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Abstract

Knowledge of aerosol size and composition is venpartant for investigating the
radiative forcing impacts of aerosols, distinguighiaerosol sources, and identifying harmful
particulate types in air quality monitoring. Thel@pto identify aerosol type synoptically would
greatly contribute to the knowledge of aerosol tghgtribution at both regional and global
scales, especially where there are no data on chémomposition. In this study, aerosol
classification techniques were based on aerosatadgiroperties from remotely-observed data
from the Ozone Monitoring Instrument (OMI) and AspbRobotic Network (AERONET) over
Saudi Arabia for the period 2004-2016 and validatsithg data from the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CREO). For this purpose, the OMI-based
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Aerosol Absorption Optical Depth (AAOD) and Ultraelet Aerosol Index (UVAI), and
AERONET-based AAOD, Angstrom Exponent (AE), Abgmp AngstromExponent (AAE),
Fine Mode Fraction (FMF), and Single Scatteringeslb (SSA) were obtained. Spatial analysis
of the satellite-based OMI-AAOD showed the domiren€ absorbing aerosols over the study
area, but with high seasonal variability. The st@ioynd significant underestimation by OMI
AAOD suggesting that the OMAERUV product may neetpiiovement over bright desert
surfaces such as the study area. Aerosols wessifata into (i) Dust, (i) Black Carbon (BC),
and (iii) Mixed (BC and Dust) based on the relasiops technique, between the aerosol
absorption properties (AAE, SSA, and UVAI) and gmeameters (AE and FMF). Additionally,
the AE vs. UVAI and FMF vs. UVAI relationships miassified the aerosol types over the study
area, and the FMF vs. AE, FMF vs. AAE and FMF vSASelationships were found to be
robust. As expected, the dust aerosol type was riomhiboth annually and seasonally due to
frequent dust storm events. Also, fine particulatesh as BC and Mixed (BC and Dust) were
observed, likely due to industrial activities (cempgetrochemical, fertilizer), water desalination
plants, and electric energy generation. This isfitise study to classify aerosol types over Saudi
Arabia using several different aerosol propertatienships, as well as over more than one site,
and using data over a much longer time-period firamious studies. This enables classification

and recognition of specific aerosol types overAhsbian Peninsula and similar desert regions.

Keywords: Aerosols; AERONET; Single Scattering Albedo; Abgmmp Angstréom Exponent;
Ozone Monitoring Instrument; Aerosol Absorption ©at Depth.

1 Introduction

Atmospheric aerosol particles comprise solid aqditi materials differing in size from a
few nanometers to larger than 100 micro-meterd) imtricate composition and volatility in their
physiochemical properties (Ali et al., 2019; AlidaAssiri, 2019; Almazroui, 2019). Over Asia,
an immense diversity of aerosol types exist, duapid industrialization and urbanization. This
creates uncertainty in assessing global climategddEck et al., 2010). Atmospheric aerosols
are considered a major element of the earth’s ¢dirsgstem, as they remodel the climate and
radiative balance directly by scattering and alisgrincoming solar radiation (Ali et al., 2017),

whilst indirectly changing cloud optical propertiasd providing condensation nuclei (Kaufman
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et al., 2005). Classification of aerosols into elifnt types can improve the precision of radiative

balance, and assist climate modelling.

Aerosol types such as dust, organics, sea saltsalf@te are predominantly reflective
and scatter incoming solar radiation back to sp#ues cooling the atmosphere (Bilal et al.,
2013). However, other aerosols have more absothizg scattering properties (Li et al., 2016).
The main absorbers in the aerosol mixture are amdades from dust, and Black Carbon (BC)
released from biomass burning and combustion psesesnd Brown Carbon (BrC) from organic
mattter combustion (Wang et al., 2011). Moreovwem ioxides, BC and (BrC) show the greatest
absorption from the ultraviolet (UV) to the visibtegion (Eck et al., 2010; Liakakou et al.,
2020), while BC particles display constant absorptacross the entire solar region (Bergstrom et
al., 2002). A thorough understanding of climateciiog due to aerosol requires knowledge of
aerosol concentration, its composition, size, ampdical properties such as absorption or
scattering. The aerosol size distribution and giigmr properties can be used to classify the
aerosols over the region (Higurashi and Nakajing@22 Lee et al., 2010). These properties vary
spatially and temporally (Choi et al., 2009) acaogdto the season, emission sources, and

aerosol transportation (Ram et al., 2016).

The ground-based Aerosol Robotic Network (AERONEMQvides aerosol absorptivity,
from the Absorption Angstrom Exponent (AAE) at 4880 nm and Single Scattering Albedo
(SSA) at 440 nm data. Complementing this, the OzZdoaitoring Instrument (OMI) on the
Aura satellite also provides aerosol absorbing @rigs such as the Ultra-Violet Aerosol Index
(UVAI) and Aerosol Absorption Optical Depth (AAODEQ. 1) calculated in the UV and visible
bands (Adesina et al., 2016) (Table 1). Light abisagy particles (e.g., dust, BC, or BrC) in the
atmosphere can be determined by single scattelioggl@ (SSA) and absorbing aerosol optical
depth (AAOD) (Shin et al., 2019). The AAOD is th@wumnar aerosol loading (i.e. AOD) due to

light absorption based on the relationship
AAOD = (1-SSA) x AOD (2)

This is the most important parameter for the ewanaof atmospheric warming due to light

absorbing aerosols. Hu et al. (2016) reportedtigit AAOD levels commonly found over East
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Asia result mainly from aerosol mixtures comprisdegert dust, industrial pollutants, and smoke
from biomass burning. The study and classificabbabsorbing aerosols over the globe based
on AERONET and satellite observations is well dsghbd (Cazorla et al., 2013; Logan et al.,
2013; Logothetis et al., 2020; Kedia et al., 20R4pakheti et al., 2019, 2019a; Shen et al.,
2019). Dubovik et al. (2002) established the refeghip technique, which uses relationships
between different optical properties of aerosolsiveed from AERONET and laboratory
measurements, for the classification of global s@io Thus the relationship techniques of FMF
(Fine Mode Fraction) vs. AE, FMF vs. AAE, FMF vsSA AE vs. UVAI, and FMF vs. UVAI
can be used to distinguish the major aerosol t¢pakles 1 and 2). Since then, studies have used
different relationship techniques, including FMFE »& (Eck et al., 2010), FMF vs. AAE (Giles
et al., 2011), FMF vs. SSA (Lee et al., 2010; Geesl., 2012), AE vs. UVAI and FMF vs.
UVAI (Bibi et al., 2017) to classify aerosols inlost modes and BC). For example, low values
of FMF vs. AE indicate coarse mode dust aerosobygius et al., 2009); and high values of
FMF (> 0.6) and intermediate values of AAE (1.0 AEA< 2.00) indicate BC aerosols (Giles et
al.,, 2011). Similarly, values of SSA (SSA0.95) and high values of FMF also indicate BC
aerosols (Lee et al., 2010; Giles et al., 2012ye&# studies have used relationship techniques
from ground-based instruments alone, including Sxbser et al. (2017), Jose et al. (2016) who
classified absorbing aerosols over Hyderabad, Jnddam et al. (2016) over urban areas of
Pakistan, and Gharibzadeh et al., (2018) over Ifnvalidation and comparison of the
classifications done based on FMF vs. SSA are stgdeto be included with the previous
studies done by Srivastava et al. (2012) and Tiwgaal. (2015) at different locations in India
and Pakistan. Bibi et al. (2016; 2017) classifiedoaol types using ground-based and satellite-

based aerosol optical properties over Karachi @aik) and the Indo-Gangetic Plain (IGP).

However, only a few such studies are available gdweMiddle-East. Of these, Farahat et
al. (2016) reported only a single aerosol typestdaver the Middle-East and North Africa. Al-
Salihi (2018) classified aerosols based on AOD Aidrelationship and over only one site,
Baghdad, Iraq, reporting four different aerosol eyp(maritime, dust, urban, and biomass
burning). The few aerosol classification studiesducted over Saudi Arabia have used only
one site in Saudi Arabia, the Solar Village, ast gdrlarger studies in other regions. For

example, Logothetis et al. (2020) classified adsosuo eight types (Fine (highly, moderately,
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slightly, and non-absorbing), mixed (absorbing aond-absorbing), coarse (absorbing and non-
absorbing)) based on FMF, SSA, and AE relationsbyer Europe, the Middle East, North-
Africa and Arabian Peninsula. Kaskaoutis et alO@0classified aerosols into four types (clean
maritime, biomass burning-urban, desert dust, andadh using relationship techniques over
four continents and other studies include Chenl.e2@16) and Mao et al. (2019) who also
included Saudi Arabia’s Solar Village, Riyadh si® part of a larger study. None included the
KAUST Campus site in Jeddah, which is situatedhatdther side of the country (Figure 1), and
thus could offer a wider perspective of aerosopprties. Because Saudi Arabia has distinctive
geographical and climatic environments, which ddfgiate it from other countries, accurate
classification of aerosols cannot rely on univerdaksifications. High aerosol concentrations
over Saudi Arabia have traditionally been attrildute frequent dust storms (Awad and Mashat,
2014; Almazroui et al., 2015; Awad et al., 2015;nkar et al., 2018; Ali and Assiri, 2016, 2019;
Mashat et al., 2019, 2020). However, the booming and gas industry generating

unprecedented economic growth, have stimulated] tapanization and industrial



138 Table 1 Definition of aerosol optical properties and riglaship indicators.

Index Name Indicator
designation
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AAOD Aerosol Columnar aerosol loading of light absorbing aers

Absorption
Optical Depth
AE Angstrém Indicates the size of the dominant aerosol paditiehe column (AE
Exponent < 1 specifies dominance of coarse mode and AE endodistrates the
dominance of fine mode aerosol)
AAE Absorption Measures the spectral dependence of absorptiontgUNIR), which
Angstrém depends on size, shape, and chemical compositiaerokols. Dust
Exponent and BC (absorbing aerosols) have high values > 2.
FMF Fine Mode Provides quantitative information about the projporof coarse an
Fraction fine mode aerosol particles. FMF < 0.40 = coarsden0.4< FMF >
0.6 = mixture, FMF > 0.60 = fine mode
SSA Single The iatio of scattering to extinction, atindicates the proportion «
Scattering absorbing versus scattering aerosol particles SSA.95 = non-
Albedo absorbing, SSA 0.95 = absorbing aerosols
UVAI Ultra-Violet A robust index for detecting absorbing aerosols{dind soot) in th

Aerosol Index atmosphere. Uses 2 UV wavebands. UVAI > 1.0 = thiearced
presence of UV-absorbing, UVAI = 0.5-1.0 = weakgarece of UV-
absorbing aerosols.

FMF vs. AE Low values of both Dust, Medium value = Mixed (BC and Dust), High values
BC

FMF vs. AAE High values of AAE and lo values of FMF indicate Dust, Medium values of k
indicate Mixed (BC and Dust), Low values of AAE aHijh values of FMF indicate
BC

FMF vs. SS/ Low values of FMF and Medium values of SSA indicBust, Medium values ¢
FMF and Low SSA indicate Mixed (BC and Dust), andtvalues of both indicate
BC.

FMF vs. UVAI Low values of FMF and High values of UVAI indicdbrist, Medium FMF and Lo
UVAI indicate Mixed (BC and Dust), High values ofMF and Low values of UVAI

indicate BC

AE vs. UVAI Low values ofAE and High values of UVAI indicate Dust, Medium , and Low
UVAI indicate Mixed (BC and Dust), High values oEAand Low values of UVAI
indicate BC.

141

142  activities (i.e., cement, petrochemical, fertilizevater desalination, and electric energy
143  generation plants). The outcomes are unquantifiegdrms of human health, as it is known that
144  different aerosol types vary in their health imga&everal studies have reported health impacts
145  from heavy metals and pathogens accompanying thusts over the Middle East. For example,
146  Leili et al. (2008) examined total suspended piagiand P\, over the center of Tehran (Iran),

147  and reported heavy metal contents (Pb, Co, Cda@aiCr) at levels dangerous enough to cause
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neurodevelopmental and behavioral defects in damidr Other findings of high heavy metal
content of airborne dust in the Middle East incliaeoushani et al. (2019) in western Iran, and
Farahmandkia et al. (2010) in Tehran. Studies, Wwhitked heavy metals in dust with serious
human health concerns, include Leili et al. (2008)Tehran, Jiries et al. (2003) in Amman,
Jordan, and Al-Rajhi et al. (1996) in Riyadh. tddion to heavy metals, Gerivani et al. (2011)
found that dust storms in Iran can contain andspart viruses, which affect human populations
and Saeedi et al. (2012) reported dust particlegagung polycyclic aromatic hydrocarbons
(PAHSs) in Teheran. A potentially beneficial impauft dust particles, is their role in carrying
nutrients to the marine ecosystem of the Northeed Bea (Jeddah) and their contribution to
nutrient balance continues largely unexplored (&shket al., 2015). The amplified threats of
climate change for desert animals world-wide argmfeed in Saudi Arabia (Williams et al.,
2012). Thus, the classification of aerosols over Alnabian Peninsula for accurate estimates of
climate forcing and health impacts is urgent. Biigly uses available ground-based AERONET
sites within Saudi Arabia i.e., the Solar VillagedaKAUST Campus sites, combined with
satellite data from the Ozone Monitoring Instrum@MI) to classify the predominant types of

aerosols over Saudi Arabia.

The main contributions of the current research(ayehe long-term period and spatial
spread of observations that makes the results madrest and (b) the selection of the most
appropriate technique (classification scheme) k& determination of different aerosol types

over Arabia, based on comparison with CALIPSO.

2 Study area and Data-sets
2.1 Study Area

Saudi Arabia is the largest country in the MiddksE covering 80% of the Arabian
Peninsula with an area of approximately 2,218,086 Figure 1), and is bordered by the
Arabian Gulf and the Red Sea. The largest dedetRub al Khali or Empty Quarter covers
647,500 Knf in the southern part of the country and is a swfcfrequent dust outbreaks and
severe dust storms. The country comprises 13 presiand a total of 104 cities, of which the 20
largest have over 100,000 residents. This study a@e®mplished over the two AERONET
ground stations in Saudi Arabia: Solar Village ad8UST Campus (Figure 1). The Solar
Village (24.91° N, 46.41° E and 764 m a.s.l) is rappmately 50 km from the north-west

8
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periphery of Riyadh. This city is situated on thesekt plateau resulting in frequent dust storm
events (Farahat, 2016). The KAUST Campus site #2N§ 39.10° E and 11.2 m as.l) is
positioned in the village of Thuwal in a rural aocdastal site in the Red Sea on the roof of a
building. Climatically, the country has little rd&atl, with approximately 100 mm between
autumn and early spring, followed by hot and dig Ispring and summer. The Shamal winds
lead to dust events during spring (Mashat et &202 and summer (Notaro et al., 2013, 2015;
Yu et al., 2013, 2015, 2016), with over thus theUST Campus and Solar Village sites (Figure
1) observe higher aerosol loadings at these times.

Based on the three-month mean readings of temperatod rainfall, Saudi Arabia's
seasons are classified into spring from March toy \MAM), summer from June to August
(JJA), autumn from September to November (SON), wmder from December to February
(DJF) (AMS, 2001).

35N

36N

33N

30N 4
30N 1

25N | 27N _
Solar Village
L 2

24N+
A EAUST Campus

20N 1

21N

18N
TSN 1

15N 1

>
T T T T T 2N T T T T T T —— T
30E 35E 40E 45E 50E 55E 60E 30E 33E 3B6E 39E 42ZE 45E 48E S51E 54E 57E 60E

1

10N

Figure 1: Geographical map of the Kingdom $&udi Arabia. Red asterisks represent the two
ground-based AERONET stations. Whereas, the leilp@presents the mean values (2004—
2016) of Normalized Difference Vegetation Index (MIpand the right panel represents the
long-term (2004—-2016) mean values of aerosol dptiepth (AOD) based on the MODIS
Collection 6.1 Deep Blue algorithm.

2.2 Data-sets

OMI is carried by the Aura satellite, launched utyJ2004, and is designed to measure
air quality, the earth’s climate, and ozone. It mgas sunlight scattered by aerosols with high

spectral resolution from the ultraviolet to visiskgions (270-500 nm) and a spatial resolution

9
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of 13-24 km (Levelt et al., 2006). The OMI near-@¥rosol retrieval algorithm (OMAERUV)
can be used to measure prominent absorbing aerssoisas dust and carbonaceous aerosols
(Torres et al.,, 2007). The OMAERUV algorithm utd& the near-UV spectral region for
estimation of AAOD and UVAI products. Of major inést in the near-UV measurements is the
powerful interaction between aerosol absorption scaktering in this spectral region, which
facilitates the calculation of aerosol absorptiapacity. For this study, OMI Level 2 and Level 3
OMAERUV OoMI AAOD (500 nm) data were obtained from
https://giovanni.gsfc.nasa.gov/mapss/ and "htgasvanni.gsfc.nasa.gov/giovanni/”,

respectively.

The Cloud-Aerosol Lidar and Infrared PathfindereBaé Observation (CALIPSO) was
launched on 28 April 2006 on the CloudSat satellite to study thkes of aerosols and clouds in
earth’s air quality, weather and climate. The CAR® gives information on aerosol vertical
profiles and 3-dimensional information of aerosmperties throughout day and night over the
globe (Winker et al.,, 2003), based on the Cloude8el Lidar with Orthogonal Polarization
(CALIOP) sensor. The aerosol lidar ratio, a keyapagter for extinction retrieval, is determined
for each aerosol subtype based on measurementsllimgd and the cluster analysis of a
multiyear Aerosol Robotic Network (AERONET) datag@mar et al., 2005, 2009), they are
considered more accurate than other measuremeatet(8l., 2020). In version 3 (V3) and
earlier, the CALIOP level 2 aerosol classificatemd lidar ratio selection algorithm defined six
aerosol types: clean marine, dust, polluted contale clean continental, polluted dust, and
smoke (Omar et al., 2009). Each type is assignedxénction-to-backscatter ratio (i.e., lidar
ratio) with an associated uncertainty that defittes limits of its expected natural variability
(https://www.atmos-meas-tech.net/11/6107/2018/aw6107-2018.pdf). This study used the

Level 2 CALIPSO version 4.10 aerosol-type profifes aerosol classification. These images

were downloaded from https://www-
calipso.larc.nasa.gov/products/lidar/browse_imagesy4 _index.php. The temporal resolution

of 16 days for CALIPSO makes it unsuitable for ammbus monitoring, but due to its accuracy,

it is used in this study for validation.

The AERONET is NASA’s ground-based aerosol netwavkjch has more than 700

stations over the globe (Holben et al., 1998). &t are commonly used for validating satellite-

10
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based aerosol retrievals. In this study, versidre®el 2.0 (cloud-screened and quality-assured)
daily averaged direct sun products (FMbm and AEu4o0s70n and sky irradiance products
(AAOD 440nm SSAis0nm and AAE40-870n Were obtained from https://aeronet.gsfc.nasa.gov/
the period 20042016 (Table 2).

Table 2 Observation and the total number of datasetscit B8RONET site.

Location Observation Total
Direct products AE/FMF Inversion products
SSA/AAE/AAOD
Solar Village 2004-May 2013 2463/2549 1001
KAUST Campus| Feb 20122016 1580/1393 1285

2.3 Research Methodology

The methodology of the present study is as folloMean seasonal and annual spatial
distributions of OMI-AAOD were calculated from daibbservations for the period 2004-2016.
AERONET AAOD at 440 nm was interpolated to AAOD %20 nm using the Angstrém
Exponent (Equation 1):

500y —
AAODSOO nm = AAOD44_0 nm X (m) AAE4—4—0—870 (2)

Monthly and seasonal temporal analyses were peerior the AERONET data (AAOD, AE,
AAE, FMF, and SSA) and OMI data (AAOD and UVAI). Faalidation purposes, to obtain
collocated OMI-AAOD with AERONET, the OMI AAOD vaés were averaged for a spatial
window of 1x1 pixel centered over the Solar Villaged KAUST Campus sites, and AERONET
values were averaged for +/- 30mins of the overgamse of OMI. Similarly, OMI UVAI
collocated retrievals were obtained which were udsethe classification of aerosol types. In the
present study, a total of five relationships suslr®IF vs. AE (Logothetis et al., 2020), FMF vs.
SSA (Logothetis et al., 2020; Lee et al., 2010), & UVAI and FMF vs. UVAI (Bibi et al.,
2017) were used. Besides, the FMF vs. AAE relaligns modified based on several previously
published studies (Lee et al., 2010; Bibi et ab12 Rupakheti et al., 2019; Logothetis et al.,
2020). The above relationships classified aeroswsthree main categories (Table 3), namely
(1) dust, (2) mixed dust and black carbon (BC), &)dBC (nearly exclusively attributed to

fossil-fuel emissions, industrial and traffic). Thamaining data points, which do not fall within

11



254  the classification thresholds, are denoted as abevsol types. Finally, the identified aerosol

255  types were confirmed by comparison with satellgeaol products from CALIPSO datasets.

256 Table 3 Classification of aerosol types over Saudi Aralsang threshold values taken from
257 previous studies.
Aerosol Types FMF vs AE FMF vs AAE FMF vs SSA
Dust FMF<0.4 AE<0.6 FMF<0.4 AAE>2.0 FMF<0.4 SSRM95
Mixed (BC & Dust) 0.4FMF<0.6 0.6AE<1.2  0.4FMF<0.6 1.0<AAE<2.0  0.4FMF<0.6 SSA0.95
BC FMF>0.6 AE> 1.2 FMF>0.6 1.0<AAE<2.0 FMF>0.6 SSA95
AE vs UVAI FMF vs UVAI
Dust 0.0<AE<0.4 UVAI>1.57 0.1<FMF<0.3 UVAI>1.57
Mixed (BC & Dust) 0.0<AE<1.0 0.5<UVAI<1.55 0.1<FMF<0.55 0.5<UVAI<1.55
BC 1.0<AE>1.55 0.5<UVAI<1.52 0.55<FMF>1.0 0.5<UVAI<1.50
258

259 3 Results and Discussion

260 3.1 Spatial distribution of OMI-based AAOD

261  Figures 2 and 3 show the mean annual and seasewval-8 OMI-AAOD retrievals at 500 nm of
262 over Saudi Arabia for 2004-2016. Figure 2 show$ lAGOD values (greater than 0.03) over
263  the Eastern provinces, moderate AAOD (0.018 to)0o@8r most parts of the country, and low
264  AAOD (0.01 to 0.018) in the North-Western regiotefe AAOD values are less than 10% of
265 the columnar AOD values, which suggests that alsgriaerosols are much fewer than
266  scattering aerosols over Saudi Arabia. High AAOhanly distributed near the sources of dust,
267 BC, and OC (Islam et al., 2019; Kang et al., 201The seasonal distributions (Figure 3) show
268 the highest AAOD (greater than 0.03) in spring, andr the Eastern and Southern provinces,
269 followed by summer, winter, and autumn. This iséase dust storms originate in the Sahara
270 Desert due to depressions passing eastwards ogeMéiditerranean Sea, and strong ground
271 heating produces turbulence, local pressure gregliemd the Shamal (wind) pattern (Shao,
272 2008; Prakash et al., 2015; Mashat et al., 2019)il A0 May (spring) experiences by peak
273 dustiness over Eastern regions, and May-June axgh&n and Central regions of Saudi Arabia
274  (Sabbah and Hasan, 2008; Yu et al., 2013). Howeareranticyclonic pattern is developed in
275 autumn leading to weak dust activity resulting Istveolumnar AAOD over Saudi Arabia (Kang
276 etal., 2017; Mashat et al., 2019).
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Figure 3: Mean seasonal spatial distribution of Aerosol Aption Optical Depth (AAOD) for
(a) Winter, (b) Spring, (c) Summer, and (d) Autuafrtained from OMI instrument over Saudi
Arabia averaged over the period 2004-2016.

Figure 4 shows a more detailed annual cycle of B&EERONET- and OMI-based Level-
2 AAOD over the Solar Village (2062013) and KAUST Campus (2012016) sites. Higher
values of AERONET and OMI AAQOD retrievals over Soléllage in the east of the Peninsula
indicate more absorbing aerosols present thantbeelKAUST Campus site. This may be due to
a larger number of dust storm events comparedagdUST region, as reported by Butt et al.,
2017 using ground-based meteorological data. Reslibwed that OMI-AAOD retrievals
followed the same temporal pattern as the AERONEGA measurements (Figure 4). Figure 5
shows significant underestimations for both low aigh aerosol loadings as indicated by lower
values of the slope, which suggested the inappatgprise of the aerosol model as well as error
in the estimated surface reflectance. The undematsbn during the low aerosol loadings is
caused by the overestimation in the estimatedarsthface reflectance (Bilal et al., 2013; Bilal
and Nichol, 2015). Error in these parameters migghtesponsible for the underestimation in the
AAOD retrieved by the OMAERUYV algorithm. This mayggest that improvements in the OMI
algorithm (OMAERUV) are required for a better esttmn of AAOD over bright desert

surfaces.
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Figure 5: Scatterplot between OMI AAOD and AERONET AAOD) ovke (a) Solar Village
(2004-2013) and (b) KAUST Campus (2012-2016).

Figure 6 represents the annual cycle of AERONETd @MlI-based aerosol optical
properties over the Solar Village and KAUST Campiiss for the period 2004-2016. These
properties describe both aerosol size and absdyptincluding Angstrom Exponent (AE),
Absorption Angstrom Exponent (AAE), Fine Mode Fiaot(FMF), Single Scattering Albedo
(SSA), and Aerosol Index (UVAI). The AE indicatégtsize of the dominant aerosol particles in
the column, where small values of AE (< 1) indicdte dominance of coarse mode aerosols and
large values of AE (> 1) demonstrate the dominaosfcene mode aerosol such as BC, sulfate,
and organic carbon released from manmade actiyHels et al., 1999). The annual values of AE
(Table 4) suggest coarse mode aerosols over boRONET sites (Solar Village: 0.48, KAUST
Campus: 0.64), as well as in all seasons. AE reaitheninimum in May (Solar Village: 0.20,
KAUST Campus: 0.35) and maximum in November (Soldlage: 0.86, KAUST Campus:
0.97) (Figure 6). These results suggest substhntmbre coarse mode aerosols in spring
compared with other seasons. Trend analysis shaweslignificant increasing or decreasing

trends in AE over either site (Table 4).

The Absorption Angstrém Exponent (AAE) indicates ibsorption contrast in relation
to wavelength, which depends on particle size, shapd chemical composition of the absorbing
aerosols, which have a unique value (Russel e2@10; Li et al., 2016). For example, values of
AAE < 2 and AAE > 2 indicate the fine mode and seamode absorbing aerosols respectively.

Annual average values of AAE suggest coarse moderhimg aerosols over both AERONET
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sites (Solar Village: 2.19, KAUST Campus: 2.27) lflea4). However, significant variations
were observed at monthly scales, with coarse mbderhing aerosols observed in spring, but
fine mode absorbing aerosols in winter over botiessiFigure 6). Overall, no significant

decreasing/increasing trends in AAE were obserwed either site (Table 4).

The Fine Mode Fraction (FMF) provides quantitaiv®rmation about the proportion of
coarse and fine mode aerosol particles, varying féo(coarse mode aerosols) to 1 (fine mode
aerosols). According td_ee et al. (2010) and Logothetis et al. (2020), FH¥B.40 represents
coarse mode aerosols, 04GMF < 0.60 represents mixed type (coarse and fine maei®sols
and FMF > 0.60 represents fine mode aerosols. heah average value of FMF (0.34) in Solar
Village is lower than that in KAUST Campus (0.40)dacorresponds to more coarse mode
aerosols over Solar Village. The seasonal averafigevof FMF (spring: 0.24, summer: 0.31,
autumn: 0.44, winter: 0.38) in Solar Village is lwcompared to that in KAUST Campus
(spring: 0.30, summer: 0.37, autumn: 0.48, wint&r3), which suggest more coarse-mode
aerosols over Solar Village (Table 4). Annual valoé FMF were lower at SV than at KAUST
Campus, due to lower levels in spring and earlyraem These lower levels of FMF at Solar
Village indicated more coarse mode aerosols, coatpsy mixed aerosols for these months at
KAUST Campus. Therefore, overall annually, Solallage experiences more coarse mode
aerosols than KAUST Campus (Figure 6). Overallsigmificant decreasing/increasing trends in
FMF were observed over the years 2004-2016 (Tgble 4

The Single Scattering Albedo (SSA) is the raticscéttering to extinction and indicates
the proportion of absorbing versus scattering atrparticles. The value of SSA > 0.95
describes non-absorbing aerosols, G®B5A< 0.95 indicates weakly absorbing aerosols, 0.85 <
SSA < 0.90 for moderately absorbing aerosols, aB4 8 0.85 belongs to highly absorbing
aerosols (Lee et al., 2010; Russel et al., 201@wai et al., 2012; Shin et al., 2019). The annual
average values of SSA within the range of 0.85-819fgest the presence of weakly absorbing
aerosols over both AERONET sites (Solar Villag€00.KAUST Campus: 0.93) (Table 4). At
seasonal scale, weakly absorbing aerosols werernvaoseluring all seasons except during
summer over the Solar Village site. Weakly absaylaerosols indicate both dust and organic
carbon, the latter being a complex mixture of cleaincompounds generated from fossil fuel

and biofuel burning as well as from natural biogeemissions. The absorption or scattering
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property of dust grains depends on their size andposition, whether predominantly
silicate or graphite, thus these results are coimpatvith the results of FMF and AE,
which suggest coarse aerosols to be dominant & &iteés. Overall, no significant

decreasing/increasing trends in SSA were obseflail€ 4).

The Ultra-Violet Aerosol Index (UVAI) is a well-kmen index for detecting the
absorbing aerosols (dust and biomass burning) @natmosphere. It uses the UV spectrum to
distinguish absorbing from non-absorbing aerosGia&f et al., 2005). The threshold UVAI >
0.5 is useful to identify absorbing aerosols (Tereeal., 2009). The value of UVAI > 1.0 shows
the enhanced presence of UV-absorbing aerosols ¢eigt or smoke or biomass burning), and
0.5 < UVAI < 1.0 indicates the weak presence of &bsorbing aerosols (Washington et al.,
2003). The observed values of UVAI suggest the weakence of UV-absorbing aerosols over
both AERONET sites except in spring at Solar Vidlaand summer at KAUST Campus (Table
4) and this is confirmed by the monthly values (ffgg6). These findings support Kaskaoutis et
al. (2010) report of dust particles as indicatedthsy Al (0.5 to 0.6) over the South Greek sea
regions. Overall, a significant increasing trendJMAI was observed at KAUST Campus (Table
4).

AE, FMF, SSA and UVAI

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
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Figure 6: Annual cycle of averaged Aerosol Optical Propertbtained from AERONET (AE,
AAE, FMF, and SSA), and OMI (UVAI) over the (a) SoVillage site (2004-2013) and (b)
KAUST Campus site (2012-2016).

As can be seen from the above aerosol descripithotiss section 3.2, the analysis based
on the individual parameters describe, whether dineoarse mode (AE and FMF), whether fine
or coarse mode absorbing aerosols (AAE), and whethsorbing or non-absorbing aerosols
(SSA and UVAI). However, these individual paramgteannot identify the exact nature of the
aerosol types such as dust or BC or mixed. Thezgfection 3.3 evaluates the combination of

these parameters to classify aerosols into spdgpes.
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383

384 Table 4 Mean seasonal and annual variability of aerostitalpproperties (AE, AAE, FMF, SSA, and UVAI) witheir trends over
385 the Solar Village and KAUST Campus sites for theque2004-2016.
Parameters Solar Village KAUST Campus
Winter Spring Summer Autumn Annual Trenfls Winter risg Summer Autumn Annual Trends
AE 0.54+0.17  0.23+0.12  0.41#0.17  0.70+0.18  0.48%0.20.01Z | 0.68+0.20 0.39+0.08 0.55+0.17 0.91+0.12  0.64%0.24.023
AAE 2.14+0.93 2.72+0.36 2.18+0.70  1.70+0.66  2.1940. -0.04< | 2.19+0.40  2.80+0.28 2.48+0.48 1.77+0.47 2.27+0.570.067
FMF 0.38x0.08  0.24+0.07  0.31#0.08  0.44+0.08  0.32%0.-0.00¢ | 0.43+0.07  0.30£0.04 0.37+0.07 0.48+0.05  0.40+0.090.007
SSA 0.900£0.03 0.902+0.01 0.897+0.01 0.903+0.20 0DP2 -0.00] | 0.94+0.01  0.92+0.01 0.93+0.01 0.95+0.01  0.93+0.010.002
UVAI 0.78+0.17 1.09+0.20  0.97+0.20  0.73#0.12  0.88+0.23).01: | 0.79+0.15  0.98+0.20 1.05+0.24 0.75:0.11  0.89+0.220,015*
386
387 3.3 Classification of aerosols
388 The relationships of different parameters, naméWFF/s. AE, FMF vs. AAE, FMF vs. SSA, AE vs. UVAInd FMF vs.
389  UVAI were used to classify aerosols into three syp®ust, Mixed (Dust and BC), and BC (Figurel@). Results based on FMF vs.
390 AE, FMF vs. AAE, and FMF vs. SSA demonstrated thmihance of Dust type aerosols followed by Mixe (&1d Dust), then BC
391  over both sites, (Figures 7-10). Thus on Figuresid 8 (ac), the relationships showing the dominance of Dysé aerosols were
392  FMF vs. SSA (Solar Village: 84.04%%, KAUST Camp®$§.50%) followed by FMF vs. AE (Solar Village: 68%, KAUST
393 Campus: 48.38%), and FMF vs. AAE (Solar Village:1886, KAUST Campus: 46.45%). The results suppogeokations of
394 frequent dust storms (Kaskaoutis et al, 2007)weltas several studies reporting more dusty dags the Solar Village as compared
395 to the KAUST Campus site (Yu et al., 2013; Butakt 2017), as many dust storms emanate from teerdef Iraq, North-East of
396 Saudi Arabia, and Southern Iran, directly influergcto the Solar Village site (Prospero et al., 2008ahat et al., 2016 ). Therefore,
397 dust aerosols are persistently prevalent over ther ¥illage site. However, when we consider thHatrenships of AE vs. UVAI and
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398 FMF vs. UVAI, these suggest the dominant aerogue tp be Mixed (BC and Dust) followed by Dust, d@nein BC (Figures 7 and 8
399 (d-e)). Since very
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low levels of Dust are indicated by the two relasbips AE (Dust: 0.0<AE<0.4) vs. UVAI
(Dust: >1.57) and FMF (Dust: 0.1<FMF<0.3) vs. UV@lust: >1.57) over both sites, whereas
the other three relationships show high dust lew&lpported by the single parameters and by
many other studies and reports, these results sugigat AE vs. UVAI and FMF vs. UVAI
relationships cannot provide a meaningful aerogpks classification. This may be due to
underestimation by the OMAERUV algorithm-based U\Wdta (see Figures 4 and 5), as the
UVAI alone suggested the dominance of absorbingsmés over both sites. Therefore, the study
indicates that the OMAERUV algorithm may need inyament for better estimating the OMI

UVAI over bright-reflecting surfaces.

The value of FMF < 0.6 demonstrates coarse-modeirdaetd aerosols, which were
associated with a mixture of different types ofosets (Wu et al., 2015). Pérez-Ramirez et al.,
(2015), noted a similar finding over Granada, Sp@hms interpretation is supported by Wu et al.
2015, who used a value of FMF < 0.6 to identifyreeamode dominated aerosols which are
associated with a mixture of different types ofosels, and a similar finding was reported by
Pérez-Ramirez et al., (2015) over Granada, Spaie.FMF (0.4< FMF < 0.6) vs. AE (0.&< AE
< 1.2), FMF (0.4<FMF < 0.6) vs. AAE (1.0 < AAE < 2.0), and FMF (04FMF < 0.6)
vs. SSA € 0.95) thresholds represent Mixed (Dust and BCg tgprosols. These Mixed type
aerosols are best represented by FMF vs. AE (Stllage: 25.17%, KAUST Campus: 41.21%),
with the FMF vs. SSA and FMF vs. AAE giving loweerpentages (Figures 7 and 8-dp.
Finally, Figures 7 and 8 {a) show a small percentages of BC aerosols basetieoabove-
mentioned three relationships over the both skiégher FMF (> 0.6) values indicate fine mode
aerosols, which correspond to BC, which may be wuéocal industrial activities (cement,
petrochemical, and fertilizer), water desalinatpants, and electric energy generation (Farahat
et al., 2016). Some aerosol types were not clasisifamely 'Other’ type (Figures-X0). These
were best represented by FMF vs. AE (31.68%) dverSolar Village and by FMF vs. AAE
(29.97%) over the KAUST Campus site (Figures 7 @rd-c). These aerosols may be formed
due to the mixing of natural and anthropogenic s@satmospheric water vapor over the study

area (Kaskaoutis et al., 2011).
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The seasonal distribution of aerosol types froettiree relationships FMF vs. AE, FMF
vs. AAE, and FMF vs. SSA confirm that Dust is tlde@minant aerosol type during all seasons
over both sites, and this reaches its maximum imggollowed by summer, winter, and autumn
(Figures 9 and 10 {a)). This confirms the findings of previous satelliand station-based
studies which reported high dust levels during ek dust storm season of spring and early
summer (Sabbah and Hasan, 2008; Yu et al., 20¥3h&get al., 2016; Albugami et al., 2019).
Conversely, the lowest FMF values (< 0.3) were ahatespring and summer over both sites,
which support the findings of Kaskaoutis et al. Q20 and Wu et al. (2015). The above-
mentioned three relationships indicate Mixed (Darsti BC) type aerosols during all seasons,
with highest levels in autumn followed by winteansmer, and spring (Figures 9 and 10d(j.
The possible reasons for this decline in dust stewents as well as washing out by the higher
rainfall during autumn to winter (Kaskaoutis et 2007; Farahat et al., 2016), resulting in FMF
values become a little higher varies from 0.46 .800ndicate coarse-mode dominated aerosols
(Dust), which correspond to Mixed (Dust and BC) rotlee study area. The value of FMF < 0.6
demonstrates coarse-mode dominated aerosols, wieighassociated with a mixture of different
types of aerosols (Lee et al., 2010; Wu et al. 520Figures 9 and 10 also show BC aerosols to
be dominant during autumn and winter, which isilaited to local anthropogenic activities of
urban/industrial and biofuel emission. Consequeiitly FMF values are increased to above 0.6,
and this is correlated with the observed fine-m&f& particles over the study area. These
findings also supported by Gautam et al. (2007),8ival. (2015), and Lee et al. (2010).
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468 period 20122016 for (a) FMF vs. AE, (b) FMF vs. AAE, (c) FMB.ASSA.
469
470 3.4 Validation of Classified Aerosol Types
471 Classified aerosol types were validated against IPAD daytime aerosol type profiles.
472 A similar approach was used in previous studiebi(&i al., 2016, Bibi et al., 2017; Rupakheti et
473  al., 2019), as no other data are available fordatibn. The CALIPSO (daytime) aerosol type
474  profiles were downloaded for specific dates, adogrdo the availability of AERONET data,
475  including 24-Jul-2007, 11-Jul-2010, 06-Mar-2011;N8r-2011, and 21-Apr-2008 for the Solar
476  Village site, and 23-May-2012, 25-Jan-2013, 10-Eéh3, 5-Mar-2013, and 02-Jun-2013 for the
477 KAUST Campus site. Results from CALIPSO showed dioeninance of Dust aerosol types
478  reaching up to 5 km from the surface over bothsqf@ble 5 and Figures S32). Results also
479  showed the presence of other mixed aerosols (€. mlumes and biomass burning mixed and
480 forming polluted dust) over the study area (Tablen8 Figure S253). The results showed a
481 good agreement between FMF vs. AE, FMF vs. AAE, BMF vs. SSA and the CALIPSO
482  classified aerosol types over the region. Therefths study recommends use of these three
483  relationship techniques for aerosol classificatmrer Saudi Arabia and other regions with
484  similar atmospheric and land surface charactesistic
485 Table 5 Aerosol classifications based on FMF vs. (AE, AARd SSA) and CALIPSO.

Date FMFvs. AE Types FMFvs. AAE Types FMFvs.SSA Types CALIPSO

Site: Solar Village

24-Jul-2007 0.24 0.26 Dust 0.24 243 Dust 0.24 0.8Dust Dust
21-Apr-2008 0.15 0.04 Dust 0.15 3.23 Dust 0.15 0.92Dust Dust
11-Jul-2010 0.32 0.46 Dust 0.32 270 Dust 0.32 0.93ust Dust
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06-Mar-2011 0.25 0.36 Dust 025 345 Dust 0.25 0.88Dust Dust

29-Mar-2011  0.13 0.01  Dust 0.13 292 Dust 0.13 0.92Dust Dust
Site: KAUST Campus
23-May-2012 0.29 0.23 Dust 029 289 Dust 0.29 0.90Dust Dust
25-Jan-2013 048 091 Mixed 0.48 141 Mixed 0.48 930. Mixed Mixed
10-Feb-2013 0.37 0.55 Dust 0.37 201 Dust 0.37 0.9Bust Dust
5-Mar-2013  0.37 0.56 Dust 0.37 249  Dust 0.37 0.94ust Dust
02-Jun-2013 0.19 0.10 Dust 0.19 315 Dust 0.19 0.9Dust Dust
486
487 4. Conclusion
488 In this paper, aerosol types over Saudi Arabia wetssified using the aerosol property
489  relationships technique and data from OMI (AAOD, Alyand AERONET (AAOD, AE, AAE,
490 FMF, SSA). Based on the three relationships FMFAE.FMF vs. AAE, and FMF vs. SSA, the
491  study found dust to be the most common and aburaaosol type at both annual and seasonal
492  scales, and this was expected, due to the freqlustistorm activity over the study area. Notable
493  temporal variations in aerosol type were observed attributed to seasonal climatic changes,
494  especially the greater percentage of Dust aerggastin spring due to depressions passing
495 eastwards over the Sahara Desert, a major dustesoupcal dust sources are also more
496  significant during the hot and dry seasons of gptonearly summer; spatial variations are also
497  significant, with high AAOD values over the Easteand Southern provinces, due mainly to
498 local dust sources, and lower AAOD over the NomhBrovince. Besides Dust, significant
499 amounts of BC and Mixed (Dust and BC) aerosolsvadiserved, though in lesser amounts than
500 Dust, which are attributed to increasing industradtivities (cement, petrochemicals and
501 fertilizers), water desalination plants, infrasture, and electric energy generation. These release
502 absorbing and fine particles, which often becomeehiwith dust. Significant underestimation in
503 OMI UVAI and AAOD products was observed, suggestihgt significant improvements are
504 required for the OMI OMAERUYV algorithm for bettestamation of AAOD over bright desert
505 surfaces. Consequently the study found that tla¢ioaships FMF vs. UVAI and AE vs. UVAI
506  (with UVAI derived from OMI) relationships misclaBied aerosol types over the study area,
507 therefore the relationships FMF vs. AE, FMF vs. AAAd FMF vs. SSA are recommended for
508 aerosol classification over Saudi Arabia and areath similar land and atmospheric
509 characteristics. Validation of the classified aetdgpes against CALIPSO data showed that the
510 recommended aerosol classifiation relationshipsKMsl AE, FMF vs. AAE, and FMF vs. SSA)
511 are robust and effective for aerosol classsificatover Saudi Arabia. In view of increased
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512  knowledge of the harmful health effects of dustAgorsynthetic compounds, the aerosol
513 relationships for identifying the specific aerosgbes described here, should be of benefit in
514  future air quality control programs, as well agjiabal studies of climatic forcing due to aerosol
515 in arid regions.
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Highlights

AERONET, OMI, and CALIPSO datasets were used for classifying aerosols

OMI AAQOD shows the dominance of absorbing aerosols with high seasonal variability
Dust, then mixed black carbon and dust dominated over the study area, Saudi Arabia
Mixed aerosol types suggest increasing fossil fuel and biogenic emissions

FMF vs. (AE, AAE, and SSA) are the best techniques for classifying aerosols



