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Abstract 

The detection and attribution of precipitation changes are fundamental for 

adaptation and mitigation planning. Based on high-quality observations, 

we determined the detectability of the trends of multiple precipitation 

characteristics across China using a field significance test. Furthermore, 

the timing at which spatially-aggregated changes become significant and 

do not reflect random internal variability was also estimated. The results 

show that the significant increases in the annual total precipitation 

(PRCPTOT) and simple precipitation intensity (SDII) and significant 

decrease in the wet days (WD) are detectable from 1961 to 2017. Namely, 

the percentage of stations showing these significant trends exceeds that 

expected by chance. The time of the trend emergence from the mimicked 

range of internal variability is around 2000 for SDII and WD, while the 

PRCPTOT trend can only be detected for recent years. The analysis on 

precipitation of various intensity levels unearths that the significant 

increases in the amount and frequency of extreme heavy precipitation 

emerged around 2014, while a significant decreasing trend in light 
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precipitation might be detected as early as 2000. Global warming is 

expected to affect the detection of precipitation trends because the timing 

at which global warming signal in trend of precipitation emerges is 

consistent with the time at which the trends become significant. In 

general, significant changes in the PRCPTOT, SDII, and WD occur more 

frequently in winter than in summer.  

Keywords: Trend detection, Time of emergence, Precipitation in monsoon 

region 

1. Introduction 

Precipitation characteristics in terms of the amount, frequency and 

intensity have changed due to human-induced global warming (Karl and 

Knight 1998; Sun et al., 2007; Liu et al., 2009; Ma et al., 2015a). In 

particular, light and heavy precipitation, which are closely related to 

drought and flood risks, respectively, are likely more sensitive to global 

warming than the mean precipitation (Trenberth et al. 2003; Westra et al., 

2013). Thus, the detection of long-term trends of different precipitation 

characteristics is of particular scientific interest.  

Increasing air temperature moisten the atmosphere and therefore 

alters the hydrological cycle and precipitation patten. In general, the 
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global mean precipitation will increase at a rate of 1%~3% per 1 °C 

increase in the temperature (IPCC, 2013; Held and Soden 2006; Sun et al., 

2007), largely constrained by the planetary energy balance (Allen and 

Ingram 2002; Pendergrass and Hartmann 2014). The intensification of 

extreme precipitation roughly follows the Clausius–Clapeyron rate 

of—6%~7% per 1 °C increase in the temperature (Dai et al., 2006; Zhao 

et al., 2012), that is, approximately the same rate as that of the moistening 

of the atmosphere due to warming (Trenberth et al. 2003). The results of 

previous studies demonstrated that the past increase in the amount and 

frequency of precipitation can already be detected on a 

continental-to-global scale. For example, Zhang et al. (2007) reported an 

increasing trend at high latitudes and a decreasing trend at subtropical 

latitudes resulting in a small increase in the global mean precipitation. 

The increase in extreme precipitation can be more robustly detected than 

that of the mean precipitation (Zhang et al., 2013). Westra et al. (2012) 

found that nearly two-thirds of the global weather stations recorded an 

increase in the annual maximum precipitation from 1990 to 2009, which 

exhibited a distinct meridional heterogeneity. Donat et al. (2013) also 

showed that significant increasing trends in extreme precipitation 
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occurred more frequently than decreasing trends during the 1951-2010 

period.  

Because of the greater influence of the internal variability on the 

precipitation at smaller spatial scales, the detection of precipitation 

changes at a regional scale is more challenging. From an application 

perspective, it is important to consider countries as a whole to develop a 

national-level climate policy. A large body of literature is available on 

precipitation trend estimation for China. A widely used approach is to 

estimate the trend from daily weather station data aggregated using the 

area-weighted average (Sun et al., 2014; Yin et al., 2017). For example, 

Zhai et al. (2005) used data from 750 stations and reported that the 

significant trends of total and extreme precipitation show large diversity 

between different regions from 1951 to 2000, resulting in a small change 

in the trend for the country as a whole. An overall forced signal of the 

annual maximum precipitation cannot be observed in the observational 

record up to 2012 (Li et al., 2018). Yin et al. (2018) used updated data 

from 2400 stations for the period 1961–2017 and found that the 

maximum one-day precipitation (Rx1day) and very wet days (R95p) 

averaged over China show increasing trends (P < 0.01). Similar results 
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were obtained in other studies based on gridded daily precipitation 

recorded at stations (Zhou et al., 2016). However, different gridded 

datasets show large uncertainties in the national trend estimation for 

Rx1day, in terms of the magnitude and significance (Yin et al., 2015). 

The gridded product may contain bias and be potentially misleading 

because the daily precipitation exhibits a fractal scaling (Lovejoy et al., 

2008; Maskey et al., 2016). Therefore, a more robust statistical method 

should be established to better address the detectability of the trends of 

the precipitation characteristics at the national scale. This will be an 

important addition to the detection of the precipitation trend over China. 

In this study, we used an intuitive but effective technique to test 

whether we can clearly detect the overall precipitation trend for China. In 

addition, the timing at which the trends become significant, that is, 

distinguishable from random variability, was estimated. The effect of 

global warming reflecting anthropogenic climate change on the 

detectability of the trends is also discussed. The findings from this study 

will not only deepen our understanding of the trends of the precipitation 

characteristics and effect of anthropogenic global warming on the trend 

detection over China but also provide important unified background 
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information for future attribution and projection research.  

The remainder of this paper is structured as follows. The data and 

methodology are described in Section 2. The results of the study are 

presented in Section 3. Concluding remarks are presented in Section 4. 

2. Data and method 

2.1 Datasets 

This study is based on the analysis of daily precipitation data collected by 

the China Meteorological Administration at 726 meteorological stations 

in China from 1961 to 2017 (available online at 

http://data.cma.cn/data/cdcdetail/dataCode/A.0029.0001.html). The 

dataset has undergone rigorous quality control procedures by the National 

Meteorological Information Center (Cao et al., 2016); several studies 

have pointed out that this dataset is relatively homogeneous (Ma et al., 

2015b). The stations were retained when the record did not show any 

missing values in any year during this period, leading to a total of 603 

stations in this study. In this study, days with daily precipitation equal to 

or greater than 1mm were treated as precipitation events. We used the 

total precipitation (PRCPTOT), wet days (WD), and simple precipitation 
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intensity (SDII) to represent the magnitude (amount), frequency and 

intensity of precipitation, respectively. In addition, a percentile-based 

threshold was applied to divide the precipitation into four categories: light, 

moderate, heavy, and extreme heavy precipitation. The definitions of the 

precipitation indices used in this study are listed in Table 1.  

2.2 Statistical Methods  

The nonparametric Sen’s slope method was used to estimate the 

linear trends of the indices and the nonparametric Mann–Kendall (MK) 

test was used to assess the statistical significance of the linear trends. This 

type of method has the advantage of not requiring any distribution form 

for the indices and has been applied frequently in analyzing indices 

(Zhang et al., 2004; Alexander and Arblaster, 2009). However, both Sen’s 

slope estimator and the MK test assume that the target data are serially 

independent. If is the time series contains a positive AR (1), the test 

rejects the null hypothesis more often than specified by the significance 

level and thus the testing result is unreliable. Considering that serial 

correlation occurs often in a time series, we adopted the modified 

approach proposed by Zhang et al. (2000) to properly estimate the serial 

correlation of a time series and eliminate it from the Sens’s slope 
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estimator and MK test. For the detailed method, please refer to Wang and 

Swail (2001). 

We used a field significance test to examine whether a significant 

trend can be detected for the country as a whole. In statistics, when a 

significance test is conducted at the 5% level, 5% of the sites are expected 

to show a statistical significance even if there is no significant trend. In 

addition, because the number of sites tested is limited and there are 

potential correlations among the sites, the percentage of sites showing a 

statistical significance could be larger than the 5% nominal level if the 

region does not show a significant trend. To determine whether a 

temporal trend can be observed, we considered a change in precipitation 

indices detectable if the percentage of the sites showing significant 

changes is larger than what is expected by pure chance. Specifically, we 

constructed a matrix M with stations as column (S) and time series as 

rows (T). The bootstrap samples were obtained by permuted T 1000 times 

to form random matrixes 𝑀𝑀1
∗, ⋯ ,𝑀𝑀1000

∗ . For each resampling matrix, the 

same sequence of years was used for all stations to ensure that the 

temporal sequence is removed while retaining spatial dependence. The 

percentage of stations with a significant increasing trend can be obtained 
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for each random matrix and the original non-permuted dataset. If the 

percentage of stations with a significant increasing trend of the initial 

matrix was outside 95% of the random distribution (critical value) 

derived from bootstrap samples, it was regarded as field significant at the 

5% significance level. This concept of field significance has been widely 

used in different regions worldwide (Kiktev et al., 2003; Alexander et al., 

2006; Westra et al., 2013; Li et al., 2018). 

3. Results  

3.1 Detection of precipitation characteristics 

Figure 1 shows the trends of the PRCPTOT, WD, and SDII over 

China from 1961 to 2017 as well as the field significance test results. The 

percentage of stations showing an increase trend in the PRCPTOT (58.4%) 

is slightly larger than that showing a decrease (41.6%). Regions with an 

increasing trend are located mainly in southeastern and western China 

and regions with decreasing trends are in southeastern to northeastern 

China. Significant increases occurred on the eastern coast of southeastern 

China and in northwestern China. Several stations in southwestern China 

observed a significant decreasing trend. Significant increasing and 

decreasing trends were observed at 9.5% and 1.7% of the stations, 
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respectively. To test whether the percentage of stations with a significant 

trend is statistically different from the null hypothesis that is expected by 

random chance, the distribution of the percentage under null hypothesis 

conditions was generated as a measure of what would be possible by 

chance. The observed percentage of stations showing a significant 

positive trend is clearly outside the 95% probability based on 1000 

bootstrap realizations, which implies that a clear increase in the 

PRCPTOT can be detected across China based on the current 

observational record. However, the observed decreasing trend of the 

PRCPTOT cannot be detected  

A decrease in the WD prevails over almost all of eastern China; 

southwestern China shows a significant decreasing trend. A significant 

decrease in the WD can be detected because the percentage of stations 

with a significant decrease (11.3%) is larger than the critical value (6.2%) 

deduced from the random distribution. Regions with a significant increase 

in the WD are mainly located over northwestern China. In total, 7.5% of 

stations show a significant increasing trend, which is slightly outside the 

95% probability distribution.  

The SDII increased at 76% of stations, with significant trends at 16.2% 
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of the stations. Stations with positive trends are mainly located in 

southeastern China, whereas stations with negative trends are mainly 

found in North China. Stations with a significant increasing trend occur 

outside of the random distribution based on bootstrap resampling. This 

means that intensified daily precipitation can be significantly detected 

when considering the country as a whole.  

We further analyzed the time at which the trend significance 

emerges by applying the same calculation as that used for the three-year 

periods before 2011 (1961–1991, 1961–1993, …, until 1961–2011) and 

one-year periods after 2011 (1961–2011, 1961–2012, …, until 1961–

2017). We calculated two values for each period. The first value, S, is the 

percentage of stations showing a significant increasing or decreasing 

trend. The second value, C (critical value), is a reference value that allows 

us to reject or accept the null hypothesis of occurrence by pure chance, 

corresponding to the 95% probability of the distribution constructed with 

the bootstrap resampling technique. When S was larger than C, we 

rejected the null hypothesis and adopted the alternative hypothesis that a 

significant trend could be detected. We also defined the time at which the 

trend becomes significant when S is first larger than the range of C across 
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all periods and remains larger over all subsequent periods. 

Figure 2 shows the S and C value series for PRCPTOT, SDII, and 

WD. Because C depends on the number of stations and spatial correlation, 

C is almost constant for all three indices. For PRCPTOT, the S 

corresponding to a significant increase could not be detected until 

recently (~2016), while the significant decrease overlaps with the range 

of C (gray shaded) in all periods. For WD, the percentage of stations with 

a significant increase shows a slight increasing trend over time, but a 

significant increase trend does not emerge. However, the percentage of 

stations with a significant decrease sharply increased from nearly 3% 

during 1961–1991 to nearly 10% during 1961–2017. The trend became 

significant before 2000 and remained above the range of C in subsequent 

periods. The percentage of stations showing a significant increasing trend 

for SDII is nearly 3% from 1961 to 1991; this value sharply increased to 

more than 16% from 1961 to 2017. A significant increase trend could be 

robustly detected before 2010. 

We also investigated the relationship between the trend in the 

precipitation characteristics and global warming, which allowed us to 

estimate the time of emergence of the forced signal in the precipitation 
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trend. The detailed methods are described in Text S1. The spatial patterns 

of the relationships between the precipitation characteristics and global 

warming (Fig. S1) are almost the same as those in Fig. 1, except that 

more stations exhibit significant relationships with global warming. The 

time of emergence of the forced signal in the precipitation trend (Fig. S2) 

is almost the same as that in Fig. 2. A forced signal can be detected in the 

increasing trends for PRCPTOT and SDII and decreasing trend for WD. 

The forced signal can be detected earlier for WD and SDII than for 

PRCPTOT.  

3.2 Detection of the four precipitation categories 

Figure 3 shows the trend pattern for the four different precipitation 

categories. The trends for the light precipitation total (LPT) and light 

precipitation days (LPD) show similar patterns, with a significant 

decrease over eastern China and significant increase over northwestern 

China. An overall significant decrease trend can be clearly detected for 

the two indices because the percentage of stations showing a significant 

decrease trend is 12.6% for LPT and 14.3% for LPD. These two values 

are much larger than the 95% random probability obtained by resampling 

(Fig. 4). However, a significant increase trend in the light precipitation 
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cannot be detected because the percentage of stations with a significant 

increase are overlapped by the pure chance.  

The trends in the magnitude and frequency of moderate precipitation 

show patterns that are almost identical with the trend in the light 

precipitation, but more stations show significant positive trends in the 

moderate precipitation total (MPT; 5%) and moderate precipitation days 

(MPD; 4.3%) compared with LPT (3.6%) and LPD (3.5%). However, the 

fraction falls below the field significance level. Approximately 11% and 

13% of stations show a statistically significant decrease trend for MPT 

and MPD, respectively, which is much larger than the 95% quantile of the 

random distribution (Fig. 4).  

Significant increases can be observed over southeastern China with 

respect to the magnitude and frequency of heavy precipitation, which 

increases the percentage of stations showing a significant positive trend. 

The percentage of stations with a significant increasing trend, that is, 7.5% 

for heavy precipitation total (HPT) and 7.0% for heavy precipitation days 

(HPD), is outside the 95% probability based on 1000 bootstrap 

realizations, which implies that significant increasing trends in the HPT 

and HPD can be detected. However, the number of stations with a 
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significant negative trend is relatively small, that is, only 1.8% for HPT 

and 2.5% for HPD. The percentages are both within the 95% probability 

based on bootstrap realizations, implying that the overall decreasing trend 

of the HPT and HPD cannot be detected. 

For extreme heavy precipitation, the regions with significant 

increasing trends over southeastern China in terms of the magnitude and 

frequency are larger. The percentage of stations with a significant upward 

trend increases to 9.3% for extreme heavy precipitation total (EHPT) and 

6.3% for extreme heavy precipitation days (EHPD), both lie outside the 

95% probability distribution in the histogram obtained by resampling. 

Only 0.8% of the stations show a significant decreasing trend. Noted that 

the significant trends of the intensity of the four precipitation categories 

show no coherent patterns, with a random distribution across China. Only 

the intensification of extreme heavy precipitation can be significantly 

detected, with a trend distribution that is slightly different from what 

would be expected by random chance.  

The significant relationships between changes in four precipitation 

categories and global warming were also examined (Fig. S3 and Fig. S4). 

In generally, the patterns of stations showing positive (negative) 
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association with GMST (Fig. S3) are similar to the pattern of stations 

with increase (decrease) trend in Figure 3, especially in the magnitude 

and frequency of precipitation. In Fig. S4, we can see that the effect of 

global warming on the increase in the magnitude and frequency of the HP 

and EHP can be clearly detected. The global warming signals in decrease 

changes in the magnitude and frequency of LP and MP have also emerged 

in the observed record.  

The S and C value series for the four precipitation categories are also 

shown to demonstrate the time at which the trend becomes significant 

(Figures 5 and 6). Here, we only display indices with significant trend 

that can be detected from 1961 to 2017, that is, a significant increase 

trend for heavy and extreme heavy precipitation as well as a significant 

decrease for light and moderate precipitation. For heavy precipitation 

(Figure 5), a clear separation between S and C cannot be found. However, 

a significant trend in extreme heavy precipitation can be detected.  

Taking the magnitude as an example, the percentage of stations showing a 

significant increase trend is nearly 3% from 1961 to 1991. This value 

increases to 9% from 1961 to 2017. Overall, significant trends for HP and 

EHP can only recently be observed. As expected, the global warming 
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signal of the HP and EHP trends cannot be detected (Fig. S5). Compared 

with HP, an effect of global warming on EHP in terms of the magnitude 

and frequency can be detected.  

The detectability of the significant decreases in light and moderate 

precipitation is the most robust (Figure 6). The percentage of stations 

showing a significant decrease of those indices increases over time. The 

percentage increases from 2% during 1961 to 1991 to more than 12% and 

17% during 1961 to 2017 for LPT and LPD, respectively. Significant 

decreasing trends in LPT and LPD can be observed close to the year 

around 2000. The time at which global warming affects the LPT and LPD 

trends is the same as the time at which the trend become significant (Fig 

S6), which indicates that anthropogenic global warming plays a dominate 

role in the detectability of significant decreases in LPT and LPD.  

Overall, a significant increasing trend in the PRCPTOT, WD, and 

SDII can be detected across China in the period of 1961–2017, whereby 

the percentage of stations showing a significant trend significantly differs 

from what would be expected by random chance. However, only a 

significant increase in extreme heavy precipitation in terms of the 

magnitude and frequency can be robustly detected and the overall trend 
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only recently emerged (close to the year  2014). The detectability of the 

decreases in light and moderate precipitation is the most robust, with a 

clear difference between S and C emerging around 2000. In many 

previous studies, an increasing trend in extreme heavy precipitation and 

decreasing trend in light precipitation over China were reported (Jiang et 

al., 2014; Ma et al., 2015b, 2017). We have demonstrated that the 

observed trends of the weakest and strongest precipitation may stem from 

external forcing rather than from internal variability.  

At the seasonal scale, the detectability in summer (JJA) is similar to 

that of the annual trend (Table 2). A remarkable difference is that a higher 

percentage of stations show a significant trend in the PRCPTOT, SDII, 

and WD in winter (DJF) than in summer. For example, the percentage of 

stations with a significant increase in WD is nearly 11.6% in winter but 

only 6.5% in summer. This is mainly due to the larger magnitude of 

warming in winter than in summer. The overall increase trend in the total 

precipitation can be detected in winter for all categories, except for light 

precipitation. However, significant decreases in the frequency of light and 

moderate precipitation cannot be observed in winter. 
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4. Conclusion 

By using the daily precipitation from 603 observational stations 

from 1961 to 2017, we investigated the detectability of the precipitation 

trend for China. This was achieved using a field significance test. The 

trend is considered to be significant if the percentage of stations showing 

a significant negative or positive change is above the percentage that is 

expected by chance. Furthermore, the times at which the trend becomes 

significant and global warming has an effect were  also estimated. The 

main findings are as follows: 

1) An overall increasing trend in the PRCPTOT and SDII and a 

decreasing trend in WD were detected from 1961 to 2017 because the 

percentage of stations with a significant trend was greater than 

expected by random chance. The trend significance and effect of 

global warming were detected earlier for WD and SDII than for 

PRCPTOT. 

2) For the four precipitation categories based on percentiles, a significant 

increasing trend in extreme heavy precipitation was detected recently 

(close to the year 2014). The detectability of the significant decreasing 

trend in the light precipitation is the most robust and the overall trend 
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become significant close to the year 2000. The time at which global 

warming signal in trend of precipitation characteristics emerges is the 

same as the time at which the trend became significant. 

3) The detectability of the overall trend significance for the precipitation 

indices differs between winter and summer, especially for light and 

moderate precipitation. In general, more stations show a significant 

trend in winter than in summer.  

The results presented here only seek to detect the trend significance 

and effect of global warming on the precipitation characteristics. In our 

study, we found that the overall trend significance in extreme light and 

extreme heavy precipitation can be detected, especially for extreme light 

precipitation. Future analysis show that global warming is expected to 

contribute to the observed trend significance. The physical mechanism 

behind our findings is that the increase in extreme heavy precipitation is 

mainly depends on the availability of atmospheric moisture, which is 

expected to increase as the temperature increase in response to 

greenhouse gases-induced warming. Furthermore, the increase in 

atmospheric static stability associated with anthropogenic global warming 

(Huang and Wen 2013) could partly account for the decreasing trend in 
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light precipitation (Zhao et al., 2006; Qian et al., 2009; Fu and Dan 2014). 

The effects of anthropogenic aerosols via aerosol radiation interaction, 

which may partially offset the effect of the greenhouse gases forcing, will 

lead to an increase in extreme light precipitation but decrease in the 

extreme heavy precipitation (Ma et al., 2017). However, other studies 

indicated that aerosols could suppress light rain through aerosol cloud 

interaction effect (Qian et al., 2009). 

Because of the limited sample size of the observation record, the 

time at which the trend becomes significant obtained in this study may be 

a transient time rather than a stable time. For example, the percentage of 

stations with significant decrease trend in Fig. 2 for WD and Fig. 6 for 

moderate precipitation show a decreasing trend in recent years. Thus, a 

longer observation record is needed to improve the robustness of the 

result. Furthermore, the climate model simulations under future pathway 

scenarios could be used to verify the time at which the trend becomes 

significant, assuming that the models can reproduce well the precipitation 

characteristics over China (Jiang et al., 2015). 
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Table 1 Definition of precipitation indices used in this study.
Indices Definition

Wet days (WD) Number of days with daily precipitation equal or 
greater 1 mm day-1(day)

Total precipitation (PRCPTOT) Total amount of precipitation from wet days (mm)
Simple precipitation intensity 
(SDII)

Total precipitation divided by the number of wet 
days (mm/day)

Light precipitation days (LPD) Number of days with daily precipitation less than 
25th percentile of all precipitation events (day)

Light precipitation total (LPT) Total amount of precipitation from the light 
precipitation days (mm) 

Light precipitation intensity 
(LPI)

Light precipitation total divided by the light 
precipitation days (mm/day)

Moderate precipitation days 
(MPD)

Number of days with daily precipitation between 
25th and 75th percentile of all precipitation events 
(day)

Moderate precipitation total 
(MPT)

Total amount of precipitation from the moderate 
precipitation days (mm) 

Moderate precipitation intensity 
(MPI)

Light precipitation total divided by the moderate 
precipitation days (mm/day)

Heavy precipitation days (HPD)
Number of days with daily precipitation between 
the 75th and 95th percentile of all precipitation 
events (day)

Heavy precipitation total (HPT) Total amount of precipitation from the moderate 
precipitation days (mm) 

Heavy precipitation intensity 
(HPI)

Moderate precipitation total divided by the 
moderate precipitation days (mm/day)

Extreme heavy precipitation 
days (EHPD)

Number of days with daily precipitation exceeding 
95th percentile of all precipitation events (day)

Extreme heavy precipitation 
total (EHPT)

Total amount of precipitation from the extreme 
heavy precipitation days (mm) 

Extreme heavy precipitation 
intensity (EHPI)

Extreme heavy precipitation total divided by the 
extreme heavy precipitation days (mm/day)
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Table 2. Percentage of stations showing a significant increasing (+ve) and decreasing (-ve) trend 
in DJF and JJA during 1961 to 2017 for indices. Black means that the trend signal can be detected 

based on filed significance test.

DJF JJA
Indicator

+ve -ve +ve -ve

PRCPTOT 17.6% 0.3% 9% 2.5%

WD 11.6% 0.3% 6.5% 10.1%

SDII 16.7% 0.5% 10.3% 0.5%

LPT 1.7% 1.2% 2.2% 8.8%

LPD 1.2% 1.0% 2.0% 8.6%

LPI 1.5% 2.0% 3.0% 2.5%

MPT 6.3% 1.3% 3.6% 7.1%

MPD 3.8% 1.5% 3.5% 8.3%

MPI 3.0% 1.2% 3.3% 0.8%

HPT 8.5% 0.2% 6.5% 2.2%

HPD 5.3% 0.2% 5.6% 3.3%

HPI 4.3% 1.3% 6.1% 2.7%

EHPT 5.8% 0% 7.5% 0.8%

EHPD 1.6% 0% 4.6% 0%

EHPI 6.3% 0.7% 4.5% 1.7%
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Figure 1. The pattern of trend in (a) PRCPTOT, (b) WD and (c) SDII from 1961 to 2017. The blue (red) solid 
circles denote significant increase (decrease) trend at the 95% confidence level. The blue (red) open circles 
denote insignificant increase (decrease) trend. The histograms below showing the distribution of percentage 

showing significant increase (left) and decrease (right) trend from 1000 bootstrap realizations for (d) 
PRCPTOT, (e) WD and (f) SDII, the blue (red) solid circles denote the percentage of stations showing 
significant increase (decrease) trend during 1961-2017, the dashed line marks the 95% probability 

distribution from 1000 bootstrap realizations. 
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Figure 2. Blue (Red) solid line denotes the series of percentage of stations showing significant increase 
(decrease) trend for PRCPTOT (top row), WD (middle row) and SDII (bottom row). The gray shaded 

indicates the range of critical value across all period. The leftmost of x-axis in the graph shows results for 
1961-1991, the calculation was then performed with an accumulative increase of three years forward until 

1961 -2017, the rightmost of x-axis in the graph shows results for 1961-2017. The figure in the upper 
corner indicates the series from 1961-2011 with an accumulative increase of one year forward until 1961-

2017. 
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Figure 3. The trend patterns of the magnitude (left column), frequency (middle column) and intensity (right 
column) for light precipitation (top row), moderate precipitation (middle), heavy precipitation (bottom row) 

and extreme heavy precipitation (the fourth row). 
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Figure 4. Left panel: Blue (Red) squares denote the percentage of stations showing a significant increasing 
(decreasing) trend in light precipitation (LP), moderate precipitation (MP), heavy precipitation (HP) and 
extreme heavy precipitation (EHP), in term of magnitude, frequency and intensity during 1961 to 2017. 

Gray bars denote the 95% probability in the distribution constructed with 1000 bootstrap samples. 
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Figure 5. As for Figure 2, but for the significant increasing trend in magnitude (left column), frequency 
(middle column) and intensity (right column) of heavy precipitation (upper row) and extreme heavy 

precipitation (bottom row). 
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Figure 6. As for Figure 2, but for the significant decreasing trend in magnitude (left column) and frequency 
(right column) of little precipitation (upper row) and moderate precipitation (bottom row). 
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