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The Northeast Asian 2018 heatwave is an unlikely event without anthropogenic forcing; only two 
have occurred over the last 40 years. By 2050 they will become 1-in-4-yr events. 

In the summer (July–August) of 2018 a record-breaking heatwave (HW) spread across 
Northeast Asia (NEA; 34°–40°N, 120°–143°E; Figs. 1a–c). Maximum 2-m air temperature 
(Tmax) anomalies over NEA in that summer were about +1.5°C, more than 1.5 standard 
deviations above the average using the three reanalysis datasets (Fig. 1d). It was the second 
highest anomaly since 1980. The subtropical high (Tibetan high) in the middle (upper) 
troposphere moved northwestward (northeastward) with a positive anomaly over NEA (see 
Figs. ES1a,1b in the online supplemental material). An equivalent barotropic structure (Figs. 
ES1a,b,f) characterized by large-scale subsidence emerged, providing a favorable condition 
for extreme hot days in NEA (JMA 2018). 

Several processes might have contributed to the 2018 HW (Enomoto 2004; Zhu et al. 
2011; Lee and Lee 2016). Anthropogenic warming has contributed to increasing HW 
frequency and intensity in recent decades (Song et al. 2015; Sippel et al. 2016; Oliver et al. 
2018). Natural variability can also contribute to HWs over Asia. Anomalous cyclonic 
circulation over the Indo-Pacific warm pool region inducing more active convection (Fig. 
ES1e) and diabatic heating could induce high temperature anomalies near NEA through 
exciting a Rossby wave train (Chen and Lu 2014; Lee and Lee 2016). This teleconnection 
may result from tropical sea surface temperature anomalies (SSTAs) associated with El 
Niño–Southern Oscillation (ENSO). Previous studies (e.g., Zhu et al. 2007; Wu et al. 2010; 
Lee and Lee 2016) identified a negative relationship between NEA summer temperature and 
the Niño-3.4 index (area-averaged SSTA over 5°S–5°N, 170°–120°W). The Arctic Oscillation 
(AO) can also influence circulation anomalies over NEA via a strong circumpolar vortex 
(Fig. ES1f), shifting the location of the subtropical jet farther north (Fig. ES1c; Lee and Lee 
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2016). Matsumura and Horinouchi (2016) found that a negative Pacific decadal oscillation 
(PDO) phase with a warmer surface condition near NEA (Fig. ES1e) could lead to a positive 
geopotential height anomaly, which could also be related to NEA HWs. In this study, we 
address the impacts of anthropogenic forcing and natural variability (i.e., ENSO, PDO, and 
AO) on the occurrence of the 2018 NEA HW and quantify future projections of NEA HWs 
using a large ensemble of simulations from a global coupled model developed at the 
Geophysical Fluid Dynamics Laboratory (GFDL). 

Data and methods. 
Daily Tmax is taken from three state-of-the-art reanalysis datasets: ERA-Interim (Dee et al. 

2011), MERRA2 (Gelaro et al. 2017), and JRA-55 (Kobayashi et al. 2015). Large-scale 
atmospheric variables are derived from ERA-Interim. Sea surface temperature (SST) is 
obtained from HadISST1 (Rayner et al. 2003) and precipitation is obtained from the Global 
Precipitation Climatology Project (Adler et al. 2003). All datasets are regridded to 1.5° × 
1.5°. Observed natural indices (Niño-3.4, PDO, and AO) were downloaded from their official 
websites (NOAA/ESRL 2019; NOAA 2019; NOAA/CPC 2019). All natural indices are 
averaged in summer (July–August) and normalized to 1980–2018. 

We conduct a suite of simulations using the 50-km-mesh GFDL Forecast-oriented Low 
Ocean Resolution model (FLOR; Vecchi et al. 2014). We examine two types of multidecadal 
simulations. One of them is a 35-member multidecadal simulation experiments (AllForc), in 
which the CMIP5 (phase 5 of the Coupled Model Intercomparison Project) historical natural, 
anthropogenic, and aerosol forcings up to 2005 are prescribed; future projected levels are 
based on the CMIP5 RCP4.5 scenario for 2006–50. AllForc is compared with a 30-member 
1941 forcing experiments (1941Forc), in which anthropogenic radiative forcing is fixed at the 
year 1941 value for years 1941–2050; natural forcing varies from year to year in this 
experiment (Murakami et al. 2015, 2017; Zhang et al. 2017). 

We define three HW-related variables in this study. First, we define the Tmax anomaly 
(TAnom). Observed and simulated TAnom is defined as the Tmax anomaly relative to the 
summer climatology over 1980–2018. Next we define two different heat wave day (HWD) 
events: modest and extreme. For modest HWD events, the 75th percentile of daily Tmax for 
each calendar day during 1 July–31 August with a 15-day window (e.g., 23 June–7 July on 1 
July) over 1980–2018 is selected. Thus, 585 samples (15 days × 39 years) for observations 
and 20,475 samples (15 days × 39 years × 35 members) for AllForc were used. We define a 
modest HWD event when a daily Tmax exceeds the 75th percentile for at least seven 
consecutive days. An extreme HWD event is calculated in the same way, but when Tmax 
exceeds the 90th percentile for at least three consecutive days. HWDs are the total number of 
days that meet each HW criteria in a summer. Note that the simulated Tmax is calibrated by an 
inflation method to reduce model bias before computing HW-related variables (Johnson and 
Bowler 2009; see the supplemental information). 

Most of the grids over the NEA region experienced both modest (blue pluses) and 
extreme (black dots) HWDs for more than 10 days in summer 2018 (Figs. 1a–c). To obtain 
NEA area-averaged results, the three HW-related variables were first computed on individual 
grids, and then the area average was taken over the NEA domain. The anomalies of area-
averaged extreme and modest HWDs in 2018 were 11.1 and 12.2, respectively; this is 
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comparable to the year with the most HWDs since 1980: 10.2 and 12.7 days in 1994 (Figs. 
1e,f). 

To assess the simulation ability of FLOR, the three HW-related variables in AllForc are 
compared with observations. AllForc can capture the amplitude of observed variability of the 
three HW-related variables well (Figs. 1d–f). Note that the observations are within the range 
of the ensemble spreads for all but for a few years, justifying our use of the FLOR model for 
our analysis. 

To evaluate the fraction of attributable HW risk to anthropogenic forcing (FARAllForc; 
Jaeger et al. 2008), FARAllForc is defined as FARAllForc = 1 − (P1941Forc/PAllForc), where PAllForc 
(P1941Forc) is the occurrence probability of extreme HW years in AllForc (1941Forc). The 
occurrence probability of an extreme HW year like 2018 [P(x)] in AllForc (PAllForc) and 
1941Forc (P1941Forc) is 

!  

where VAR is a HW-related variable, and P(x) represents the probability of a year with VAR 
value being no less than x. Because the observed 2018 HW falls into a 95th percentile or 
higher extreme year during 1980–2018, we choose x at the 95th percentile of all the VAR 
values from AllForc ensemble during 1980–2018 [i.e., from 1,365 (35 members × 39 years) 
sampling years]. The same x value is applied to the AllForc and 1941Forc ensembles to 
compute PAllForc and P1941Forc over each time period: 1941–79, 1980–2018, and 2019–50. A 
FARAllForc value close to 1 (ranging from −∞ to 1) implies that the extreme HW year is 
virtually impossible without an increase in anthropogenic forcing. 

Results. 
The probability density functions for HW-related variables in AllForc have similar 

distributions with those of the observations, indicating reasonable simulations of the HW-
related variables by FLOR (Figs. 2a–cfig2). The three FARAllForc values are in the range of 
0.75–0.82, indicating that the potential risk of extreme HW years increases with enhanced 
anthropogenic forcing. 

Figures 2d–f compare PAllForc (light gray bars) with P1941Forc (dark gray bars) for each of 
the present decades (1980–2018), past decades (1941–79), and future decades (2019–50). 
Compared with the rare occurrence of 0.05 (1.5 times per 30 years) of PAllForc during the 
present decades, P1941Forc is nearly zero, suggesting significant increase of probability due to 
anthropogenic forcing. Moreover, PAllForc in future decades is projected to increase 
substantially: up to 0.24–0.28 (7–8 times per 30 years). This implies that an extreme NEA 
HW year like 2018 would occur about once every four years in the next three decades. 

Potential influences of natural variability (e.g., ENSO, PDO, and AO) are also detected 
by comparing conditional PAllForc for which PAllForc is separately computed during different 
phases of natural variability [colored markers in Figs. 2d–f; detailed methods are given in 
Murakami et al. (2015)]. The potential effects of natural variability on PAllForc are measured 
by the lengths of the colored lines. The increased conditional PAllForc during both the positive 
phase of the AO and the negative phases of the ENSO and PDO over the present decades 
indicates that the positive AO (+2σ) and negative PDO (−0.4σ) increase the probability of a 

( ) Numbers of  year with VAR   ,
Total numbers of  years

xP x ≥=
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HW event. However, the modest El Niño condition (+0.2σ) (Fig. ES2) reduces the likelihood 
of a HW event. Overall, the effect of natural variability on the occurrence of 2018 HW is not 
negligible, but appears smaller than that of anthropogenic forcing. However, it is uncertain if 
FLOR perfectly reproduces the observed relationship between natural variability and HW. 
This uncertainty reduces our confidence in making clear statements of changes in the 
influence of natural variability on regional HWs without further research. 

Conclusions. 
A suite of large ensemble simulations using FLOR allows us to explore the probability of 

NEA HW events over the period of 1941–2050. We find that anthropogenic climate change 
increases the probability of the NEA 2018 HW event. Natural variability conditions (negative 
PDO and positive AO) may have also made the event more likely. Anthropogenic forcing will 
make extreme HWs (like that in 2018) 5 times more likely in future decades. 
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FIG. 1. Daily Tmax 2018 summer (July–August) anomaly (shading) in (a) ERA-Interim, (b) MERRA2, and (c) 
JRA55. Black dots (blue pluses) indicate that extreme (modest) HW events occurred for more than 10 days. 
Interannual variability averaged over NEA (34°–40°N, 120°–143°E; green box in (a)–(c) for (d) daily maximum 
air temperature anomaly (K), (e) extreme HWD anomaly (days), and (f) modest HWD anomaly (days). Black 
lines denote individual ensemble members of AllForc (35 total). Blue lines denote the average of three 
reanalysis datasets (ERA-Interim, MERRA2, and JRA-55). Shadings represent the range from minimum to 
maximum among the three reanalysis datasets (blue) and 35 ensemble members of AllForc (gray). Blue dashed 
lines represent ±1.5 standard deviations (σ) of the ensemble mean of the three reanalysis datasets during 1980–
2018. 
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FIG. 2. Probability distribution frequencies of (a) TAnom, (b) extreme HWDs, and (c) modest HWDs based on 
the three reanalysis datasets (black lines), 1941Forc (sky blue bars), and AllForc (pink bars) during 1980–2018. 
The thick dark blue lines represent the 95th percentile values in AllForc. FARAllForc values are shown. Also 
shown are PAllForc (light gray bars) and P1941Forc (dark gray bars) for (d) TAnom, (e) extreme HWDs, and (f) 
modest HWDs during the past decades (1941–79), present decades (1980–2018), and future decades (2019–50). 
The solid (hollow) circles and triangles represent conditional probability of PAllForc during positive (negative) 
and neutral phases of the ENSO (blue markers), PDO (green markers), and AO (deep pink markers) of present 
and future decades. 
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