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Abstract: The module of assimilating a new GMI (GPM Microwave Imager) satellite detector was built
in the framework of the Weather Research and Forecasting Model (WRF) and its three-dimensional
variational (3DVar) data assimilation system (WRFDA). Typhoon “Chan-Hom” in the 2015 Pacific
typhoon season was selected to verify the effectivity of the GMI clear-sky assimilation. The results
show that, after assimilating the GMI radiance data, the background information in the model is
modified positively when compared with the experiment without any assimilation and the one with
assimilation of the conventional data. The obvious warm core structure of the typhoon, the modified
geopotential height field, and the intensified circulation of the typhoon are favorable for the northwest
twist of the typhoon, thus contributing to a better track forecast with a maximum error below 160 km
in the 48-h deterministic forecast.
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1. Introduction

Since the late 20th century, because of the launch of many new meteorological satellites and the
rapid development of advanced data assimilation (DA) methods, satellite data has become one of
the main sources of observation data which is used in numerical weather prediction (NWP). For the
satellite radiance data, the simulated radiance can be obtained through the rapid radiation transmission
model when the atmospheric state, satellite scanning model and fixed surface attributes are given,
and then the background field of numerical simulation can be modified according to the differences
between the simulated radiance and the observed one, leading to an optimal analysis of the current
atmospheric state [1]. A large number of previous studies show that, in global [2–9] and regional
models [10–17], direct assimilation of satellite radiance data can improve the accuracy of NWP.

Until now, the direct assimilation of satellite radiance data has been recognized as an effective
way to reduce the errors of NWP. However, there is relatively little conventional observation data
over the broad ocean, which brings some difficulties and challenges to the analysis and prediction of
tropical cyclones (TCs). In the last few decades, many experts and researchers have been committed
to the direct assimilation of satellite observation data to effectively improve the prediction of the track
and intensity of TCs [18–26]. The Global Precipitation Measurement (GPM) [27], whose main satellite
was launched on 28 February 2014, with joint participation from the National Aeronautics and Space
Administration (NASA) and Japan Aerospace Exploration Agency (JAXA), aims to monitor global
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precipitation, thus effectively improving the accuracy of weather forecasts. It is equipped with a
dual-frequency precipitation radar (DPR) and a GPM microwave imager (GMI). The GMI not only
inherits nine channels from its previous generational imager, the TRMM microwave mmager (TMI)
devised by Tropical Rainfall Mission (TRMM) [28] to monitor heavy rain to light rain, but also adds
four high-frequency channels to effectively monitor snowfall. In addition, the spatial resolution of the
GMI is twice of that of the TMI, which is higher than any other former satellite precipitation product.

By now, some researches about GMI DA have been done to improve typhoon prediction and
encouraging results have been achieved. Based on two Atlantic hurricanes in 2015 and 2016, Pu et al.
(2018) [29] use the Hurricane Weather Research and Forecasting (HWRF) Model and the Gridpoint
Statistical Interpolation (GSI) assimilation system to make assessments on the clear-sky assimilation of
GMI brightness temperature and make a comparison of other prevailing microwave sounders like
the advanced microwave sounding unit-A (AMSU-A), the advanced technology microwave sounde
(ATMS), the microwave humidity sounding (MHS), etc., they found that clear-sky assimilation of
GMI radiance is able to positively improve both track and intensity forecasts. Since most of these
researches focus mainly on TCs over the Atlantic Ocean rather than the Western Pacific Ocean, the direct
assimilation of the new generational GMI radiance data in a limited regional area, especially in East Asia,
has not been carried out. Furthermore, the effectivity of the clear-sky three-dimensional variational
(3DVar) method for GMI DA in the WRFDA system has not been verified and there is still a lot of
work to be done. Therefore, this study intends to adopt the new generational Weather Research and
Forecasting Model (WRF) and its three-dimensional variational data assimilation system (3DVAR) to
address the influence of the direct assimilation of GMI radiance data on the analysis and prediction of
Typhoon “Chan-Hom” in July, 2015.

2. Observation Data and Assimilation System

2.1. GMI Microwave Imager Data

The GMI Microwave Imager is a passive radiometer jointly devised by the National Aeronautics
and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) [27]. It is mainly
used to measure cloud precipitation information. The GMI adopts conical scanning to the ground,
with a scanning width of 885 km and an elliptical field of view. In addition, the GMI antenna
diameter is increased from 61 cm to 1.2 m, so that higher spatial resolution can be obtained. In terms
of detection frequency bands, the GMI includes eight frequencies and 13 channels including low
frequency bands ranging from 10 GHz to 89 GHz and high frequency bands ranging from 166 GHz
to 183 GHz in Table 1. It should be mentioned that the charge-induced effects in water droplets
may be the additional source of anomalies at microwave frequencies contributing to the model
thermal fields [30]. The frequencies of channels 1 to 9 (10 GHz to 89 GHz) are similar to those of
their predecessor TMI microwave imagers. Among them, the 10 GHz low-frequency channel is only
sensitive to liquid precipitation, mainly monitoring the precipitation and water vapor distribution
in the lower troposphere. The 183 GHz high-frequency channel is used for deep detection of the
atmosphere, which is sensitive to the ice phase condensation, so the scattering signal of small ice
particles can be detected. In addition, light rain and snowfall are monitored by the other four high
frequency channels. The GMI has not only the ability to detect precipitation, but also the ability to
extend the coverage to midlatitude areas.
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Table 1. GPM microwave imager (GMI) sensor characteristics.

Channel Frequency (GHz) Polarization Mode Scan Point (km)

1, 2 10.65 V, H 19.4 × 32.2
3, 4 18.7 V, H 11.2 × 18.3

5 23.8 V 9.2 × 15.0
6, 7 36.5 V, H 8.6 × 15.0
8, 9 89.0 V, H 4.4 × 7.3

10, 11 166 V, H 4.4 × 7.3
12 183 ± 3 V 4.4 × 7.3
13 183 ± 7 V 4.4 × 7.3

2.2. The WRFDA Assimilation System

The Weather Research and Forecasting model data assimilation system (WRFDA) is developed
and maintained by National Centers for Atmospheric Research (NCAR), which is an affiliated part of
the mesoscale numerical model WRF (Weather Research and Forecasting model). It consists of the
three-dimensional variation (3DVAR) and the four-dimensional variation (4DVAR) data assimilation
systems, and hybrid assimilation [31]. In our research, the WRFDA assimilation system is expanded
and a module designed for GMI Microwave Imager data assimilation has been built independently.
In order to test the new assimilation module, this study adopts the traditional 3DVAR assimilation
method, which provides the best analysis field through the iterative minimization of cost function J(x):

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2
[
(
H(x) − y0)

TO−1(H(x) − y0)
]

(1)

where, x is the analysis variable (analysis vector); xb is the background field, generally the model
forecast field; B is the background error covariance matrix; y0 is the observation field; O is the
observation error covariance matrix; B−1 is the inverse matrix of B; O−1 is the inverse matrix of O;
y = H(x) is the observation equivalent of the analysis variable [32,33]. By calculating the minimum
value of the cost function, the estimation of the real atmospheric state at the analyzed time is obtained.
Thus, the optimal analysis xa field is found.

2.3. The Build of GMI Assimilation Module

In the current WRFDA assimilation system, the assimilation part of GMI Microwave Imager
data does not exist. Therefore, it is necessary to build the assimilation module for GMI Microwave
Imager data. In this study, the Community Radiative Transfer Model (CRTM) is employed to simulate
GMI radiance data. On the one hand, the scanning time, the earth incident angle and azimuth angle,
the sun azimuth angle and altitude angle, the longitude and latitude information and the brightness
temperature value are read from GMI level 1 data in HDF5 (Hierarchical Data Format 5) format
to provide input information for the simulation and calculation of brightness temperature of the
background field. On the other hand, the cloud liquid water path (CLWP) value in cloud read from the
level 2 file is used for quality control of observation data.

In the assimilation system, the quality control of observation data is very important. In order to
ensure the correctness of the experiment results, based on some former quality control methods for
other satellite observation data, a special quality control scheme suitable for GMI Microwave Imager
data is also considered, and the final quality control methods for GMI are included as follows:

(1) When reading GMI observation data, remove abnormal observation values, such as those less
than 50 K and more than 550 K, following Shen F. et al. (2015) [34], Yang C. et al. (2016) [24] and
Zou X. et al. (2013) [35] to exclude the invalid brightness temperature.

(2) Considering the complex underlying surface of the terrain, only the observations over sea are
assimilated, and the observations on the land and the observations with comparatively complex
types of sea surface are excluded. Those complex types refer to the mixed predominately sea,
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mixed predominately sea ice, mixed predominately land, or mixed predominately snow marked
by the WRF forecast model.

(3) According to the differences between the observations and the background simulated brightness
temperature, the observations beyond a specific threshold (Table 2) are eliminated.

(4) The observations which are larger than 3σ0 after the bias corrections are eliminated. σ0 is the
standard deviation of observation (Table 2).

(5) The observations of cloud liquid water path (CLWP) exceeding the threshold value (Table 2) are
eliminated. The threshold value is set according to the same frequency band of Chun Yang et al.
(2016) [24].

(6) Channel 8 and channel 9 (89.0 GHz) are sensitive to convective precipitation because channel 1 and
channel 2 (10 GHz) are greatly affected by surface emissivity. The study by Yang et al. (2016) [24]
in terms of selecting channels of AMSR2 is used as a reference. Thus, only the observation data of
channels 5, 6 and 7 with similar wavelengths with AMSR2 are chosen in this study.

Table 2. Observation error, threshold of cloud liquid water path (CLWP) and observation standard
deviation of GMI channels 5, 6 and 7.

Channel Observation Error Threshold of CLWP Threshold of σ0

5 1.60 0.25 8
6 1.18 0.10 6
7 2.67 0.10 6

In this study, GMI Microwave Imager data from 9 July 2015 to 11 July 2015 are used to make statistics
of observation errors. According to the differences between the observed brightness temperature and
the simulated clear-sky brightness temperature, the standard deviation is calculated as the observation
error [24]. It should be pointed out that there are some systematic errors in satellite observation data.
Thus, the errors need to be corrected before GMI observation data assimilation. Usually, the linear
combination of some predictors is used to express the radiance deviation [36]:

H̃x, β = H(x) + β0 +

NP∑
i=1

βipi (2)

There are three terms on the right side of the equation: The first item H(x) is the initial observation
operator (before the bias correction) of GMI DA, which is built in this study in the WRFDA system,
x is the model state vector; the second item β0 is the constant part of the total deviation; in the
third item, pi and βi are the i-th prediction factor and deviation correction coefficient. To the left of
the equation, H̃(x, β) is the modified observation operator. The deviation correction coefficient β is
usually assumed to be independent within the channel, and can be calculated through the off-line
variational minimization algorithm. This method is called variational bias correction (VarBC) [37].
Bias between observed and simulated brightness temperatures are usually functions of some model
variables along with their coefficients. Those model variables are called prediction factors (Liu et al.,
2012 [11]; Li et al., 2019 [36]). With the coefficients that are estimated offline initially, the bias can be
predicted and corrected. In our research, the WRFDA off-line calculation model of VarBC is used, and
GMI observation from 9 July 2015 to 11 July 2015 is used to obtain the deviation correction coefficient
at the initial time of GMI assimilation.
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3. Case Introduction and Experimental Design

3.1. Typhoon Introduction

Chan-Hom was formed near the east ocean of the Philippines on 30 June 2015 with a maximum
wind of 18 m/s and a minimum pressure of 995 hPa in its core. Then, it was upgraded to a severe tropical
storm on 2 July 2015 and a Typhoon on 3 July 2015 by the Japan Meteorological Agency (JMA). Forced
by the subtropical anticyclone, it moved northwest and was strengthened gradually. It approached
the coast of Fujian and Zhejiang Province in China on 10 July 2015 and landed in Zhejiang Province
on the following day. During this process, it went through a rapid intensification to a super typhoon.
Afterwards, it reentered the sea, moving northwest by north, and was weakened continuously due to
friction and the blocking of sufficient heat and moisture from the tropics. On the night of 12 July it
landed again at the Korean Peninsula. After landing, its strength continued to be weakened and its
number was stopped. Its track, observed by the China Meteorological Administration (CMA) [38],
is partially shown in Figure 1. Because of its long lifespan and high strength, the economic losses were
up to RMB 9.8 billion and heavy casualties occurred.
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Figure 1. Model domain with terrain height (shaded, unit: km) and the track of Typhoon “Chan-Hom”.

3.2. Model Configuration and Experimental Design

In this study, the Advanced Research WRF (ARW) version of WRF V4.0 is employed as the forecast
model. The center of the domain is 27◦ N, 124◦ E, with a horizontal resolution of 9 km, which is shown
in Figure 1. The topmost pressure layer of the model is 10 hPa, and the number of vertical layers
is 57. The initial and boundary conditions are generated by 1◦ × 1◦ horizontal resolution reanalysis
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data provided by the National Centers for Environmental Prediction (NCEP). Some parameterization
schemes are used in our experiments including the WSM6 (WRF Single-Moment 6-class) scheme [39],
the Kain–Fritsch cumulus parameterization scheme [40], the YSU (Yonsei University) boundary layer
scheme [41], the Dudhia scheme, and the RRTM (Rapid Radiative Transfer Model) scheme and Noah
Land surface model, for short wave radiation and long wave radiation, respectively [42].

Three steps are performed in this study. Firstly, a 6-h spin-up forecast started at 1200 UTC on 9 July
2015 is performed. Secondly, the forecast field at 1800 UTC on 9 July 2015 is used as the background or
first guess field for assimilation. Finally, a 48-h deterministic forecast is carried out. The experiments
are classified into three groups. The first experiment is the control experiment (CTNL), which is a
pure simulation without any assimilation. The second experiment is the assimilation of conventional
observation data from the Global Telecommunications System (GTS_DA), which only assimilates the
GFS (global telecommunications system) conventional observation data including the data of aircraft,
sounding, ships, ground stations, satellite cloud wind, etc. Figure 2 illustrates the distribution of
GTS observation data in the simulation domain at 1800 UTC on 9 July 2015. Based on the second
experiment, the third experiment further assimilates the GMI Microwave Imager data under clear-sky
conditions (GMI_DA). It is worth mentioning that in order to avoid the potential correlation between
adjacent observations, the GMI Microwave Imager data are thinned by 36 km.
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The background error covariance for assimilation is acquired by the NMC (National Meteorological
Center) method [43]. The detailed method is making 24-h and 12-h forecasts for 00 UTC and 12 UTC
from 1 July to 30 July 2015, respectively. Then, the difference between 24-h and 12-h forecasts at the
same starting time is viewed as the approximation of forecast error. In the framework of WRFDA,
there are mainly two schemes to calculate the background error covariance matrix B. The one is the
CV5 scheme with stream function, the unbalanced velocity potential, the unbalanced temperature,
the unbalanced surface pressure, and the pseudo relative humidity as the control variables. Another
one is the CV7 scheme with the zonal velocity, the meridional velocity, the temperature, the surface
pressure, and the pseudo relative humidity as the control variables. In this study, the CV5 scheme is
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adopted, which is more commonly used. To get the statistical background error covariance, the balance
relationship between the variables is further improved by using the non-equilibrium quantity between
the flow function and the background error covariance. By the transformation of control variables in
the matrix of background field error covariance, the characteristics of background field error covariance
of two dynamic control variables are analyzed. The vertical transformation of the matrix projects
the errors of the control variables onto the orthogonal modes in the vertical direction by empirical
orthogonal function (EOF), while the horizontal transformation of the matrix uses recursive filter to get
model horizontal correlation of individual control variables. Length scale is an important parameter of
horizontal transformation by determining the coefficient of recursive filter. Thus, its value can reflect
the sphere of influence when observational data are assimilated. Figure 3 is the variation of the length
scale of the control variables with different vertical modes. The maximum length scales of the two
dynamic control variables—stream function and unbalanced potential function—are around 400 km,
which are much larger than that of unbalanced temperature and relative humidity with a maximum of
around 50 km, leading the dynamic control variables to bring broader adjustments to the background
field. Generally, the length scales of all the control variables decrease with the vertical mode.
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4. Results

4.1. Simulation of the GMI Observation

To prove the effectiveness of GMI DA, channel 6 is listed to verify the simulation results. The results
for the other two assimilated channels yield similar results (not shown). Figure 4 shows the observed
brightness temperature, the simulated background brightness temperature, and the simulated analyzed
brightness temperature at 1800 UTC on 9 July 2015. Here it should be pointed out that analyzed
brightness temperature is simulated with the analyses as the input for the radiative transfer model.
Admittedly, due to the effect of charge-induced effects in water droplets, the anomalies at the microwave
frequencies may contribute to the improvement in the thermal field [30]. It can be inferred from
Figure 4a that there are three scanning tracks within the assimilation window. The middle track
covers the east part of typhoon “Chan-Hom” and a clear spiral cloud band can be seen. Therefore,
this time is chosen to further address the effect of GMI DA on the analysis and forecast of typhoon
“Chan-Hom”. Figure 4b shows the simulated background brightness temperature of the model, which
is acquired by a 6-h spin-up prediction. It can be seen that there are three scanning tracks in the whole
experimental domain and the spiral cloud band of the typhoon is not vivid enough. In the background
field, near the core of typhoon “Chan-Hom”, the overall brightness temperature is weaker than the
observed one. Figure 4c is the simulated analyzed brightness temperature. It can be found that the
simulated brightness temperature near the core of the typhoon is closer to the observed brightness
temperature than in Figure 4b, which shows that the analyzed field is closer to the observed field after
assimilating GMI radiance data.
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Figure 4. The brightness temperature (unit: K) of channel 6 of (a) the observation, (b) the background
simulation, and (c) the analyzed field after data assimilation (DA) at 1800 UTC on 9 July 2015.

Figure 5a,b are the observed brightness temperature minus the background brightness temperature
(OMB) after the bias correction, and the observed brightness temperature minus the analyzed brightness
temperature (OMA) after the bias correction at 1800 UTC on 7 July 2015. There are three scanning
tracks in the simulation domain and the typhoon spiral cloud band is covered by the middle track.
It can be seen from Figure 5a that most parts near the core of the typhoon have a positive value greater
than 10 K and this means the simulated brightness temperature of the background field is lower than
the observed brightness temperature. While in Figure 5b, the value of most parts covered by scanning
tracks is nearly 0 K, which denotes that the overall difference between the analyzed and the observed
brightness temperature decrease after GMI DA. In addition, the brightness temperature error of most
scanning points tends to be less than 0.1 K, matching well with the observation.
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4.2. Bias Correction

Figure 6a,b show the simulated and observed brightness temperature scatters before and after the
bias correction. The abscissa and the ordinate represent the observed brightness temperature value
and the simulated brightness temperature value by the CRTM (Community Radiative Transfer Model)
observation operator. It can be inferred from the diagram that before the bias correction, the simulated
brightness temperature of the background field and the observed brightness temperature have a good
correspondence in different brightness temperature ranges. It is noted that most scattered points are
below the diagonal, where the observed brightness temperature is equal to the background simulated
brightness temperature. This indicates that the simulated brightness temperature of the background is
lower than the observed brightness temperature. However, after the bias correction, it can be seen
from Figure 6b that the observed brightness temperature and the simulated background brightness
temperature are evenly distributed on both sides of the diagonal. Besides, the RMS (root mean square)
error is reduced from 3.110 K to 2.229 K with the bias correction. Figure 6c shows that after GMI
assimilation, the scattered points are more closely and evenly distributed on both sides of the diagonal.
In addition, the RMS error is also significantly reduced from 2.229 K to 0.753 K compared with Figure 6b
(before assimilation).
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4.3. The Impacts on the Analysis

4.3.1. Temperature Increment

The temperature increment of GTS_DA and GMI_DA are shown in Figure 7 at 1800 UTC on
9 July 2015 when the location of the typhoon is 25.1◦ N, 126.6◦ E. In GTS_DA, near the core of the
typhoon, there is a negative temperature increment, which is inconducive to the maintenance of the
typhoon. However, in GMI_DA, the sphere of the negative increment is greatly reduced, resulting
in a relatively positive increment. Probably due to the theory of charge-induced effects in water
droplets, anomalies at microwave frequencies are able to contribute to the model thermal fields [30].
This positive increment is favorable to the warm core structure of the typhoon and the sustainment of
typhoon intensity thermodynamically.
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4.3.2. Geopotential Height Increment

Figure 8 shows the geopotential height field and its increment field at 500 hPa for GTS_DA and
GMI_DA at 1800 UTC on 9 July 2015. Although little difference observed in the two typhoon centers
simulated by GTS_DA and GMI_DA, there are big differences in their increment geopotential height
fields. After GTS_DA, the northeast part of the typhoon has a negative increment, while the increment
in the southwest is a positive value. This height increment can generate a pressure gradient force,
which makes the typhoon move northeast compared with CTNL. However, after GMI_DA, the area
and the strength of the northeast negative increment and the southwest positive increment are enlarged.
In the following section, it can be proved that the correction by GMI_DA on the initial field is more
effective than that by GTS_DA, especially in the forecast of typhoon track.
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4.3.3. Low-Layer Flow

Figure 9 shows the geopotential height and streamline fields at 850 hPa of CTNL, GTS_DA,
and GMI_DA, respectively, at 1800 UTC on 9 July 2015. On the east of the typhoon core, the thickness of
streamlines of GTS_DA and GMI_DA is more intensive than CTNL, and the typhoon core of GMI_DA
with overlapped lines extends more to the east than in the other two experiments, denoting that the
typhoon is intensified after GMI DA.
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GMI_DA at 1800 UTC on 9 July 2015.

4.3.4. Steering Current

Figure 10 shows the wind field and geopotential height at 500 hPa of CTNL, GTS_DA, and GMI_DA,
respectively, at 1800 UTC on 9 July 2015. For CTNL, the wind speed near the outer side, especially
the northeast side, of the typhoon core is weaker than that of GTS_DA, and that of GMI_DA has the
strongest wind field. Meanwhile, near the 588 dagpm in the northeast position of the typhoon, the
southeast wind component of GMI_DA is larger than that in the CTNL and GTS_DA. It denotes that
GMI_DA is able to strengthen typhoon intensity. The relatively larger southeast flow is conductive to
driving the typhoon towards the northwest.
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Figure 10. Geopotential height (unit: gpm) and wind field (unit: m/s) at 500 hPa of (a) CTNL,
(b) GTS_DA, and (c) GMI_DA.

4.4. Typhoon Track

Further estimation of the influence of the GMI radiance DA on the forecast of Typhoon “Chan-Hom”
is performed by a 48-h deterministic forecast started at 1800 UTC on 9 July 2015. Figure 11a shows the
forecast track of Typhoon “Chan-Hom”. In the figure, “GMI”, “GTS”, “CTNL” and “BEST TRACK”
represent the assimilation of GMI together with GTS in clear-sky, the assimilation of GTS, the control
experiment without assimilation and the best typhoon observation data from CMA, respectively.
Generally speaking, all of the three forecasting methods are able to describe the tendency of “BEST
TRACK” and they all have a north twist when the model is integrated 36 h later. In the first 6 h,
the tracks of the three forecasting methods differ very little and both GMI_DA and GTS_DA have an
obvious advantage over CTNL in the following 42 h. It can be judged preliminarily that GMI_DA has
the least error, followed by GTS_DA, and the CNTL has the largest error. For a quantitative comparison,
the error of the three forecasting methods over time is shown in Figure 11b. It is remarkable that there
is an initial forecast error of about 30 km due to the 6-h spin-up. In the first 18 h, the forecast error of
GTS_DA and CTNL go through a slow increase, but that of GMI_DA decreases from 6 h to 12 h and it
remains below 40 km. The track errors from the three experiments increase with the forecast leading
time. It can be found that GMI_DA has the best effect since there is consistent reduction of the track
error with the largest error less than 160 km compared with those from “GTS” and “CNTL”.
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5. Conclusions

In this study, the interface of GMI DA was integrated in the WRFDA system and three experiments
were performed to address the influence of the clear-sky GMI radiance DA on the analysis and forecast
of Typhoon “Chan-Hom” (2015). The following are the main results from these experiments:

(1) The clear-sky assimilation of the new GMI radiance data can capture the shape and structure of
Typhoon “Chan-Hom” well. The deviation correction coefficient and quality control obtained
by the off-line model statistics of VarBC of WRFDA can improve the assimilation effect of the
experiment, reduce the standard deviation of observation residual after 3DVar, and ensure the
positive effect of GMI DA on typhoon analysis and forecast.

(2) Compared with GTS_DA, it is found that GMI_DA experiment can effectively increase the warm
core structure of the typhoon and modify the geopotential height field in the background field of
the model. The circulation of the typhoon is also intensified with GMI_DA, which can contribute
to the northwest twist of the typhoon.

(3) In the 48-h deterministic forecast, the track error of the typhoon predicted by the GMI_DA
experiment is the smallest, with a maximum value below 160 km, when compared with GTS_DA
and CTNL.

The results of this study show that the clear-sky assimilation of GMI radiance data has great
potential to improve the typhoon track forecast. The case study of Typhoon “Chan-Hom” also indicates
that GMI DA can provide positive effects on typhoon initialization and prediction. This study is a
preliminary trial and only a single clear-sky assimilation using the 3DVar method is conducted. Besides,
just one typhoon case is chosen for study. Therefore, future work will focus on more typhoon cases
and other superior DA methods such as the Four-Dimensional Variational (4DVar), and the hybrid
assimilation to further study the influence of all-sky GMI DA on typhoon analysis and prediction.
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