1980s for a 22-year period. It 



should be noted that the CWT has identified a longer oscillation (more than 50 years) in 

eight sites, which is above the 5% significance level, although most of the occurrence of 

decadal variations were outside the cone of influence (COI) because of the study period. 

These interdecadal variations were probably related to the periods of PDO, whose highest 

energetic periodic variations at the decadal scale is 15–25 and 50–70 years. However, 

winter wheat yields can be affected by various factors. It is difficult to tell if it is a 

coincidence, but the cross wavelet transform (XWT) will help in this regard. 

3.2 Relationship between PDO and winter wheat yields 

Figure 4 shows the XWT of winter wheat yields and PDO in China. The relative 

phase relationship is shown as arrows (with in-phase pointing right, anti-phase pointing 

left). The cross wavelet power spectrum was high for the 22-year oscillation in eight sites 

from the 1940s to the 1980s and the phase relationship was ‘in phase’. The cross wavelet 

power spectrum was high for a shorter 8-year period from the 1980s to the 1990s in Jinan, 

Xi’an, Zhengzhou and Taiyuan, which could be associated with a PDO-ENSO interaction 

(Henson et al., 2017). We also note that there is a significant common power over the 50 

years in eight sites, which confirms the assumption of CWT in Figure 3. The XWT shows 

that the winter wheat yield and PDO are in phase in all sectors with a significant common 

power, which suggests that a positive (negative) PDO is associated with a high (low) 

winter wheat yield. 

EEMD was used to identify interdecadal components to determine the interdecadal 

relationship between PDO and winter wheat yields. Table 2 shows the mean periods of 

various time-scale components for PDO, winter wheat yield, mean temperature and 

precipitation during 1902–2014 obtained by the EEMD method, respectively. PDO and 

winter wheat yields were decomposed into six partitions, C1–C5. C1 and C2 represent 

the inter-annual variability; C3, C4 and C5 represent variability from the decadal to 

interdecadal scales. We used the sum of C4 and C5, which represents the interdecadal 

variability of winter wheat yields and PDO. Figure 5 shows the normalized interdecadal 

time series for PDO and winter wheat yields for eight sites using the EEMD filter. PDO 



and winter wheat yields show an evident corresponding variation on the interdecadal 

scale: when PDO is in a positive (negative) phase, winter wheat yields show positive 

(negative) anomalies, suggesting that when the PDO is in a positive (negative) phase, 

winter wheat yields tend to increase (decrease). This corresponds to the XWT results 

shown in Figure 4. In addition, the mean correlation coefficient between PDO and winter 

wheat yields was 0.83 (Figure 6), which is statistically significant at the 0.01 level by the 

Student’s t-test. For data extracted using the EEMD method, the significance was 

determined by an effective degree of freedom of 58 when considering the 

autocorrelations. This effective degree of freedom is calculated as 

           1 2
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where N is the original sample size of 1000, and r1 (r2) is the lag-1 autocorrelation 

of the first (second) time series (Bretherton et al., 1999). According to Eq. (4), the mean 

contribution rate of PDO to winter wheat yields was 11% for eight representative sites. 

3.3 Possible mechanism for PDO on winter wheat yields 

Climate factors, particularly temperature and precipitation, which are affected by 

PDO (Ding et al., 2014; Liu et al., 2019; Yang et al., 2017), have a significant influence 

on the interdecadal variation in crop production (Henson et al., 2017). To further analyze 

the mechanism behind the impacts of PDO on winter wheat yields, the interdecadal 

variation components from mean temperature and precipitation were extracted, similar to 

PDO and winter wheat yields before. It can guarantee that impacts of climate factors on 

winter wheat yields were contributed from PDO, excluding the effects of external factors 

with periods shorter than PDO (like ENSO) and longer than PDO (like AMO). We 

calculated correlation coefficients between winter wheat yields and monthly precipitation 

and temperature during the growing season on the interdecadal scale (Figure 6) to further 

examine the modulation of crop yields by PDO. Winter wheat yields for eight sites all 

have a strong negative correlation with April precipitation and a positive correlation with 

December temperature. The mean correlation coefficients between December 



temperature and April precipitation for eight sites were 0.59 and -0.50 with an effective 

degree of freedom of 58 (>99% confidence level), respectively. The correlations indicated 

that interdecadal variations in winter wheat yields were mostly related to April 

precipitation and December temperature. 

Since April precipitation and December temperature associated with PDO had a 

profound effect on winter wheat yields on the interdecadal scale, we therefore performed 

a composite analysis of PDO negative phases (1906–1924, 1945–1975 and 2003–2014) 

minus PDO positive phases (1925–1944 and 1976–2002) for mean April precipitation 

(Figure 7a) and December temperature (Figure 7b). There are positive (negative) April 

precipitation anomalies and negative (positive) December temperature anomalies over the 

winter wheat production areas during the negative (positive) phases of PDO. This feature 

of April precipitation was consistent with Yang et al. (2017). They extracted the 

interdecadal components of PDO and monthly precipitation over China and calculated 

the correlation coefficients between them, the results of which show that April 

precipitation exhibits a significant negative correlation with PDO. This is because there 

are high (low) pressure anomalies over North Pacific at 500 hPa in April during the 

positive (negative) phase of PDO and southeasterly winds over North China promote 

northward transport of moisture. Besides, this outcome was also supported by Qian and 

Zhou (2014), who analyzed the relationship between PDO and a drought severity index 

calculated from three datasets and reported that the positive PDO corresponds to a dry 

period in North China. During winter, the winter temperature is positively correlated with 

PDO. This correlation is consistent throughout China, and is particularly strong in North 

China, which is associated with deeper (weaker) East Asian trough, stronger (weaker) 

Siberian high and anomalous cyclone (anticyclone) at 850 hPa over the eastern 

Philippines during the negative (positive) phase of PDO (Ding et al., 2014). 

4 Discussion 

In this study, we detected short term (4-year and 8-year) and long term decadal (22-

year and over 50-year) climate-driven variations in simulated winter wheat yields in 



representative locations in the dominant winter wheat producing areas over China. The 

4-year and 8-year periods could be associated with the influence of ENSO and ENSO-

PDO, respectively (Henson et al., 2017). Although PDO varies greatly over cycles of 4 

or 8 years to decades, its highest energetic periodic variation on the decadal scale is 15–

25 and 50–70 years (Qian and Zhou, 2014). The XWT was used to determine if the 

resulting decadal oscillations related to the PDO variability. The XWT of the simulated 

winter wheat yields and PDO showed that there was a significant common power in the 

22-year and 50-year periods. To further investigate the interdecadal relationship between 

PDO and winter wheat yields, we used the EEMD method to extract interdecadal 

variation components from PDO and winter wheat yields. PDO and winter wheat yields 

showed evident corresponding variations. The contribution rate of PDO to winter wheat 

yields was approximately 11%. The interdecadal variation of winter wheat yields was 

associated with interdecadal variations in December temperature and April precipitation, 

which were modulated by PDO. The mean correlation coefficients between December 

temperature and April precipitation for eight sites were 0.59 and -0.50, respectively, 

which is statistically significant at 0.01 level. This is because December temperature is 

important for winter wheat to tiller; during the tillering stage, a higher temperature could 

significantly promote tillering and increase the effective panicles, which increased grain 

yields compared with a lower temperature (Fang et al., 2012). Tillering is regarded as an 

expression of certain characteristics of the plant, which is associated or correlated with 

desirable qualities. The wheat plant responds to a favorable environment by increasing 

the number of culms rather than by lengthening it or by increasing the number of grains 

in the spike (Grantham, 1912). More importantly, an increase in the number of tillers per 

plant is accompanied by a higher yield per spike. At this point, during the negative phase 

of PDO, lower December temperatures limited tillering and reduced the effective 

panicles, indirectly causing reductions in winter wheat yields. In the meantime, the 

temperature decrease during winter may directly increase frost/chilling and indirectly 

increase heat injury due to warming-led earlier anthesis (Porter et al., 1999; Sadras and 

Monzon, 2006; Wang et al., 2008b). Figure 7(b) suggests that during the negative 



(positive) phase of PDO, there was a lower December temperature in the winter wheat 

producing area. The interdecadal variations in yields were related to interdecadal 

oscillations in April precipitation because April precipitation determines soil water 

availability to wheat crops during stem elongation, heading, and flowering stages. Figure 

7(a) suggests that during the negative (positive) period of PDO, there was more (less) 

precipitation in the producing area. Excess rainfall is associated with flood, plant diseases, 

and insect pest outbreaks that adversely affect winter wheat production and its quality 

(Wiik and Ewaldz, 2009). During April, winter wheat is in the heading stage (Zhuang et 

al., 2018). Increased precipitation during this stage can result in diseases such as fusarium 

head blight (FHB), Puccinia striiformis growth and sheath blight, which reduce both the 

quantity and quality of the crop (Song et al., 2019). Thus, there is a need for governments 

and farmers to recognize the hazards of excess April precipitation and low December 

temperature in negative PDO years. 

These outcomes are important because insights into the association between decadal 

climate variability and local seasonal climate variability are useful for further seasonal 

predictions that enable growers to increase seasonal agricultural crop growth. For 

example, knowledge and understanding of the positive and negative phases of PDO 

increase our understanding of the effects of large-scale atmospheric circulation on winter 

wheat yields. The effects of PDO climate patterns are not limited to a specific region, and 

crop production, water resources and other agricultural inputs are also affected by PDO 

(Miller et al., 2004). The winter wheat yield increases during positive PDO years and 

decreases in negative PDO years in the representative sites, but these PDO-influenced 

climate patterns are important for winter wheat production in other regions of the world 

(Atkinson et al., 2005; Persson et al., 2012; Tian et al., 2015; Newman et al., 2016). Such 

knowledge is useful as a reference for strategic decision-making in adapting to climate 

events for the benefit of crop growers. The long term climate patterns of PDO can now 

be incorporated when considering climate effects on regional agricultural crop 

production, similar to how we consider them on a regional scale (Izumi et al., 2014). 



This paper provides a preliminary analysis of the relationship between PDO and 

winter wheat yields. Further research will provide a more precise description of PDO–

crop growth mechanisms. The impact of extreme events was not considered in this study, 

nor were technological development or changes in agricultural practice. Climate change 

and associated extreme events are an increasing concern, and the relationship between 

extreme climate events and crop growth must be emphasized in future research. 

5 Conclusion 

In this study, we simulated winter wheat yields for 1902–2014 using the DSSAT 

4.7 CERES-wheat model. The relationship between PDO and winter wheat yields in 

eight representative sites over major winter wheat-producing regions of China was 

investigated using the cross wavelet transform (XWT) analysis and EEMD filter. The 

main findings are summarized as follows: 

(1) Winter wheat yields in China were investigated to identify periodicities by CWT. 

We found a short term (4-year and 8-year periods) and long term variation (22-year 

and over 50-year periods). 

(2) PDO and winter wheat yields show an evident corresponding variation on the 

interdecadal scale: when PDO is in a positive (negative) phase, winter wheat yields 

shows positive (negative) anomalies, suggesting that when PDO is in a positive 

(negative) phase, winter wheat yields tend to increase (decrease). This agrees with 

the outcomes of XWT. 

(3) By using the EEMD method, the interdecadal variation components from winter 

wheat yields and PDO were extracted. The winter wheat yields were significantly 

positively correlated with the PDO index on the interdecadal scale and the mean 

correlation coefficient was 0.83. The mean contribution rate of PDO to winter 

wheat yields was 11% for eight representative sites, which quantified the impact of 

PDO on winter wheat yields. 

(4) The interdecadal variation of winter wheat yields was associated with interdecadal 

variations in December temperature and April precipitation, which were associated 



with PDO. The mean correlation coefficients between winter wheat yields and 

December temperature and April precipitation for eight sites were 0.59 and -0.50, 

respectively, which are statistically significant at the 0.01 level. 

(5) April precipitation and December temperature anomalies are modulated by PDO: 

when PDO is in the negative (positive) phase, more (less) April precipitation and 

lower (higher) December temperature would occur in the study area. Similarly, 

increases (decreases) in April precipitation and a lower (higher) December 

temperature adversely (favorably) affect winter wheat in the heading and tillering 

stages, respectively, which will reduce both the quantity and quality of winter wheat. 

This clearly explains the impact of PDO on winter wheat yields in China. The 

obtained findings can aid policymakers and farmers in mitigating the adverse effect 

of winter wheat production losses in China. 
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Table 1. Representative location information and genetic coefficients used for the 

DSSAT model. 

Locations Latitude Longitude 
Sowing 

date 

Genetic coefficients 

P1V P1D P5 G1 G2 G3 PHT 

Nanjing 32° 03' N 118° 46' E 20-Oct 51 33 757 24 33 1.2 95 

Hefei 31° 51N 117° 16' E 20-Oct 17 83 425 22 27 1.1 95 

Jinan 36° 40' N 117° 00' E 1-Oct 58 59 546 19 22 1.4 95 

Wuhan 30° 35' N 114° 17' E 20-Oct 59 43 608 16 29 1.2 95 

Zhengzhou 34° 46' N 113° 40' E 1-Oct 19 58 507 16 35 1 95 

Xi’an 34° 15' N 108° 55' E 21-Sep 56 79 657 17 21 1.3 95 

Shijiazhuang 38° 03' N 114° 26' E 1-Oct 17 36 337 21 22 1.2 95 

Taiyuan 37° 51' N  112° 33' E 21-Sep 21 33 649 18 25 1.9 95 

P1V, days at optimum vernalizing temperature required to complete vernalization. 

P1D, percentage reduction in development rate in a photoperiod hour shorter than the threshold 

relative to that at the threshold. 

P5, grain filling phase duration. 

G1, kernel number per unit canopy weight at anthesis. 

G2, standard kernel size under optimum conditions. 

G3, standard, nonstressed dry weight (total, including grain) of a single tiller at maturity. 

PHT, interval between successive leaf tip appearances. 

 

Table 2. The mean periods of various time-scale components for PDO, winter wheat 

yield, mean temperature and precipitation during 1902–2014 obtained by the EEMD 

method, respectively. 

Partitions PDO Yield Precipitation Temperature 

C1 3.2 yr 2.1 yr 2.9 yr 2.6 yr 

C2 8.7 yr 6.7 yr 7.7 yr 7.4 yr 

C3 14.1 yr 12.3 yr 14.1 yr 13.5 yr 

C4 37.6 yr 31.1 yr 28.5 yr 25 yr 

C5 56.5 yr 56.2 yr 56 yr 56 yr 
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