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ABSTRACT

Based  on  climate  extreme  indices  calculated  from  a  high-resolution  daily  observational  dataset  in  China  during
1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6),
and 30 models from phase 5 of CMIP (CMIP5), are assessed in terms of spatial distribution and interannual variability. The
CMIP6  multi-model  ensemble  mean  (CMIP6-MME)  can  simulate  well  the  spatial  pattern  of  annual  mean  temperature,
maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties
in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating
extreme  precipitation  indices  is  generally  lower  than  in  simulating  temperature  indices.  Compared  to  CMIP5,  CMIP6
models  show  improvements  in  the  simulation  of  climate  indices  over  China.  This  is  particularly  true  for  precipitation
indices  for  both  the  climatological  pattern  and  the  interannual  variation,  except  for  the  consecutive  dry  days.  The  areal-
mean bias for total precipitation has been reduced from 127% (CMIP5-MME) to 79% (CMIP6-MME). The most striking
feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-
MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total
precipitation,  heavy  precipitation,  and  precipitation  intensity  in  the  eastern  Tibetan  Plateau  are  still  present  in  CMIP6-
MME, but smaller, compared to CMIP5-MME.
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Article Highlights:

•  CMIP6 models, as with CMIP5 models, generally perform better in simulating annual mean temperature, maximum daily
maximum temperature, and minimum daily minimum temperature, than in simulating extreme precipitation indices.

•  The persistent dry biases in southern China in CMIP5-MME are largely reduced in CMIP6-MME.
•  CMIP6 models show obvious improvements in simulating precipitation extremes compared with CMIP5 models.

 

 
 

1.    Introduction

General circulation models are important tools for under-
standing the climate system, reproducing its past and predict-
ing and projecting its future changes. To make models com-
parable to each other, the Working Group on Coupled Model-

ling under the framework of the World Climate Research Pro-
gramme  established  the  Coupled  Model  Intercomparison
Project (CMIP). CMIP is also devoted to providing standard-
ized climate simulations and outputs (Meehl et al., 2007), as
well as facilitating the use of such simulations among differ-
ent scientific communities. Since its inception, CMIP has con-
tributed greatly to  the various assessment  reports  produced
by the Intergovernmental Panel on Climate Change (IPCC)
(IPCC,  2007, 2012, 2013).  According  to  the  IPCC’s  Fifth
Assessment  Report,  CMIP5  models  exhibit  improvements
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in their simulation of surface temperature and large-scale pre-
cipitation  compared  to  the  previous  exercise  of  CMIP
(IPCC, 2013),  but are generally more skillful  in simulating
surface  air  temperature  than  precipitation  (IPCC,  2007,
2012, 2013; Flato  et  al.,  2013; Sillmann  et  al.,  2013;
Koutroulis et al., 2016). It has also been shown that CMIP5
models are more skillful than CMIP3 models in simulating
various  aspects  of  the  Asian  summer  monsoon  (Sperber  et
al.,  2013),  as  well  as  the  climatological  spatial  pattern  and
the  dominant  mode  of  summer  precipitation  in  the  Pan-
Asian monsoon region (Gao et al., 2015).

Recently,  several  studies  focused  on  the  capability  of
CMIP models in reproducing climate over China. The same
conclusion  was  reached  with  a  better  performance  for
CMIP5  models,  compared  to  their  precedent  generation
CMIP3  models  (Committee  of  the  Third  China’s  National
Assessment  Report  on  Climate  Change,  2015).  However,
there are some discrepancies for both temperature and precip-
itation. For instance, cold biases are generally present in west-
ern China (Guo et al., 2013; Sun et al., 2015), and overestim-
ated precipitation in the eastern part  of the Tibetan Plateau
(Xu  et  al.,  2010; Su  et  al.,  2013).  Extreme  precipitation  is
also  generally  overestimated,  especially  in  western  China
and in mountainous regions, while precipitation in southern
China is always underestimated (Jiang et al., 2009; Jiang et
al., 2012, 2015; Ou et al., 2013; Chen et al., 2014; Chen and
Sun,  2014; Chen  and  Frauenfeld,  2014; Kusunoki  and
Arakawa, 2015).

Nowadays,  CMIP  is  entering  into  its  sixth  phase
(CMIP6),  the  models  of  which  have  higher  spatial  resolu-
tions and improved parameterization schemes for major phys-
ical  and  biogeochemical  processes  of  the  climate  system
(Taylor  et  al.,  2012; Eyring  et  al.,  2016).  Most  modeling
groups  are  releasing  their  new  simulations  with  the  pub-
lished documentation of their model evolution from CMIP5
to CMIP6 (Kawai et al., 2019; Park et al., 2019; Wu et al.,
2019; Gusain et al., 2020). However, few works have been
devoted to assessing the ensemble behaviors of CMIP6 mod-
els,  especially  in  simulating  climate  extremes  over  China.
This aspect is what we want to address in the current study,
with  two  questions  framing  our  main  motivation:  (1)  How
does the MME (multi-model ensemble) of the CMIP6 mod-
els  perform  in  simulating  current  climate  extremes  over
China? (2)  What  is  the  level  of  improvement  from CMIP5
to CMIP6 in this regard?

To answer these questions, simulations from 12 CMIP6
climate models were quantitatively assessed with skill-score
metrics. We took all CMIP6 simulations available on ESGF
as of August 2019 (when we started this work), and their per-
formances  were  compared  with  those  of  the  30  existing
CMIP5  models.  We  are  aware  that  the  12  CMIP6  models
used  here  are  not  necessarily  the  successors  of  the  30
CMIP5 models, but our goal was to assess the ensemble beha-
viors of the two phases of CMIP. This objective is quite dis-
tinct  from  that  of  each  individual  model  to  document
changes  of  model  constitution  and  performance.  In  this
work, we want to provide a reliable scientific basis for end-
users of CMIP6 simulations who are interested in the projec-

tion of future climate changes in China.

2.    Data and methods

2.1.    Data

As a reference from observation, we used the daily grid-
ded dataset, CN05.1, with a resolution of 0.5° in both latit-
ude and longitude, including four basic variables: temperat-
ure  (TM),  daily-maximum  temperature  (TX),  daily-min-
imum temperature (TN), and precipitation.  It  was provided
by  the  National  Climate  Center  of  the  China  Meteorolo-
gical  Administration  based  on 2416 observation  stations,
unevenly covering the whole of China (Wu and Gao, 2013).
This  dataset  has  been  widely  used  in  research  on  climate
change over China (Dong et al., 2015; Xu et al., 2018).

The simulated daily maximum temperature and daily min-
imum temperature  and  precipitation  from 12  CMIP6  mod-
els  and  30  CMIP5  models  were  retrieved  through  the  data
portals of the ESGF. Only the first historical realization was
analyzed  for  each  model.  We  used  the  same  period,  from
1961 to 2005, for both models and observations. The mod-
els  used,  along  with  their  basic  information,  are  listed  in
Table 1 for CMIP5 and Table 2 for CMIP6.

Different  climate  indices  from  different  models  and
observations  were  firstly  calculated  on  their  native  grids.
Then, to facilitate the intercomparison, a bilinear interpola-
tion  scheme  was  used  to  interpolate  all  indices  to  a  com-
mon 1° × 1° grid.

Monthly  vertical  velocity  together  with  meridional
wind  and  specific  humidity  were  also  used  in  our  study  to
search  for  the  possible  reasons  behind  the  better  perform-
ance  of  CMIP6-MME  to  reproduce  precipitation  in  South
China. The corresponding variables from the NCEP–NCAR
reanalysis, with a resolution of 2.5°, were used as a reference
for the same period, 1961–2005. All models were interpol-
ated to a 2.5° × 2.5° grid to facilitate the intercomparison.

2.2.    Climate indices

In this work, we consider 10 climate indices, including
the  annual  average  temperature  and  nine  extreme  indices
defined  by  the  Expert  Team on  Climate  Change  Detection
and Indices (http://etccdi.pacificclimate.org/; see Table 3 for
details).  These  indices  have  been  widely  used  in  climate
change  research  and  are  considered  as  representative  for
model  performance  (Frich  et  al.,  2002; Zhang et  al.,  2011;
Zhou et al., 2014; Akinsanola and Zhou, 2019).

2.3.    Evaluation method

2.3.1.    Taylor diagram

To evaluate the overall skill in reproducing the spatial pat-
tern of the present-day climate indices,  the Taylor diagram
and  Taylor  skill  score  (TS)  (Taylor,  2001; Wang  et  al.,
2018) were used. The Taylor diagram provides a concise stat-
istical summary of the degree of correlation (PCC; pattern cor-
relation  coefficient),  centered  root-mean-square  error
(RMSE), and the ratio of spatial standard deviation (RSD).
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The similarity between observations and simulations can be
quantified by their correlation and the amplitude of the variab-
ility.  A  perfect  simulation  would  be  one  with  a  centered
RMSE  equal  to  0  and  both  the  PCC  and  RSD  close  to  1.
The TS is a combined measure and calculated as:
 

TS =
4(1+R)2(

σso

σsm
+
σsm

σso

)2

(1+R0)2

, (1)

where R is the spatial correlation coefficient between the sim-
ulation and observation; R0 is the maximum correlation coeffi-
cient attainable (here we use 0.999); and σsm and σso are the
standard deviations (SDs) of the simulated and observed spa-
tial  patterns,  respectively.  The  score  equals  1  for  a  perfect
match  between  the  model  and  observation,  and  0  for  an
inverse model performance.

2.3.2.    Interannual variability skill score

The method to quantitatively express the interannual vari-

Table 1.   Model names, modeling centers and countries, as well as the atmospheric resolutions, of 30 CMIP5 global climate models.

Model number Model name Modeling center and country Atmospheric resolution
(lat × lon)

1 ACCESS1.0 Commonwealth Scientific and Industrial Research
Organization and Bureau of Meteorology(Australia)

1.24°×1.875°

2 BCC-CSM1.1 Beijing Climate Center, China Meteorological
Administration (China)

2.8°×2.8°

3 BCC-CSM1.1-m Beijing Climate Center, China Meteorological
Administration (China)

1.125°×1.125°

4 BNU-ESM College of Global Change and Earth System Science,
Beijing Normal University (China)

2.8°×2.8°

5 CanCM4 Canadian Centre for Climate Modelling and Analysis
(Canada)

2.8°×2.8°

6 CanESM2 Canadian Centre for Climate Modelling and Analysis
(Canada)

2.8°×2.8°

7 CCSM4 National Center for Atmospheric Research (USA) 0.94°×1.25°
8 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti

Climatici(Italy)
0.75°×0.75°

9 CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti
Climatici(Italy)

1.875°×1.875°

10 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research
Organization in collaboration with Queensland Climate
Change Centre of Excellence (Australia)

1.875°×1.875°

11 CNRM-CM5 Centre National de Recherches Météorologiques–Centre
Européen de Recherche et de Formation Avancée en Calcul
Scientifique (France)

1.4°×1.4°

12 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences and Center for Earth System Science, Tsinghua
University(China)

3°×2.8°

13 FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences(China)

1.67°×2.8°

14 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.0°×2.5°
15 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.0°×2.5°
16 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory (USA) 2.0°×2.5°
17 HadCM3 Met Office Hadley Centre(United Kingdom) 2.5°×3.75°
18 HadGEM2-CC Met Office Hadley Centre(United Kingdom) 1.24°×1.875°
19 HadGEM2-ES Met Office Hadley Centre(United Kingdom) 1.24°×1.875°
20 IPSL-CM5A-LR L’Institut Pierre-Simon Laplace(France) 1.875°×3.75°
21 IPSL-CM5A-MR L’Institut Pierre-Simon Laplace(France) 1.26°×2.5°
22 MIROC4h National Institute for Environmental Studies,The University

of Tokyo (Japan)
0.56°×0.56°

23 MIROC5 National Institute for Environmental Studies,The University
of Tokyo (Japan)

1.4°×1.4°

24 MIROC-ESM National Institute for Environmental Studies,The University
of Tokyo (Japan)

2.8125°×2.8125°

25 MIROC-ESM-CHEM National Institute for Environmental Studies,The University
of Tokyo (Japan)

2.8125°×2.8125°

26 MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 1.875°×1.875°
27 MPI-ESM-MR Max Planck Institute for Meteorology (Germany) 1.875°×1.875°
28 MPI-ESM-P Max Planck Institute for Meteorology (Germany) 1.875°×1.875°
29 MRI-CGCM3 Meteorological Research Institute (Japan) 1.125°×1.125°
30 NorESM1-M Norwegian Climate Centre (Norway) 1.8725°×2.5°
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ability skill score (IVS) is the same as employed in Chen et
al. (2011): 

IVS =
(
σto

σtm
− σtm

σto

)2

, (2)

where σtm and σto denote the interannual  SDs of the model
simulations and observations, respectively. Smaller IVS val-
ues indicate better performance of the simulation.

3.    Evaluation  of  CMIP6  models  and
comparison with CMIP5 models

3.1.    Temperature indices

3.1.1.    Climatology

In order to evaluate the capability of models in reprodu-
cing temperature indices over China, Fig. 1 shows the box-

and-whisker  plots  and  the  spatial  distribution  of  biases
between simulations (CMIP6-MME and CMIP5-MME) and
observation  from  1961  to 2005. All  the  box-and-whisker
plots  use  the  commonly  used  convention  with  upper  and
lower limits of the box indicating the 75th and 25th percent-
ile  values,  the  horizontal  line  in  the  box  indicating  the
median,  the  dot  in  the  box  indicating  the  mean,  and  the
whiskers showing the 90th and 10th percentile values. It can
be  seen  that  CMIP6-MME  has  a  general  cold  bias
throughout  the  country.  The  areal-mean  bias  of  CMIP6-
MME for  annual  mean  temperature  (Tav),  maximum daily
maximum  temperature  (TXx),  and  minimum  daily  min-
imum temperature (TNn) in the whole of China is −1.64°C,
−0.45°C and −4.51°C, respectively. Large cold biases are loc-
ated over the Tibetan Plateau, where the local bias is more
than 4°C for Tav and 8°C for TNn. Compared with CMIP5-
MME,  CMIP6-MME  does  not  present  obvious  differences
for  Tav  or  TNn.  Except  for  TXx,  the  general  warm  bias
(0.93°C)  in  CMIP5-MME  becomes  a  general  cold  bias

Table 2.   Model names, modeling centers and countries, as well as the atmospheric resolutions, of 12 CMIP6 global climate models.

Model number Model name Modeling center and country Atmospheric resolution (lat × lon)

1 BCC-CSM2-MR Beijing Climate Center, China Meteorological
Administration (China)

1.125°×1.125°

2 BCC-ESM1 Beijing Climate Center, China Meteorological
Administration (China)

2.8°×2.8°

3 CNRM-CM6-1 Centre National de Recherches
Météorologiques–Centre Européen de Recherche
et de Formation Avancée en Calcul Scientifique
(France)

1.4°×1.4°

4 CNRM-ESM2-1 Centre National de Recherches
Météorologiques–Centre Européen de Recherche
et de Formation Avancée en Calcul Scientifique
(France)

1.4°×1.4°

5 EC-Earth3-Veg EC-EARTH consortium 0.7°×0.7°
6 GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory

(USA)
1°×1.25°

7 GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory
(USA)

1°×1.25°

8 IPSL-CM6A-LR L’Institut Pierre-Simon Laplace(France) 1.26°×2.5°
9 MRI-ESM2-0 Meteorological Research Institute (Japan) 1.125°×1.125°
10 NESM3 Nanjing University of Information Science and

Technology(China)
1.875°×1.875°

11 SAM0-UNICON Seoul National University(Republic of Korea) 0.94°×1.25°
12 UKESM1-0-LL Met Office Hadley Centre(UK) 1.25°×1.875°

Table 3.   Names, abbreviations, definitions, and units of climate indices used in the study.

Name Abbreviation Definition Units

Avg TM Tav Annual average value of daily temperature (TM) °C
Max TX TXx Annual maximum value of daily maximum temperature (TX) °C
Min TN TNn Annual minimum value of daily minimum temperature (TN) °C

Cold nights TN10p Percentage of days when TN < 10th percentile %
Warm days TX90p Percentage of days when TX > 90th percentile %

Total precipitation Prcptot Annual total precipitation in wet days (RR ≥ 1 mm) mm
Heavy precipitation R95p Annual total precipitation from days > 95th percentile mm

Precipitation intensity Sdii Total wet days precipitation divided by the number of wet days mm d−1

Consecutive dry days CDD Maximum number of consecutive days with RR <1 mm d
Extremely heavy rain days R20mm Annual count of days with RR ≥ 20 mm d
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Fig.  1.  Box-and-whisker  plots  (left  column)  and  the  spatial  pattern  of  biases  (simulation  minus  observation)  in  CMIP6-
MME  (middle  column,  red)  and  CMIP5-MME  (right  column,  blue)  of  temperature  indices  for  the  historical  period,
1961–2005  (units:  °C,  °C,  °C,  %,  %).  The  areal-mean  bias  (Bias)  over  China  and  the  intermodel  SD  of  the  difference
averaged over the country (middle and right column) are given on the top of each panel. From top to bottom are (a–c) Tav,
(d–f) TXx, (g–i) TNn, (j–l) TN10p and (m–o) TX90p, respectively. The dotted areas in the middle panels represent regions
where biases in CMIP6-MME are lower than in CMIP5-MME and the difference is statistically significant at the 5% level.
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(−0.45°C) in CMIP6-MME (Figs. 1e and f). Regions where
biases in CMIP6-MME are lower than in CMIP5-MME and
their difference is statistically significant at the 5% level are
dotted in the middle panels. The dotted areas in Fig. 1e repres-
ent the simulated bias for TXx from CMIP6-MME is signific-
antly reduced in North China and parts of Xinjiang. The dot-
ted areas  are  mainly  located in  Xinjiang for  Tav and TNn,
which  indicates  the  bias  over  Xinjiang  is  also  reduced  in
CMIP6-MME (Figs. 1b and h).

Generally speaking, it is difficult to evaluate model per-
formances  with  percentile  indices  because  the  mean
threshold  exceedance  rate  in  the  base  period  is  approxim-
ately the same for all models and observations (Sillmann et
al., 2014; Chen and Sun, 2015). The calculations of these per-
centile indices for the models and observations are implemen-
ted  over  the  standard  base  period  of  1961–90,  and  the  cli-
matic  mean  analyses  are  calculated  over  the  period  of
1961–2005. There  is  a  systematic  overestimation  from
CMIP6-MME  for  cold  nights  (TN10p),  but  a  systematic
underestimation  for  warm  days  (TX90p).  CMIP5-MME
shows  similar  spatial  characteristics  for  TN10p.  However,
the  simulated  bias  is  basically  distributed  as  a  north–south
dipole for TX90p, with negative bias in the north and posit-
ive bias in the south.

Apart  from  biases  measuring  the  deviation  of  models
from observation,  the  intermodel  spread  is  also  considered
as an important assessment for CMIP models, since it indic-
ates the degree of consensus across the climate modeling com-
munity, and ultimately serves as a surrogate to measure uncer-
tainty  in  climate  models,  especially  for  the  projection  of
future climate. With this idea in mind, we next evaluate the
SD among models for CMIP5 and CMIP6 respectively. We
follow what was done in Jiang et al. (2016) and display the
areal-mean SD over the whole of China in the upper part of
each  relevant  panel  in Fig.  1.  The  intermodel  SD  for  all
CMIP6  models  (CMIP6-twelve)  is  generally  smaller  than
that of all CMIP5 models (CMIP5-thirty) for most temperat-
ure indices (except TNn). We believe that such a difference
is  not  significant,  since  CMIP5  (30  members)  is  more
diverse  than  CMIP6  (12  members).  Results  (not  shown)
from a subset  of  six CMIP6 models (CMIP6-six) and their
CMIP5 predecessors (CMIP5-six) do not permit us to con-
clude significant differences either, which confirms that the
intermodel spread is quite comparable between CMIP5 and
CMIP6.

Taylor diagrams and TSs are also used to further evalu-
ate the overall skills of models in reproducing the spatial pat-
tern of temperature indices. Figure 2 shows the Taylor dia-
grams  for  the  12  CMIP6  and  30  CMIP5  models  and  their
MME  against  observations,  combined  with  the  TS  histo-
grams of their MME. The majority of models (both CMIP5
and CMIP6) have PCCs greater than 0.85 for Tav, TXx, and
TNn. This indicates that the coupled models perform well in
simulating  the  spatial  distribution  of  these  indices,  with
RSDs between 0.75 and 1.25 and RMSEs less than 0.5. The
result from the MME is furthermore much better than for indi-
vidual  models.  The  PCC  and  TS  for  each  index  of  both

CMIP5-MME  and  CMIP6-MME  are  above  0.94,  the  RSD
is close to 1,  and the RMSE close to 0.25.  Compared with
CMIP5,  CMIP6 models  also show some improvements  for
TXx, with larger PCCs and TSs. If we examine TN10p and
TX90p,  presented in the lower panels  in Fig.  2,  all  models
(both  CMIP5  and  CMIP6)  show  relatively  poor  perform-
ances,  with  PCCs  below  0.5.  Even  the  MME  is  not  good
enough, with PCCs below 0.6 and TSs below 0.3. This fea-
ture has also been revealed by previous studies (e.g., Chen
and Sun, 2015).

We  also  compared  the  subset  of  CMIP6-six  models
with their  CMIP5-six predecessors  by using similar  Taylor
diagrams (results not shown), and the performance of mod-
els  for  temperature  indices  was  generally  similar  between
CMIP6  and  CMIP5.  It  was  even  noticeable  that,  for  TNn,
CMIP6 models  presented some degradation,  mainly due to
the  poor  performance of  IPSL-CM6A-LR.  The capabilities
of their ensemble means (MME) in reproducing the climatolo-
gical temperature indices were also close to each other. For
the subset of six affiliation-identified simulations, we also per-
formed  a  further  analysis  as  presented  in Sillmann  et  al.
(2013), providing a compact graphical overview of models’
performances relative to each other. The basic calculation is
the  RMSE  relative  to  the  observed  climatology,  and  then
the  RMSE  is  subtracted  and  normalized  by  the  median
value among the models to compare and for each parameter.
Such a processing allows half of the models with positive val-
ues and the second half with negative values. It is clear that
models  with  negative  values  perform  better  compared  to
those  with  positive  values.  Results  for  temperature  indices
are shown in Fig. 3, wherein colors are used to show the mag-
nitude of the normalized relative RMSE; warm colors indic-
ate models in the bad half, and cold colors indicate models
in the good half. From a visual inspection, we can easily con-
clude that the six affiliated CMIP6 simulations are not distin-
guishable from their CMIP5 counterparts.

Generally  speaking,  both  CMIP6-MME  and  CMIP5-
MME exhibit good capabilities in simulating the spatial distri-
bution of Tav, TXx and TNn, but have difficulties in reprodu-
cing TN10p and TX90p. CMIP6-MME still has cold biases
over  the  Tibetan  Plateau  for  Tav  and  TNn,  which  may  be
related to the complex physical characteristics of the underly-
ing surface of the plateau. Climate models, with their relat-
ively coarse resolution, cannot depict the steep terrain of the
plateau and the complex characteristics of the underlying sur-
face (IPCC, 2007, 2013; Gao et al.,  2008).  However,  com-
pared with CMIP5-MME, the warm biases for TXx in some
regions  of  Northwest  China  have  significantly  reduced  in
CMIP6-MME. The capability  of  CMIP6-MME to  simulate
the  spatial  distribution  of  TN10p  and  TX90p  is  still  relat-
ively  poor,  but  shows  some  improvement  in  comparison
with  CMIP5-MME.  Considering  all  temperature  indices  as
a  whole,  we  can  conclude  that  the  simulation  performance
regarding  their  spatial  pattern  is  similar  in  CMIP6  and
CMIP5, and the intermodel spread is at a comparable level
in CMIP5 and CMIP6.
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3.1.2.    Interannual variability

The performance in simulating the temporal variation is
also a very important factor to measure the capability of mod-
els.  The  IVS  defined  in  section  2.3.2  is  used  here  to
quantify the similarity of the interannual variability between
simulated and observed indices. Figure 4 gives the IVS histo-
gram of models for five temperature indices in China. Both
CMIP6 and CMIP5 models can realistically simulate the inter-
annual  variation  of  temperature  indices,  with  a  mean  IVS
less than 1. The mean IVS of Tav, TN10p and TX90p from
CMIP6  models  is  0.26,  0.33  and  0.25,  respectively.  The
mean IVS of Tav, TN10p and TX90p from CMIP5 models

is  0.35,  0.28  and  0.31,  respectively.  CMIP6  models  per-
form  better  than  CMIP5  models  for  TXx;  the  mean  IVS
from CMIP6 and CMIP5 models is 0.51 and 0.91, respect-
ively. Considering all temperature indices, we can again con-
clude that  the  simulation of  interannual  variation of  differ-
ent  temperature  indices  is  of  similar  performance  between
CMIP6 and CMIP5.

3.2.    Precipitation indices

3.2.1.    Climatology

The simulation of precipitation is more challenging for

 

 

Fig. 2. Taylor diagrams (a–e) and skill scores in terms of TS (f) showing the performance of models (CMIP6 in red,
CMIP5  in  blue)  in  simulating  climatological  fields  over  China  for  five  temperature  indices.  Angular  axes  show
pattern correlation coefficients between simulated and observed fields; radial axes show the spatial centered RMSE
(normalized against the observed). Blue and red numbers indicate CMIP5 and CMIP6 models listed in Tables 1 and
2. The larger solid circles represent the MME. The scale of Tav, TXx, TNn is on the left y-axis, and that of TN10p
and TX10p is on the right y-axis.
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models as it depends closely on the parameterization of com-
plex physical processes and their implementation in models.
Major  challenges  are  linked  to  surface  properties  (topo-
graphy, coastline, vegetation) that lead to much greater spa-
tial heterogeneity at regional scales (IPCC, 2007, 2013). Fig-
ure 5 shows the box-and-whisker plots and the spatial distribu-
tion of biases between simulation and observation for differ-
ent precipitation indices for the common period from 1961
to 2005. The  precipitation  indices  simulated  by  CMIP6-
MME  are  generally  overestimated,  except  for  consecutive
dry  days  (CDD).  The  areal-mean  relative  bias  of  CMIP6-
MME  for  total  precipitation  (Prcptot),  heavy  precipitation

(R95p),  and  precipitation  intensity  (Sdii),  in  the  whole  of
China, is 79%, 85% and 21%, respectively. The largest wet
bias is located over the Himalayan mountains and the east-
ern part of the Tibetan Plateau, where the local bias is more
than 600 mm for Prcptot, 150 mm for R95p, and 3 mm d−1

for  Sdii,  respectively  (Figs.  5b, e and h).  The  subset
ensemble means from six models with identified affiliation,
CMIP5-six  and  CMIP6-six,  perform in  a  very  similar  way
as in Fig. 5.

CMIP6-MME shows significant improvements in the sim-
ulation  of  precipitation  indices  compared  with  CMIP5-
MME,  except  for  CDD,  which  has  similar  performance  in
the  two  ensembles.  For  Prcptot  (Fig.  5a),  the  areal-mean
bias has been reduced from 127% in CMIP5-MME to 79%
in  CMIP6-MME.  Similarly,  the  median  relative  bias  has
also  been  reduced,  from  51%  (CMIP5-MME)  to  30%
(CMIP6-MME). Although the high skewness of the precipita-
tion distribution leads to different behaviors, both the mean
and median show a clear improvement from CMIP5-MME
to  CMIP6-MME.  CMIP5-MME  shows  obvious  dry  biases
in the south of the Yangtze River for Prcptot, R95p and Sdii
(negative  bias  for  extremely  heavy  rain  days,  R20mm),
while  dry  (negative)  biases  are  significantly  decreased  in
CMIP6-MME (Figs. 5b, e, h and n, dotted areas). This fea-
ture is  also observed with the subset  ensemble results.  The
biases of Prcptot (exceeding −400 mm) and R95p (exceed-
ing  −100  mm)  in  CMIP5-MME  over  South  China  are
reduced  to  less  than  −200  mm  and  −50  mm  in  CMIP6-
MME, respectively. The Tibetan Plateau is also within the dot-
ted area in Fig. 5 (middle column), which indicates the large
wet bias here is reduced in CMIP6-MME.

CDD does  not  show obvious  improvement  in  CMIP6-
MME,  with  overestimation  in  Xinjiang  and  in  southern
China,  but  underestimation  in  other  regions,  especially  in
the  Kunlun  Mountains  (north  part  of  the  Tibetan  Plateau),
where  the  bias  is  over  60  days  (Fig.  5k).  The  areal-mean
bias of CDD over the whole of China is −15.7 days. The spa-
tial distribution from CMIP5-MME is similar, and the areal-
mean bias over China is −13.1 days.

Unlike temperature  indices  showing inconclusive vari-
ation  between  CMIP5  and  CMIP6  in  terms  of  intermodel
spread,  precipitation  indices  display  a  clearer  trend  of
reduced intermodel  spread from CMIP5 to CMIP6.  This  is
true  for  the  total  ensembles  (Fig.  5)  and  the  subset
ensembles (results not shown).

Figure 6 shows Taylor diagrams and TSs as a concise rep-
resentation  of  performance  with  respect  to  all  precipitation
indices.  Most  models  (for  both  CMIP5  and  CMIP6)  have
PCCs between 0.6 and 0.9 for Prcptot, R95p and Sdii, indicat-
ing that the coupled models have certain capability in simulat-
ing  the  spatial  distribution  of  these  indices.  For  Sdii  espe-
cially, the PCCs are all larger than 0.7 and the RMSEs smal-
ler than 0.75. However, they are generally less skillful in sim-
ulating CDD and R20mm. For CDD in particular, the PCCs
of almost all models (both CMIP5 and CMIP6) are smaller
than  0.75,  and  the  RSDs  are  further  away  from  1.  The
model  spread  of  most  precipitation  indices  is  much  larger

 

Fig. 3.  Portrait  diagram of relative spatially averaged RMSEs
in  the  1961–2005  climatologies  of  temperature  indices
simulated by CMIP6 (red) and CMIP5 (blue) models from the
same institution with respect to the observation.

 

Fig.  4.  Skill  scores  in  terms  of  IVS  for  the  five  temperature
indices in CMIP6 (red) and CMIP5 (blue) models over China.
The  filled  bars  show  the  ensemble  mean,  and  the  error  bars
represent ranges of one SD (1σ) among models. Asterisks (**)
indicate  that  the  differences  between  CMIP6  and  CMIP5
models  are  significant  at  the  95%  confidence  level  based  on
the t-test, with an asterisk (*) for 90%.
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Fig. 5. As in Fig. 1. but for (a–c) Prcptot, (d–f) R95p, (g–i) Sdii, (j–l) CDD and (m–o) R20mm (units: mm, mm, mm d−1, d, d).
The  areal-mean  percentage  bias  (Bias)  over  China  and  the  intermodel  SD of  the  difference  in  percentage  averaged  over  the
country (middle and right column) are given on the top of each panel (but with bias and intermodel SD of the difference for
R20mm; units: d).

ZHU ET AL. 9

 

  



than  that  of  temperature  indices  (Tav,  TXx  and  TNn)  in
both CMIP5 and CMIP6. The MME is generally better than
individual models, with a larger PCC and smaller RMSE.

The  performance  of  CMIP6  models  has  clearly
improved compared with that of CMIP5 models, especially
for  R95P  and  Sdii.  The  PCC  for  R95p/Sdii  has  increased
from  0.80/0.87  (CMIP5-MME)  to  0.86/0.92  (CMIP6-
MME);  and  the  TS for  R95p/Sdii  has  also  increased,  from
0.79/0.83 to 0.86/0.89, respectively. The RSD from CMIP6-
MME is also closer to 1, and the RMSE closer to 0, which
indicates that the performance in simulating the spatial pat-
tern  of  R95p  and  Sdii  is  more  significantly  improved  than
for other indices from CMIP6-MME. CDD also presents cer-
tain  improvements  from  CMIP5  to  CMIP6,  with  the  TS
increasing  from  0.61  (CMIP5-MME)  to  0.69  (CMIP6-
MME). The subset ensemble CMIP6-six also shows signific-
ant  improvements  compared to  its  counterpart,  CMIP5-six,
for most precipitation indices, including the ensemble aver-
age. A few models (e.g., BCC-CSM2-MR, GFDL-CM4 and
GFDL-ESM4) even systematically outperform their CMIP5
predecessors for all precipitation indices. The capability of cli-
mate  models  to  reproduce  climatological  precipitation
indices  over  China  rises  from  CMIP5  to  CMIP6.  This
improvement is also visible in Fig. 7, which presents a por-
trait diagram of multiple precipitation indices from the sub-
set  ensembles,  with  dominant  blue  colors  for  CMIP6-six
and dominant orange colors for CMIP5-six.

3.2.2.    Interannual variability

Figure 8 shows the mean IVS histogram of models for

the  five  precipitation  indices  averaged  over  China.  For  all
indices,  the  mean  IVS  from  CMIP6  models  is  lower  than
that of CMIP5 models. Taking Sdii as an example, the mean
score  from  CMIP6  models  is  0.91,  and  the  mean  score  of
CMIP5 models is 1.18. The IVSs of other indices are larger,
but  CMIP6 models  have  smaller  mean values  than  CMIP5
models.

 

 

Fig. 6. As in Fig. 2. but for five precipitation indices.

 

Fig. 7. As in Fig. 3. but for five precipitation indices.
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Generally  speaking,  both  CMIP6-MME  and  CMIP5-
MME  have  certain  capabilities  in  simulating  precipitation
indices, but are not as good as they are simulating temperat-
ure indices (Tav, TXx and TNn). The models are more skill-
ful  in  reproducing  temperature  than  precipitation,  which  is
also  consistent  with  previous  studies  (IPCC,  2013; Kusun-
oki and Arakawa, 2015). For different precipitation indices,
the performance of the models is different, with the best for
Sdii  and  the  worst  for  CDD.  Considering  all  precipitation
indices, we can conclude that CMIP6 models are superior to
CMIP5  models  in  simulating  both  the  spatial  distribution
and  interannual  variability,  and  have  smaller  intermodel
spreads  than  CMIP5  models.  In  particular,  the  dry  bias  of
mean and extreme precipitation in southern China is largely
reduced in CMIP6-MME. However, CMIP6-MME still has
wet biases for Prcptot, R95p and Sdii in the eastern Tibetan
Plateau,  but  these  wet  biases  are  smaller  than  those  of
CMIP5-MME.  This  improvement  may  be  partly  attribut-
able to the higher model resolution and better description of
physical and chemical processes in CMIP6 models (Eyring
et al.,  2016). CMIP6 models generally have improved con-

vective  parameterization  schemes  and  cloud  physics  pro-
cesses  (Cao  et  al.,  2018; Wu et  al.,  2019),  and  append  the
indirect  effects  posed  by  aerosols  onto  the  formation  of
clouds  and  precipitation  (Voldoire  et  al.,  2019; Wu  et  al.,
2019).

To further investigate possible causes for the better per-
formance  of  CMIP6-MME  in  reproducing  precipitation  in
South  China,  the  regional  atmospheric  circulation  patterns
from  the  two  MMEs  are  compared  with  the  NCEP  reana-
lysis.  Considering  the  fact  that  June–August  (JJA)  is  the
main  season  for  precipitation  occurrence  in  China, Fig.  9
shows the  difference  in  meridional  circulation  and specific
humidity  (shaded)  zonally  averaged  within  110°–120°E  in
summer.  As  shown  in Fig.  9 (middle  column),  compared
with  NCEP,  CMIP5-MME  presents  strong  descent  around
30°N.  CMIP5-MME  also  shows  less  water  vapor  over
South  China,  so  there  is  a  large  dry  bias  over  the  region
(Figs.  5b and e).  For  CMIP6-MME  (Fig.  9,  left  column),
however, the zone of strong descent is northward-shifted com-
pared  to  CMIP5-MME.  CMIP6-MME  also  shows  a  little
more water  vapor and weak ascent  around 22°N compared
to NCEP. Therefore, the dry bias is reduced in South China
in  CMIP6-MME  (Figs.  5a and d).  Furthermore,  compared
with  CMIP5-MME, CMIP6-MME presents  stronger  ascent
between  22°N  and  30°N.  CMIP6-MME  also  shows  more
water vapor over South China (Fig. 9, right column). Hence,
the  stronger  ascent  accompanied  by  more  moisture  over
South China in CMIP6-MME contributes to the reduced dry
biases over the region.

4.    Conclusions and discussion

This  paper  has  quantitatively  evaluated  the  perform-
ance of 12 CMIP6 and 30 CMIP5 models in simulating cli-
mate extremes in China, through an intercomparison against

 

Fig. 8. As in Fig. 4. but for five precipitation indices.

 

 

Fig. 9. Differences in meridional overturning circulation (vectors; units: m s−1) and specific humidity (shading; units: g kg−1;
increase  in  blue,  decrease  in  red)  zonally  averaged  within  110°–120°E  for  the  historical  period,  1961–2005,  in  summer
(JJA).  From  left  to  right  are  CMIP6-MME  minus  NCEP,  CMIP5-MME  minus  NCEP,  and  CMIP6-MME  minus  CMIP5-
MME. The abscissa is the latitude and the ordinate is the pressure level (units: hPa) [specific humidity has fewer levels (only
to 300 mb) from NCEP].
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a  gridded  daily  observation  dataset.  The  assessment  was
done in terms of spatial patterns and temporal variability for
the period 1961–2005. We used some commonly used skill-
score methods, such as the Taylor diagram and TS represent-
ing the spatial pattern, and IVS representing the interannual
variability.  We  generally  based  the  analysis  on  the  MME
mean, except for the temporal  variability that  needed to be
examined  in  each  individual  member.  Note  also  that,
besides the general ensemble, we used a subset of six simula-
tions from CMIP5 and CMIP6 belonging to the same institu-
tion.  Results  from the subset  ensembles corroborated those
from the general ensemble. The main findings of our study
can be summarized as follows:

Both  CMIP6  and  CMIP5  models  show good  perform-
ance in simulating the climatological pattern and the interan-
nual  variation  for  temperature  indices  over  China.  The
spreads among models for most temperature indices are at a
comparable level in CMIP5 and CMIP6. CMIP6-MME and
CMIP5-MME  have  very  good  capabilities  in  reproducing
Tav,  TXx  and  TNn,  with  PCCs  and  TSs  larger  than  0.94.
However, they have difficulties in successfully reproducing
TN10p  and  TX90p.  CMIP6-MME  generally  shows  slight
improvements in comparison with CMIP5-MME. The large
warm biases of CMIP5-MME for TXx in parts of Northw-
est  China  are  significantly  reduced  in  CMIP6-MME.
However,  the  large  cold  bias  of  CMIP5-MME  over  the
Tibetan Plateau still exist in CMIP6-MME for Tav (exceed-
ing −4°C) and TNn (exceeding −8°C).

The performance of the CMIP6 and CMIP5 models in
simulating precipitation indices is not as good as that in simu-
lating temperature indices (Tav, TXx and TNn). For differ-
ent  precipitation  extremes,  the  capability  of  the  models  is
also different, with the best for Sdii and the worst for CDD.
CMIP6  models  have  a  smaller  intermodel  spread  than
CMIP5  models  for  most  precipitation  indices,  which
implies a slightly larger consensus in CMIP6 historical simu-
lations.  We  hope  that  there  will  also  be  smaller  uncertain-
ties  when  we  deal  with  the  projection  of  future  climate
within  CMIP6.  Compared  with  CMIP5-MME,  CMIP6-
MME  shows  significant  improvements  in  simulating  both
the climatological pattern and the interannual variation for pre-
cipitation  indices,  except  for  CDD,  which  remains  at  the
same level. The areal-mean bias for Prcptot is reduced from
127%  (CMIP5-MME)  to  79%  (CMIP6-MME).  The  dry
biases for mean and extreme precipitation in southern China
are  also  largely  reduced  in  CMIP6-MME.  However,
CMIP6-MME still has wet biases for Prcptot, R95p and Sdii
in the eastern Tibetan Plateau, although these wet biases are
smaller than those of CMIP5-MME.

The dry biases for precipitation indices (Prcptot,  R95p
and Sdii) over South China are tightly related to the strong
descent  and  weak  water  vapor  content  over  the  region.
CMIP6-MME, with ascent and moist air over South China,
is able to produce more precipitation, and to reduce the dry
biases over there. CMIP6 models generally have higher hori-
zontal resolutions and improved physical parameterizations

(convection,  radiation,  cloud,  land  surface,  etc.),  which
together  certainly  contribute  to  the  apparent  improvement,
although  we  are  unable  currently  to  determine  the  precise
cause. In eastern China, convective precipitation is the main
type of precipitation, so deficiencies in convection parameter-
ization are likely to cause the systematic errors in precipita-
tion  simulation,  especially  for  extreme  precipitation  (Li  et
al.,  2012; Rosa  and  Collins,  2013; Mehran  et  al.,  2014;
Jiang et al., 2015). CMIP6 models have generally improved
convection  parameterization  schemes  and  cloud  physics
(Cao  et  al.,  2018; Wu  et  al.,  2019),  which  can  also  partly
explain the significant improvement in precipitation simula-
tion over southern China.

It  should  be  pointed  out  that  CMIP6-MME  still  has
large  biases  for  temperature  indices  over  the  Tibetan  Plat-
eau and Northwest China. The precipitation indices in west-
ern  China  are  also  not  well  simulated;  in  particular,  there
are large wet biases over the eastern Tibetan Plateau. Topo-
graphic  forcing  has  an  important  influence  on  the  simula-
tion  of  climate  (Zhou  et  al.,  2009; Song  et  al.,  2013).  It
would  be  relatively  difficult  for  models  to  reproduce  the
effects  of  the complex topography in western China (Chen
et al., 2012).

Due  to  the  temporarily  limited  number  of  available
CMIP6  models,  evaluation  of  more  CMIP6  models  still
needs to be carried out in the future. However, based on the
results of the 12 CMIP6 models in this paper, the improve-
ment in precipitation simulation compared with CMIP5 mod-
els is of great significance for providing more comprehens-
ive climate information to end-users or policymakers. The cli-
mate projection results of the Scenario Model Intercompar-
ison  Project  (Scenario  MIP)  for  CMIP6  (O’Neill  et  al.,
2016) are also being gradually released, which will allow us
to assess future climate change projections from CMIP6 mod-
els. Based on this assessment, we would recommend with con-
fidence to use CMIP6 results for future climate projection in
China.
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