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Abstract
In recent years, there are still huge amounts ok M@issions in the Northeast,
and this inevitably increases the concentratioaaybsol nitrate (N©), which plays
an important role in atmospheric pollution. Becaokthe mixed complicated sources
of atmospheric N@, it is difficult to quantify their contribution,ral the use of certain
means to identify their sources and pathways t&atito developing effective control
measures. Since different sources ofN@ve different ranges 6t°N valuess™N is

considered to be a useful tool for identifying #warce of aerosol N But isotope
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fractionation is produced during the conversioMN@k to NO5, ands*?O can be used
to estimate its isotope fractionation value. Instbtudy, daily PMs samples were
collected in four seasons from Northeast China, #meir water-soluble ionic
components (WSIs),5°N-NO; and §'®0-NO; were analyzed. The isotope
fractionation value 08N in which NO; was converted to NDwas estimated and
the contribution of different sources was quantifie combination with the Bayesian
model. The results showed that N@as the most important inorganic ion component
in the WSIs with the highest annual average rafi®h1%. Bothd'>N and §*%0
showed higher in winterdtN: 13.79%0+2.17%0;8'%0: 70.50%0+10.02%0) than in
summer §°N: 2.69%0+2.95%0:5'%0: 58.67%0+4.52%0). The daytime OHpathway
was considered to play a leading role in nitratentttion, withthe annual average
contribution of 61.0 £18.8%. NOx was mainly fromettcontribution of coal
combustion (34.5%) and biomass burning (34.3%)¥add by traffic (19.5%) and
biological soil (11.7%).During heating periods, NOx was dominated by coal
combustion with the average contribution of 46.9%ereas biomass burning was the
most important contributor during non-heating pésio (39.5%). Therefore,
controlling coal consumption and biomass burningn cdrastically reduce
concentration of aerosol NOn Northeast China.

Keywords: Aerosol; Nitrate; Stable isotope; Souyéesmation.
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1 Introduction

The secondary inorganic ions, mainly containindage) nitrate and ammonium,
are the main components of PMparticulate matter with the aerodynamic diameter
less than or equal to 2um) (Shi et al., 2019; Sun et al., 2019; Tian et 2016),
which play an important role in haze pollution (Ghet al., 2016; Huang et al., 2018;
Zhang et al., 2018). In recent years, due to thet stontrol of sulfur dioxide, the
concentration of sulfate in P\ is greatly reduced, and the proportion of nitriate
increasing (Xu et al., 2019), especially when pgalu events occur during the winter
(Feng et al., 2018; Li et al., 2018; Yang et aD1?2). Nitrate in PMs is usually
produced by oxidation of its gas precursor nitroggides (NOx) (Feng et al., 2018;
Pathak et al., 2009; Zhao et al., 2013). N® one of the main pollutants in the
atmosphere, and it can exacerbate acid deposttasing soil acidification and water
eutrophication (Boningari and Smirniotis, 2016; titags et al., 2013; Skalska et al.,
2010). Besides, NQOplays an important role in tropospheric photoctuaiieactions
(Skalska et al., 2010; Zhao et al., 2013). It @affdbe production of photochemical
smog (Shi et al., 2014) and damages the ozone ilaybe stratosphere (Elliott et al.,
2019). In recent years, China’s economy has deeédloapidly, and huge amounts of
NOx emissions have followed (Gu et al., 2013), whiakiehalso increased the content
of nitrate in aerosols. The NOemissions in China were still rising from 2001
(15+3Tg yi') to 2015 (22+2Tg yt) (Itahashi et al., 2018). The main pathways for
atmospheric nitrate formation include the day rieacbf droxyl radical (OH with

NO, and the night heterogeneous hydrolysis gbiNBoningari and Smirniotis, 2016;
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Elliott et al., 2019; Fang et al., 2011; Skalskaalet 2010; Tian et al., 2019). NO
exists mainly in the atmosphere as NO, during tle O is rapidly converted to
NO, to reach equilibrium, and then react with Otd produce gaseous nitric acid
(HNO3) (R1-R3, Text S1), which then reacts with ammdqiN&ls) or other alkaline
compounds to form nitrate aerosol (Wen et al., 201Buring the night, the reaction
of NO, and Q produces nitrate radicals (NQ which is in equilibrium with NOs
(R4-R6, Text S1), which can then be adsorbed orpéngcles to enhance the nitrate
aerosol.

The sources of N emissions are divided into natural sources and
anthropogenic sources, while natural sources mamaulyde soil biological (Beyn et
al., 2014) and the anthropogenic sources mainlidgcmotor vehicle (traffic), coal
combustion and biomass burning emissions (Chen.,eR@L9; Elliott et al., 2007,
Elliott et al., 2019; Fan et al., 2019). In recgatrs, stable isotope techniques have
been widely used in the analysis of sources ofupaits and are believed to better
distinguish between natural and anthropogenic ssuf matter (Hastings et al.,
2013). The nitrogen isotop&N of atmospheric N@ is considered to be an
important tool for studying its source (He et @D18) because that different sources
of NOx have different ranges 6f°N (Walters et al., 2015b). THE>N-NOx of coal
combustion collected by Felix et al. (Felix et &012) ranged from +9%o t0 +26%o.
Fibiger and Hastings (Fibiger and Hastings, 2013t fattempted to quantify
8*°N-NOy in biomass burning, which ranged from -7.2%o to %d Zrhes™N value of

traffic emissions was -19.1%o0 to +9.8%0 (Walters let 2015a). Li and Wang (Li and



87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Wang, 2008) measured tiEN-NOx characteristics of soil emissions from -48.9%. to
-19.9%0. Yu and Elliot (Yu and Elliott, 2017) repedt thats*°>N-NO of soil ranged
from -59.8%o to -23.4%0. Because that N atoms areseored in the reaction from
NOx to NOy (Wankel et al., 2010%*°N-NOjs is considered to be an important tool
for distinguishing nitrates from different NNOsources, even if there is isotope
fractionation in the conversion of NQo nitrate. In addition, studies have shown that
5'%0 have been used to identify pathways for nitratenfition in the atmosphere
(Walters and Michalski, 2016; Wang et al., 2019;n®é et al., 2010; Zong et al.,
2018). Generally*?*0-NO; has a higher value formed by® pathway than by OH
pathway due to that the rangedd¥O of atmospheric ©is between 90 %o and 122 %o
whereas thé'®0 of OH has an extreme lower range from -25%o to 0% (Hastin
2004). Therefore, applying th&N and §'%0 values of atmospheric nitrate can
explain its source and formation mechanism.

As an important industrial base in China, Northeast has serious air pollution
problem (Hong et al., 2019). The deterioration mfcuality in Northeast China is
similar to pollution hotspots such as the YangtaeeRDelta and North China Plain
(Zhang et al., 2017). Previous research showsntiwaie than 70% of the total NOx
emission is derived from coal combustion in Chitdégn et al.,, 2019). Northeast
China has very large-scale heating and the hediting is the earliest and longest
among all the countries because the especiallytémperatures (Hong et al., 2019;
Wen et al., 2018b), thus the coal combustion wipidvides energy for heating will

contribute a large amount of NGn the Northeast China. Traffic emissions contigu
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approximately 20% to global atmospheric N@nenberg et al., 2017), and this may
also be one of the important sources ofxN@ the Northeast. Biomass burning can
also produce large amounts of N(Ren et al., 2017) and there are approximately
6Tg NO« emissions from global biomass combustion each ¢€hai et al., 2019).
Studies have shown that biomass burning is verprtapt in China (Cao et al., 2017;
Chang et al., 2018; Zhang and Cao, 2015), espgamfiortheastern China where the
planting industry is developed and serious agnicaltwaste burning were occurred
during the harvest season (after autumn harvesbafwte spring tillage) (Cao et al.,
2017; Ma et al., 2018). Therefore, the contributtddiiomass burning to atmospheric
NOyx cannot be ignored in Northeast China. Besided, emissions could be a
potential source of atmospheric N@ northeast China due to its fertile land (Ma et
al., 2018). All in all, the source of pollution the study area is complex and it also
complicates the source of atmospheric N@ the region. Therefore, study the
sources of atmospheric NChas a great significance to controlling air padatin
Northeast China.

This is the first attempt to systematically analyte sources of NQ in
Northeast China. In order to better understandcttaacteristics of pollution sources
in Northeast China, nitrogen and oxygen isotopeatimiospheric N were analyzed
and the sources of NOwas identified in this study. The stable isotopalgsis in R
(SIAR) model have been applied to quantitativelynegte the contribution of the four
potential sources.

2 Materials and methods
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2.1 Aerosol sampling collection and atmospheric observations

The campaign was conducted in Chang Chun, an immponmdustrial base in
Northeast China, as shown in Figure S1. In 201% ¢ity's annual average
concentration of Pis was 4g.m° (Li et al., 2019), higher than the National
Ambient Air Quality Standards (NAAQS, GB3095-201@)ade | (35ug.m>). It is
one of the most densely populated cities in Noghé&zhina and it is an important
agricultural base in China.

The daily PM s samples of four seasons were collected at Northestitute of
Geography and Agricultural Ecology, Chinese AcadeaiySciences (125.4°N,
44.0°E). The summer, autumn, winter and springséompling are defined as May 25
to June 25, 2017, October 10 to November 9, 2047yary 3 to February 1, 2018,
and April 3 to May 4, 2018, respectively. The lobahting time is from October 25th
to April 10th. The heating period during the samglivas defined as October 24 to
November 9, 2017, plus January 3 to February 18 201 April 3 to May 4, 2018.
The rest of the sampling is the non-heating period.

PM, swere collected on precombusted (45fbr 6 h) quartz filters (25 x 20 cm)
using a high-volume aerosol sampler (KC100, Qingdabina, at a flow rate of
999L.m°). After sampling, the film wrapped in aluminum|faias dried in a dry box
for 48 hours. Before and after collection, the mak®M,swas analyzed using an
electronic microbalance (Sartorius BSA124S, Gerntafiyng) with a +1 pg
precision (at T 25 and RH 50%+5% during weighing). Then put it in te&igerator

at -20 °C and stored it in a dry box before use.



153 The data of gas (SONO,, O3) and meteorological elements such as temperature
154 (T), wind speed (WS), relative humidity (RH) ance@pitation during the sampling
155 period were derived from China Meteorological Datdetwork, National
156 Meteorological Information Center. The temperaturand speed and relative
157 humidity during sampling are shown in Figure S2{de concentration of SONO,
158 and Q are shown in Figure S2(b).

159 2.2 Chemical analysis

160 Each sample was punched once with an 18 mm pundissglved in 15 ml of
161 ultrapure water, and was shaken for 30 minutesgusinconstant temperature
162 oscillator. Then it was filtered with a 0.28n aqueous phase needle filter. lon
163 chromatography (ICS 5000+, Thermo Fisher Scientifi8A) was used to analyze the
164  daily concentration of WSIs in PM, major including N@, CI, SQ2, NH,", Na', K,
165 Caf*and Md". Details information of ion measurement system quulity control are
166 the same as Fan et al (Fan et al., 2019).

167 2.3 Isotopic analysis

168 §*°N and&®0 of nitrate were measured using chemical reductiethod, details
169 shown in our primary research (Zhao et al., 20E8¥%t, a 18mm filter was punched
170 and dissolved in a certain amount of ultrapure wate make its nitrogen
171 concentration was 0.2ugN/ml. After shaking for 3 mwith an ultrasonic shaker, it
172 was filtered with a 0.22um aqueous phase needle filter, and 5 ml of the Eamp
173 solution was stored in a 13 ml centrifuge tube.nrfabout 1.46 g of sodium chloride

174 was added and pH of the solution was adjustediyp & buffer system formed by 0.5
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M hydrochloric acid and 1 M imidazole. Then 0.4€d& cadmium powder (activated
by 10% hydrochloric acid) was added to reducesN®ONGO,. The NQ was reduced
to N,O using a sodium azide acetate buffer solution-ag[5-4.6, and thé*>N and
880 of NbO were analyzed by stable isotope ratio mass speeter (MAT253,
Thermo Fisher Scientific, USA). THE°N-NO;3 and§*®0-NO;s™ of the samples were
calculated from the isotopic conversion standardveuof NbO and NQ. The
measurement accuracy of nitrogen is 0.08%., and ntleasurement accuracy of
oxygen is 0.24%.. The international standard USGEB2N = +180%o, %0 =
+25.7%0), USGS345°N = -1.8%0, 5%0 = -27.9%0) and USGS35 (°N = +2.7%o,
880 = +57.5%0) with known isotope values were usedt N and5'®0 isotope are
expressed as:

SEN=[(*NAN)sampid (N N)air -1] x 1000%0

§'%0=[(**0/*°0)sampid(*°0/*°0)smow -1] * 1000%o

Where N/**N)ar represents thed™N of atmospheric B in air and
(**0/*°0)smow is the'®O of Vienna Standard Mean Ocean water.
2.4 Air masstrajectory analysis

The backward trajectory is the analysis of the se@nd transmission path of the
air mass based on the path of the atmospheric ass moving in a certain period of
time. The GDAS data provided by the US Air Qualigboratory (NOAA ARL) is
used. TrajStat was used to calculate the 48h assrbackward trajectory during the
sampling. The trajectory calculation module of HYBPwas included in TrajStat as

an external process to calculate trajectories (Wadraj., 2009). For every month, the
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daily 24h backward trajectory was calculated, with set of 500m above sea level.
We also do the cluster analysis for seasons. Thebauof cluster is three among all
the seasons.
3 Results
3.1 Characteristics of PM,5 NOs and WSl s

The concentration of P ranged from 11 to 198g.m*, with an average P
of 50.6+33.9 pg/rh (Table S1), higher than the NAAQS Grade | (@5m°). The
highest PMs is 198ig.m?3 in autumn. According to different seasons, the
concentration of PhMswas significant higher in autumn (82.7+431§.m°) than in
winter (49.3+17.3:g.m"), spring (40.7+18.Qug.m”) and summer (23.0+8,7g.m").
The increase in concentration of PMwas accompanied by an increase in the
concentration of WSIs (Figure 1). The average cotmadon of WSIs in PMs was
18.1+10.4pg.m3, which behaved as higher in autumn and spring thaminter and
summer (Table S1). WSIs accounted for 38.9% of Pdhnually, and it was similar
to the ratio in Suzhou (40%), lower than that injiBg (51.5%) and higher than that
in Shanghai (32%) (Tian et al., 2016; Gao et @18 Qiao et al., 2015). Mean
concentration of N® in PMys was 4.2+3.2ug.m* with the highest in autumn
(6.2+4.1ug.m°) and lowest in summer (2.1+1@.n°). As shown in Figure 1, PM,
WSIs and N@ had the same tendency at the same time, withighes$t in autumn
among all the seasons, indicating that autumn hasnost polluted season and NO
may dominant the pollution. Usually BMlis highest in winter and lowest in summer

(Song et al., 2019), which is different from thisdy. Cao et al. (Cao et al., 2017)
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found that the concentration of atmosphericBM Northeast China is much higher
during biomass burning (261+16¢m°) than during non-biomass burning
(31.7+17.3ug.m>). Due to the serious biomass burning in autuniddrtheast China,
it may lead to the highest concentration of 2Nh autumn of our study.

As is shown in Figure 1, the concentration of méracreased significantly with
increasing concentration of BN which was consistent with the observations in
eastern China (Bao et al., 2019) and Beijing (Huengl., 2016). According to the
analysis of the proportion of ionic components, d&maual nitrate accounted for the
highest proportion (21.1%) compared with other iqR$gure 2a). Besides, the
concentration of nitrate increased sharply duringriqus of severe pollution
(PM,s>75 pg.m®), as shown in Figure 2b. This indicates that imécessary to
urgently control the concentration of nitrate ahetly its source to provide a basis for
solving air pollution in the Northeast region.

The correlation analysis between some major iooamomonents during the whole
sampling was performed in Figure S3. N®ad strong correlation with TIMg?*,
Ccd" and K, respectively (p<0.01l)ndicating that they had similar sources. There
was a very high contribution of Cespecially in autumn and winter (Figure 2a).i€l
derived from biomass burning (Zhang et al., 201®) eoal combustion (Hong et al.,
2018). A high fraction of Cdwas also observed, especially in spring (Figure 2a)
C&* can be used as a tracer for crust source (Huaal, @018). In spring Gawas
as high as 13.5% and as we all known that dustdst mommon in spring. The

prevailing winds in the area are northwest, andetlage multi-desert and saline-alkali
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land in the Northwest Jilin Province, therefore #mmual C& was higherMg®* can
be derived from soil dust sources (Hong et al.,82@®hao et al., 2018Mg>* and
ca* were well correlated throughout the year (p<ORgure S3), so they may have
similar sources. These two ions also have a gogeletion with nitrate, therefore the
soil source of nitrate cannot be ignored. iK mainly emitted from coal combustion
and biomass burning (Shao et al., 20T8)e proportion of K increased in autumn
and winter, which indicated that the combustionreeuof autumn and winter
contributes a lot. The higher content of SOCI and K are all related to the
combustion source, thus the combustion source raayd main pollution source of
nitrate in this area.

3.2 Seasonal characterigtic of 6°°N-NOs and 6'°0-NO3’

The §**N-NO; of PM,sduring sampling ranged from -2.70%o to +20.01%o, with
an annual mean of +7.18%0+5.12%0 (Table S1). Thsnslar to Beijing (Luo et al.,
2019; Song et al., 2019) and BH island (Zong et 2017) in Chinas*N-NO3
behaved great seasonal variation, especially higheinter (13.79%0+2.17%o0) than
in summer (2.69%0%£2.95%0) (Figure 3), which was tlaene with other researches
(Beyn et al., 2014; Wankel et al.,, 2010; Xing and, 2012). This may indicate
differences in contributions from different sourcswinter, the increase ifiN-rich
NOx from combustion sources may lead to highEN-NOs, and in summer, the
increase in NO emissions from natural sources mag to lowe'°N-NO3 (Elliott et
al., 2019; Fang et al., 2011; He et al., 2018).rétoee, soil source may account for a

high proportion in summer than other seasons duketmegative isotope value. And
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all the isotope values were positive in winter (Fgy 3), indicating that the
combustion source contributed more in winter.

The 8*0-NO; ranged from +49.29%. to +89.53%., with the mean eabi
68.16%01t9.52%0 (Table S1). It also performed as highlues in winter
(70.50%0+10.02%0) and low values (58.67%014.53%0) iimsuer (Figure 3), which
had the same tendency #PN-NOs. This seasonal variation 6t°0-NO;™ is mainly
affected by the oxidation pathway, which is maiobused by the amount of solar

radiation (Wankel et al., 2010).

4 Discussion

4.1 Formation mechanisms of nitrate
4.1.1 Formation pathways of nitrate

8'80-NO;™ contributes to the identification of the conversimathway from N
to NO; (Rose et al., 2019; Wankel et al., 2010). As iswshin Text S2, we used
Zong et al. 's method (Zong et al., 2017) whiclngghe Bayesian mixed model to
estimate the proportion of OHpathway and bDs pathway and to estimate
§*°N-fractionation values during the transfer of N® NO;. Monte Carlo simulation
was used. It is generally considered that two-thofithe oxygen atoms in NQvere
derived from Q and one-third from OHin the OH generation pathway (R3, Text S1).
The estimated average contribution changes of tHe @&athway are shown in the
Figure 4 (summer: 79.4+6.1%, autumn: 55.6+20.5%tevi 56.8+19.2%, and spring:

56.3% 14.6%). OHpathway accounted for a relatively high proportiorall seasons,
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especially 79.4+6.1% in summer. This may due tohigh temperature in summer
and the high concentration ofz@Figure S4), which is conducive to gas phase
reaction (Wang et al., 2017). This indicated thataspheric nitrate in the Northeast
China was mainly produced by the OFeaction with NQ. It is the same with a
regional background site in North China (Zong et 2017) but is different from the
relatively high proportion of the D5 heterogeneous hydrolygiathway observed in
Beijing (Wang et al., 2017; Wang et al., 2018). sThiso explained the seasonal
characteristics 0fs*®0-NO;. The §'%0-NO; generated in the OHreaction is
relatively lower , therefore, th&®0-NO; is relatively lower in summer due to the
high proportion of OHpathway.

However, the differences in the proportion of Opaithway in spring, autumn
and winter were not obviously (Figure 4). From thggen isotope values, it can be
seen in Table S1 that the rangessBD-NO; in spring (70.66%0+6.51%0), autumn
(70.59%0+10.1%0) and winter (70.50%0+10.02%0) were tigkly consistent. It is
worth noting that there were some patrticularly foactions of OH pathway in spring,
autumn and winter (Figure S5). This was found tadlated to the concentration of
PM,s The contribution of OH pathway was significantly negatively correlated
(r=-0.42, p<0.01) with PMs concentration. When the contribution of Ophathway
was lower than 40%, the average concentration ofPWas 77.4ug.mi>. This
phenomenon was particularly serious in autumn whennumber of pollution days
(PM,5>75 ng.m°) accounted for 40%. This may be due to the faat thhen air

pollution is serious, the solar radiation is noviolis, thus the photochemical reaction
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produces less OH radicals (He et al.,, 2018)s not beneficial to the gas phase
oxidation reaction when the pollution is seriousl arvhen the solar radiation is low
(Wen et al., 2018a). This can also explain why pheportion of OH pathway in
winter was not much lower than that in spring andusn. In theory, the solar
radiation in winter is the weakest, and it shoutwg a lower proportion of OH
pathway than other seasoB&cause of the more pollution incidents in thergpand
autumn of the region, it seemed that the proportbrOH: pathway of nitrate in
spring and autumn was not much higher than thanier.
4.1.2 Nitrogen oxidation ratio

NOR indicates the degree of oxidation of atmosghiED, to nitrate, and it can
be expressed as nN@NNO; +nNG,), where n is the molar concentration (Zhang et
al., 2018). During the whole sampling, the concamin of NQ and NOR showed
the same changing trend, with the higher in autame spring than in summer and
winter (Figure S4), indicating that autumn and mgprivas more quickly to the
conversion of N@ to nitrate. Studies have shown that high humidapditions are
conducive to the formation of nitrates (Wen et 2018a) and usually NOR and RH
have significant positive correlation. The Figurshows the changes of NOR with
different & concentration, temperature and humidity conditioimserestingly, as
shown in Figure 5c¢, NOR did not increase with iasiag relative humidity, instead it
had the opposite trend. Previous report has shdwah gas-phase reactions are
positively related to temperature, while agueaesctions are related to RH (Tian et

al., 2019). Actually, there is a negative correlatbetween NOR and RH throughout
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the sampling process (r=-0.32, p<0.05), indicathm the aqueous phase may not be
good for the formation of NQ As mentioned above, the Oldathway in this area
may be the main pathway for nitrate formation (Fegul). Besides, higher ;0
concentration may indicate a stronger photochemezition and @is a supplier of
OH: during the day (Wen et al., 2018#).was found that NOR showed betteg O
concentration dependence (r=0.23, p<0.05), and N@&eased significantly
especially when the concentration of W@as above 20@y.m* (Figure 5a). Studies
have shown that relatively lower temperature is elieral to the gas-particle
conversion process from N@ nitrate (Fan et al., 2019; Zhao et al., 2016yvéwver,
when the temperature was between -10°C and 0°Guliage NOR was the highest
(Figure 5b), indicating that the relative lower fmrature was favorable for the
formation of nitrate aerosol in this area. Howevethe temperature is too low, it is
not conducive to the formation of N@o nitrate. The average NOR was lower than
0.05 when the temperature was lower than -10 °QufEi5b).
4.2 Sources of nitrate from the SIAR model

In this study, two cases were analyzed foryNOurces, one was for four seasons
the other was for heating or non-heating periods generally considered in China
that spring, summer, autumn and winter are MardWidg, June to August, September
to November, and December to February, respectiVélg heating period in the area
is from October 25, 2017 to April 10, 2018, and ttést of the time is the non-heating
period. According to the correctedf®N-NOx value (after isotope fractionation

correction, Table S1, Figure 3), this study useslrttethod (Text S3) of Zong et al.
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(Zong et al., 2017) and Chang et al. (Chang e®8ll8) to quantify the contribution
of each source. In this work, the main contributtmrsNOx were considered to be
motor vehicle emissions (BL%. + 1040%.) (Felix and Elliott, 2014; Spiro and
Robertson, 1997; Walters et al., 2015a; Waltersalet 2015b), coal combustion
(13.72%0+4.57%0) (Felix et al., 2015; Felix et al.012; Walters et al., 2015b),
biological soils (-33.77%0£12.16%o) (Felix and EllipR014; Li and Wang, 2008), and
biomass burning (1.04%0+4.13%0) (Fibiger and Hastirf¥16). Here, the Bayesian
isotope mixing model named as SIAR (Stable Isotdpalysis in R) was used to
quantify multiple potential sources of NOwhich assumed that tté°N value of gas
nitric acid was similar to the nitrate in BM

The SIAR results (Figure 6) showed that the couatrims of NG from biomass
burning, biological soil, traffic and coal combustiwere different among different
stages. The distinction between heating and notidge@eriods was more visible
than the four seasons. Contribution of coal combnsduring heating period
(46.9%+10.5%) was significantly higher than that ofon-heating period
(24.7%2+8.0%), which can also be seen from the Sugmitly higher N in the
heating period (10.86%0+4.71%0) than in the non-teatperiod (4.04%0+2.89%o)
(Table S1, Figure 1). This indicated a significardrease in coal combustion in the
region during the heating season. It was shown imathe non-heating period,
biomass burning was the dominant source ofxfN&hich contributed 39.0%+11.5%,
higher than the 27.5%+16.5% of heating period. Ftbe perspective of seasonal

changes, the differences in contributions of Ni@m spring and autumn were not
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obvious. The contributions of biomass burning, soil, traffend coal were
37.5%+12.0%, 13.0%+4.1%, 20.4%%9.1% and 29.1%+8.8%4pectively in spring;
And were 35.3%+13.0%, 12.0%+4.6%, 21.8%+10.2% ah@%+9.2%, respectively
in autumn. However, the contributions of coal, ficafand soil sources were
significantly different in summer and winter. Thiaffic source contributed the highest
in summer (22.7%+8.0%) and the lowest in winte6%8+5.2%), which was the same
with the contribution of soil. It was 17.8%+3.7%sommer, significantly higher than
the 2.9%+1.9% in winter. Researches show thay M@itted by biological soil is
higher in warm season than in the cold seasonqPa&ttal., 2001; Van Der A et al.,
2006), especially in summer with the maximum amairNOx emissions. The soil in
the northeast is fertile and there is a lot of flarmd, whichexplains why soil sources
in summer contributed up to 18%. Besides, the dmution of coal combustion was
51.5%+5.3% in winter and 21.5%+7.9% in summer. Thgh coal combustion
contribution in winter was consistent with the siigant correlation between sulfate
and nitrate (p<0.01) and the high concentratiorS@ (Figure S2b). The sudden
increase in S@emissions in winter indicated that a large amair80, was emitted
from coal combustion in the region in winter. Clgathe contribution of biomass
burning was higher than 35% among four seasons. I8Qatellite fire points (Figure
S6) indicated that there were many biomass burmnthe area and the dominant
wind up wind direction areas in spring, summer aatimn, therefore the proportion
of biomass burning was also higher in those theasans. However, there was no fire

point in the sampling area in winter except fomgmissions from the southwest
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(Figure S6). But there are still agricultural wasseich as wood and crop waste used
in rural heating in Northeast China. Therefore, toatribution of biomass burning
cannot be ignored in winter. In fact, the haze dayd the clean days were also
distinguished from the source analysis, but theultesshowed no significant
difference, indicating that the contribution of rate source in this area was not
affected by concentration of B (Figure S7)This is consistent with the findings of

Song et al. in Beijing (Song et al., 2019).

Summary

Autumn was the most polluted season of NortheagaChn which season the
concentration of Plyls, water-soluble ions and nitrates were the highestpared to
the other seasons. Obviously, the nitrate polluiiorNortheast China was serious
because nitrate accounted for the highest propodfavater-soluble ions during the
sampling period. Identifying NQsources is important for controlling BMof this
area.5®N-NOs ranged from -2.7%. to +20.1%o, aidfO-NO; ranged from +49.3%o
to +89.5%0. Bothd'°N-NO5; and §'%0-NO; were higher in winter than in summer,
which revealing the difference in sources and contrimgifsom the nitrate formation
pathway among seasons. Besides, the isotope valudéneating period was
significantly higher than in the non-heating peridthe main formation pathway of
atmospheric nitrate in Northeast China was gaseheaction of OH especially in
summer. The SIAR source analysis results showed tthe source of NQ in
Northeast China was dominated by coal combustiod @ biomass burning,

followed by traffic emissions and soil emissionsuridg heating period, coal
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combustion was the main source of N@16.9%). A significant increase in $0
concentration during the heating phase indicated dignificant increase in coal
combustion during heating periotHowever, during non-heating period, biomass
burning dominated (39.5%), which showed severe bgsrburning phenomenon in
the area. From seasonal perspective, the domioantes of NQ in winter was coal
combustion, while other seasons was biomass burfihgrefore, controlling coal
combustion and biomass burning plays a leading nole reducing nitrate

concentrations in Northeast China.
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Figure Captions
Fig. 1 Time series of P, 5°N, NO; and WSIs during sampling.

Fig. 2 The proportion of main inorganic ion componef PM, s (a)during the whole
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sampling and (b)during the clean days @R&V5 pg.m?) and haze days (PM>75
ug.m°).

Fig. 3 Seasonal characteristics-ti-NOs and3*®0-NO;s in PM .

Fig. 4 The box plot of proportion of nitrate formlegd the OH radical pathway.

Fig. 5 The box plot of N NOs, NOR, T, RH and @during the spring, summer,
autumn, winter, heating and non-heating period.

Fig. 6 Potential contribution of coal, traffic veld, biomass burning and biogenic soil
emission of N@ in PM;s during (a)spring, (b)summer, (c)autumn, (d)winter,

(e)heating and (f)non-heating period.
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Figure 1 Time series of PMs, §'°N, NO; and WSIs during sampling.
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659 Figure 2 The proportion of main inorganic ion componenPd; 5 (a)during the

660 whole sampling and (b)during the clean days £{8M5 ug.ni®) and haze days
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662 Figure 3 Seasonal characteristics'df-NOs and5'®0-NO; in PMys.
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Figure 6 Potential contribution of coal, traffic vehiclejomass burning and

biogenic soil emission of NQin PM,s during (a)spring, (b)summer, (c)autumn,

(d)winter, (e)heating and (f)non-heating period.



Highlights:

Coal combustion and biomass burning dominated the production of nitrate in Northeast
China.

Nitrate was formed mainly through the OH radical pathway in Northeast China.

The contribution of the sources varied significantly in different seasons, except for the
largest contribution of coal combustion in winter, biomass burning contributed the most
in other seasons.

The dominant source of nitrate during heating period and non-heating period were coal

combustion and biomass burning, respectively.
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