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Abstract. The effect of air-sea coupling on the simulated boreal summer intraseasonal oscillation (BSISO) is examined 

using atmosphere—ocean-mixed-layer coupled (SPCAM3-KPP) and uncoupled configurations of the Super-Parameterized 

(SP) Community Atmospheric Model, version 3 (SPCAM3). The coupled configuration is constrained to either the observed 

ocean mean state or the mean state from the SP coupled configuration with a dynamic ocean (SPCCSM3), to understand the 

effect of mean state biases on the BSISO in the latter. All configurations overestimate summer mean subtropical rainfall and 15 

its intraseasonal variance. All configurations simulate realistic BSISO northward propagation over the Indian Ocean and 

western Pacific, in common with other SP configurations. 

    Constraining SPCAM3-KPP to the SPCCSM3 mean state reduces the overestimated BSISO variability, but also weakens 

BSISO propagation. Using the SPCCSM3 mean state also introduces a one-month delay to the BSISO seasonal cycle 

compared to SPCAM3-KPP with the observed ocean mean state, which matches well with the reanalysis. The phase 20 

relationship between intraseasonal rainfall and sea surface temperature (SST) is captured by all coupled models, but with a 

shorter delay between suppressed convection and warm SST relative to the reanalysis. Prescribing the 31-day smoothed 

SSTs from the SPCAM3-KPP simulations in SPCAM3 worsens the overestimated BSISO variance. This suggests that air-

sea coupling improves the amplitude of the simulated BSISO. Based on a Taylor diagram, SPCCSM3 mean state SST biases 

and air-sea coupling both lead to higher simulated BSISO fidelity, largely due to their ability to suppress the overestimated 25 

subtropical BSISO variance. 

1 Introduction 

The intraseasonal oscillation (ISO) is the most vigorous sub-seasonal signal in the tropics (Zhang, 2005). It interacts closely 

with tropical climate and weather systems, such as the El Niño–Southern Oscillation (ENSO) and tropical cyclones (Kessler 

et al., 1995; Zhang and Gottschalck, 2002; Mcphaden, 2004; Wu et al., 2007), and even mid-latitude systems (Ding and 30 

Wang, 2007; Moon et al., 2013). Compared to the boreal winter ISO (i.e., the Madden and Julian Oscillation; MJO; Madden 

https://doi.org/10.5194/gmd-2020-63
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



2 
 

and Julian, 1971, 1972), the boreal summer ISO (BSISO) shifts away from the equator to the Asian summer monsoon (ASM) 

region (Wang et al., 2006; Lau and Waliser, 2012). Thus, the BSISO is connected strongly to the onset, active and break 

phases of ASM (Yasunari, 1979; Annamalai and Slingo, 2001; Lau and Waliser, 2012). The frequency of extreme events 

over the ASM region is also highly related to BSISO activity (Ren et al., 2013; Li et al., 2015; Hsu et al., 2016, 2017). 35 

    Realistic representations of the BSISO in climate models remain a challenge, although some improvements have been 

achieved in recent decades. Current state-of-art general circulation models (GCMs) still have difficulty to simulate properly 

the BSISO spatial pattern (Sperber and Annamalai, 2008; Sperber et al., 2013; Hu et al., 2017) and its northwest-southeast 

tilted rain band structure (Lin et al., 2006; Sabeerali et al., 2013). In contrast, the northward propagation, which is the most 

significant feature of BSISO, is captured by more models. Fidelity for northward propagation improved in models that 40 

contributed to the Coupled Model Intercomparison Project (CMIP) phase 5, relative to the CMIP phase 3 (Sabeerali et al., 

2013; Sperber et al., 2013). Most models with reasonable northward propagation also simulated a good eastward propagation 

along the equatorial Indian Ocean. 

    The representation of convection is largely responsible for the ability of GCMs to simulate BSISO characteristics 

(Maloney and Hartmann, 2001; Randall et al., 2007; Jiang et al., 2016). Using the Hadley Centre atmospheric GCM 45 

(AGCM), Klingaman and Woolnough (2014) found that increasing the convective entrainment and detrainment rates 

considerably improved deficient MJO-like variability in the Indian and Pacific Oceans. In recent years, studies have shown 

that “superparameterized” GCMs have high fidelity for simulating ISO variability (Benedict and Randall, 2009; Jiang et al., 

2015; Neena et al., 2017). In superparameterized GCMs, the traditional cumulus parameterization is replaced by a two-

dimensional cloud-resolving model in each grid column to calculate the cloud and radiation physics tendencies 50 

(Khairoutdinov and Randall, 2003; Khairoutdinov et al., 2005). By comparing different versions of the National Center for 

Atmospheric Research (NCAR) Community Atmospheric Model (CAM), DeMott et al. (2014) showed that the 

superparameterized CAM (SPCAM3) demonstrated better BSISO characteristics than CAM with the standard convective 

parameterization. 

    Besides the convective parameterization scheme, the effect of air–sea interaction on simulated ISO variability has also 55 

received growing attention. Many model studies report a substantially improved BSISO representations in coupled GCMs 

(CGCMs) compared to the corresponding AGCMs (Fu and Wang, 2004; Rajendran and Kitoh, 2006; Klingaman et al., 2008; 

DeMott et al., 2014). In contrast, Ajayamohan et al. (2011) found no changes in the BSISO properties with coupling. 

Peatman and Klingaman (2018) investigated the effect of air-sea coupling on the simulated Indian summer monsoon in the 

UK Met Office Unified Model Global Ocean Mixed layer configuration (MetUM-GOML2.0), a similar model framework 60 

that used in this study. Coupling degraded the atmospheric basic state, but slightly improved the BSISO northward 

propagation. 

    Incorporating air-sea interaction in CGCMs inevitably introduces atmospheric and oceanic mean state biases. When 

studies compare CGCMs to AGCMs prescribed with observed SSTs (Kemball-Cook et al., 2002; Zhang et al., 2006; DeMott 

et al., 2011; Roxy et al., 2013), the differences between simulations may largely come from mean-state differences, rather 65 
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than air-sea coupling. Due to the strong control on low-level moisture and convergence anomalies, mean state biases may 

degrade simulated intraseasonal variability (Hendon, 2000; Inness et al., 2003; Sperber et al., 2005; Bollasina and Ming, 

2013). Using the National Centers for Environmental Prediction (NCEP) coupled Climate Forecast System (CFS) model, 

Seo et al. (2007) showed that BSISO development and propagation were largely improved when the CGCM cold SST bias 

was removed via flux corrections. They suggested that the role of air-sea interactions would be more accurate under an ocean 70 

mean state with smaller SST biases. To reduce the mean-state differences between CGCMs and AGCMs, time-varying SST 

from CGCMs should be used to drive AGCMs (Fu and Wang, 2004; Seo et al., 2007; Levine and Turner, 2012; DeMott et 

al., 2015). However, this quantifies the role of air-sea coupling only under the biased CGCM mean state. 

    Through flux correction techniques, CGCMs can be constrained to a given climatological ocean state. Such techniques are 

more effective in CGCMs with simple ocean models, which lack ocean dynamics, as dynamics may interfere with the 75 

prescribed flux correction. Simple ocean models also lack coupled modes of variability, such as ENSO, feedbacks from 

which can influence the perceived effects of coupling on sub-seasonal variability (Klingaman and DeMott, 2020). CGCMs 

with simplified oceans are a useful tool to investigate the roles of air-sea coupling and mean-state biases in the simulation of 

BSISO. In this paper, we examine the role of air-sea interactions and mean state biases in the simulated BSISO using a 

configuration of SPCAM3 coupled to a mixed-layer ocean model, constrained to observed ocean mean state and mean state 80 

from the superparameterized Community Climate System Model (CCSM), version 3 (SPCCSM3; Stan et al. 2010). The 

model experiments, validation data, and analysis methods are described in section 2. Section 3 analyses the influence of air-

sea coupling and mean state biases in the spatial pattern and propagation of simulated BSISO. Results are discussed and 

summarized in sections 4 and 5, respectively. 

2 Model, experiments and methods 85 

2.1 Models 

SPCAM3 (Khairoutdinov et al., 2005) is employed in this study, due to its high fidelity for the simulated ISO (Jiang et al., 

2015; Neena et al., 2017). It has a horizontal resolution of T42 and a vertical resolution of 30 levels. The embedded 2-D 

cloud-process resolving model, used to calculate convective and radiative temperature and moisture tendencies, has 32 

columns with a fine resolution (4km) (Khairoutdinov and Randall, 2003). To understand the role of air-sea interaction in the 90 

BSISO simulation, SPCAM3 is coupled to the Multi-Column K Profile Parameterization (MC-KPP) mixed-layer ocean 

model (referred to as “SPCAM3-KPP”). MC-KPP uses the KPP vertical mixing scheme of Large et al. (1994). It consists of 

many independent 1-D columns, with one column under each AGCM grid point to which it is coupled. Therefore, the 

horizontal resolution of MC-KPP is the same as SPCAM3. MC-KPP has a fine vertical resolution, with 100 points in a 

1000m water column, 70 of which are in the top 300m, and a ~1m resolution in the upper 20m. Further details on SPCAM3-95 

KPP can be found in Klingaman and DeMott (2020). 
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    Since ocean dynamics are absent in MC-KPP, SPCAM3-KPP must be constrained to a reference ocean climatology, 

which can be taken from an observation-based dataset, an ocean model or a CGCM simulation. This makes MC-KPP an 

attractive option for investigating the role of air-sea coupling under different ocean mean states. To represent mean ocean 

dynamics and correct for biases in atmospheric surface fluxes, prescribed vertical profiles of heat and salt corrections are 100 

applied at each grid point and each timestep. These are computed from a 10-year SPCAM3-KPP “relaxation” simulation 

with a 15-day relaxation timescale towards the reference seasonal cycle of oceanic temperature and salinity. The daily 

climatology of corrections is then computed and imposed on a “free-running” coupled integration with no relaxation, which 

displays only small SST biases against the reference climatology (Fig. 1). Further details on the correction method can be 

found in Hirons et al. (2015), Peatman and Klingaman (2018) and Klingaman and DeMott (2020). 105 

2.2 Experiments and validation data 

Two pairs of atmospheric-only (SPCAM3) and coupled (SPCAM3-KPP) models are analysed to examine the role of air-sea 

coupling and mean state biases in the simulated BSISO (Table 1). These simulations are also analysed for the MJO in 

Klingaman and DeMott (2020). For brevity, we write SPCAM3 and SPCAM3-KPP as “SPA” and “SPK”, respectively. All 

simulations are 50-year integrations. Next, we explain the setup of each experiment in detail. 110 

    To study the effect of mean state biases on the simulated BSISO, SPK is constrained to two ocean mean states: 1) the 

1980–2009 climatology from the Smith and Murphy (2007) 3D ocean analysis; and 2) the climatology from a 20-year 

simulation of SPCCSM3 ( “SPC” for short; Stan et al., 2010; DeMott et al., 2011, 2014). The former is considered as the 

observed ocean state (Fig. 1c), against which SPC shows large cold SST biases throughout the Indo-Pacific in boreal 

summer (Fig. 1f). These two coupled simulations are referred to as “SPK-OBS” and “SPK-SPC”, respectively. To 115 

investigate the effect of air-sea interaction on the simulated BSISO under the observed ocean mean state, SPCAM3 is forced 

by the 31-day smoothed SST from SPK-OBS (hereafter “SPA-KOBS”). Similarly, we prescribe the 31-day smoothed SST 

from SPK-SPC to SPCAM3 to understand the air-sea coupling effect under the SPC mean state (“SPA-KSPC”). Table 1 

summarises all four experiments. 

    All validation data in this study are from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim 120 

(ERAI) reanalysis dataset (Dee et al., 2011). The daily variables used include: precipitation, outgoing longwave radiation 

(OLR), 850-hPa wind, surface variables related to latent heat and sensible heat (LH and SH) fluxes, and 3-D variables 

associated with moist static energy (MSE; Maloney, 2009). All the variables have the horizontal resolution of 1.5° ×1.5°; we 

analyse the period of 1986–2016 for compatibility with Gao et al. (2019). 

2.3 Methods 125 

The BSISO convective intensity is represented by 20–100-day-filtered variability of boreal summer (May–October) 

precipitation, OLR or MSE, depending on the process-oriented diagnostic applied. To reveal the overall propagation features 

of BSISO convection, lead-lag regression analysis is performed on area-averaged filtered precipitation. Since the Indian and 
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Pacific basins exhibit different basic states (Lau and Waliser, 2012), we compute propagation over one region in each basin: 

the eastern Indian Ocean (80°E–90°E, 0°–10°N) and western Pacific (130°E–140°E, 0°–10°N). 130 

    DeMott et al. (2016) and Gao et al. (2019) provide a useful diagnostic method to quantitatively assess the contribution of 

intraseasonal SST variability to the MSE budget of ISO in boreal winter and boreal summer, respectively. We employ the 

same approach to understand oceanic feedbacks to the simulated BSISO, and compare these feedbacks to those in reanalysis 

data. Intraseasonal SST can affect atmospheric convection through modifying surface turbulent fluxes (LH and SH) and 

hence MSE, via the near-surface gradients in specific humidity and temperature. Based on decomposition of surface bulk 135 

formulae (Weare et al., 1981), SST modulation of surface fluxes is represented as the difference between fluxes calculated 

using the full and 61-day smoothed SST. These SST-modulated fluxes are then projected onto column-integrated MSE and 

its tendency (〈m〉 and ∂〈m〉/ ∂t) to reveal the oceanic feedback to the maintenance and propagation of BSISO convection, 

respectively. Further details can be found in DeMott et al. (2016) and Gao et al. (2019). 

    We employ the BSISO indices of Lee et al. (2013) to investigate the simulated convective features in each BSISO phase. 140 

Firstly, daily anomalies are computed as the departure from the climatological annual cycle (annual mean and first three 

harmonics) and a 120-day running mean. Multi-variate Empirical Orthogonal Function (MV-EOF) is then performed on the 

combination of OLR and u850 anomalies, each normalized by their respective area-mean standard deviation over the ASM 

region (40°E–160°E, 10°S–40°N) during boreal summer. The first two leading principal components (PC1 and PC2) define 

the BSISO indices, which separate the BSISO life cycle into eight phases. For model results, normalized OLR and u850 145 

anomalies are projected onto the observed EOF modes to obtain the model PCs. Model simulated BSISO phase composites 

are constructed based on these PCs (Sperber et al. 2013). Consistent with Lee et al. (2013), only strong BSISO events 

(√PC1- + PC2- > 1.5) are selected for phase composites. 

3 Results 

3.1 Mean state and intraseasonal variability 150 

Previous studies indicate that ISO variability is closely related to the climatological state of convection (Wheeler and Kiladis, 

1999; Sperber et al., 2000; Waliser et al., 2003). Thus, we firstly examine the summer mean precipitation and 850-hPa wind 

(Fig. 2). In ERAI, substantial rainfall appears over the ASM region where the average exceeds 8 mm/day (Fig. 2a). SPK-

OBS overestimates subtropical rainfall (10°N–20°N), particularly in the western North Pacific (Figs. 2b and e), but 

underestimates rainfall over the southern Indian Ocean, Maritime Continent and India north to 20°N. These precipitation 155 

biases are associated with low-level wind biases. Simulated mean westerlies extend into the western North Pacific, 

increasing convergence across the band of subtropical enhanced precipitation. In SPK-SPC (Fig. 2c), which is constrained to 

the cold climatological SPCCSM3 SST (Fig. 1d), rainfall reduces compared to that in SPK-OBS: wet biases are reduced 

while dry biases become more severe (Figs. 2e and f). 
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    Figure 3 illustrates the standard deviation of intraseasonal SST and precipitation variability. SST variability is 160 

underestimated over the Indian Ocean and equatorial Pacific in all simulations. Over the off-equatorial Pacific, there is more 

intraseasonal SST variability in SPK-OBS but less SST variability in SPK-SPC (Figs. 3b and c). Prescribing the 31-day 

smoothed SST from SPK-OBS (SPK-SPC) to SPA-KOBS (SPA-KSPC), strongly reduces intraseasonal SST, as expected 

(Figs. 3d and e). The right-column panels in Fig. 3 show the intraseasonal rainfall from each dataset (Figs. 3f–j). Compared 

to ERAI (Fig. 3f), all simulations significantly overestimate subtropical intraseasonal precipitation variability (10°N–20°N), 165 

where mean rainfall is also overestimated (Fig. 2). This reinforces that model BSISO biases are largely associated with 

incorrect representations of mean rainfall (Sperber and Annamalai, 2008; Sabeerali et al., 2013; Hu et al., 2017). The 

overestimation of intraseasonal rainfall in SPK-SPC (Fig. 3h) is smaller than that in SPK-OBS (Fig. 3g), consistent with the 

lower mean rainfall in SPK-SPC. SPA-KOBS (Fig. 3i) and SPA-KSPC (Fig. 3j) show increases in intraseasonal rainfall 

relative to SPK-OBS and SPK-SPC, respectively. This indicates that both cold SST biases and air-sea coupling exert 170 

negative feedbacks to BSISO convection, and improve the simulated BSISO amplitude. 

3.2 Northward propagation of BSISO 

Lag regression analysis is employed to understand the simulated BSISO propagation in each experiment. Over the Indian 

Ocean, 80°E–90°E averaged intraseasonal precipitation is regressed onto the (80°E–90°E, 0°–10°N) averaged intraseasonal 

precipitation time series (Fig. 4). In ERAI, the convective anomaly originates south of the equator and propagates southward 175 

to 10°S and northward into the Bay of Bengal (Fig. 4a). All simulations capture the northward propagation, confirming the 

high fidelity of SPCAM3 for simulating BSISO northward propagation (DeMott et al., 2014; Neena et al., 2017). However, 

the simulations fail to capture the southward branch. And the simulated strongest convection shifts northward (10°N) relative 

to ERAI (5°N). A weaker propagating signal is observed under the SPC mean state than under the observed mean state for 

both SPK and SPA, especially over the subtropical regions from Lag 0 to Lag 20 (marked with black box; Figs. 4b and d; 180 

Figs. 4c and e). This is consistent with weaker BSISO variability under the SPC mean state (Figs. 3g–j), suggesting that cold 

tropical mean SST biases are unfavourable for BSISO variability and northward propagation. In SPA, the amplitude of 

convective maxima increases relative to SPK, but with weaker propagation (Figs. 4b–e). Air-sea coupling plays a similar 

role in BSISO convection under both observed and cold mean states: it damps BSISO amplitude but supports northward 

propagation over the eastern Indian Ocean. 185 

    The BSISO northward propagation over the western Pacific is shown in Fig. 5. In ERAI, the convection also originates 

south of equator, but propagates only north, into the western North Pacific (Fig. 5a). These characteristics are properly 

simulated by all experiments (Figs. 5b–e). As in the Indian Ocean, due to the large overestimation of subtropical BSISO 

variability, the simulated strongest convection moves north compared to ERAI. It is notable that considerable suppressed off-

equatorial convection leads the strongest convection by ~1 week, which degrades model performance. Over the western 190 

Pacific, mean-state biases also reduce the northward propagating signal in SPK-SPC (SPA-KSPC) relative to in SPK-OBS 
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(SPA-KOBS). Air-sea interaction plays little role in the BSISO northward propagation over the western Pacific, as there is 

no substantial difference between SPK and SPA under either ocean mean state (Figs. 5b–c; Figs. 5d–e). 

3.3 Quantitative contributions of SST fluctuations to BSISO 

The temporal and spatial evolutions of BSISO and SST variability over the Indian Ocean and western Pacific are shown in 195 

Figs. 6 and 7, respectively. Over the Indian Ocean, in ERAI, warm SSTs always lead enhanced convection, with maxima 

north/northeast of the convective center (Figs. 6a, f and k). The SST-rainfall phase relationship is properly represented in 

SPK and misrepresented in SPA. However, in more detail, SPK shows a shorter delay between suppressed convection and 

warm SST relative to ERAI. This suggests the ocean responds more quickly to BSISO convection in SPK than in ERAI, 

which might be caused by the lack of ocean dynamics in MC-KPP. Alternatively, the high coupling frequency (15 minutes) 200 

and fine oceanic vertical resolution (~1m) in SPK may make the mixed-layer depth too sensitive to atmospheric convection. 

SST anomalies in SPA are small due to the 31-day smoothing applied (Figs. 6d, e, i, j, n, and o). Compared to SPK-OBS, the 

convective region becomes smaller under the SPC mean state or without air-sea coupling (SPK-SPC, SPA-KOBS and SPA-

KSPC). To some degree, it reflects the negative (positive) role of mean state biases (air-sea interaction) in supporting the 

propagating BSISO signal, in agreement with Fig. 4. 205 

    Over the western Pacific, SPK simulates well the ERAI phase relationship between the convection and SST anomalies: a 

near-quadrature relationship over the equatorial regions (Figs. 7a–c), but nearly out-of-phase over the off-equatorial regions 

(Figs. 7f–h and k–m). However, SPK produces substantial suppressed convection north of the active convection over the 

western North Pacific, consistent with Fig. 5. As a result, simulated warm SST appears north of the convective center, while 

the ERAI SST maximum is always located northwest of the convective center. Imposing the SPC mean state weakens 210 

convection. In SPA, the intraseasonal SST is very small by design. 

    As revealed by Gao et al. (2019), intraseasonal SST can affect the BSISO by modulating surface LH and SH fluxes. The 

temporal and spatial distributions of SST-modulated fluxes are highly coherent with those of SST anomalies themselves 

(Gao et al., 2019; their Figs. 14 and 15). Therefore, the evolutions of SST anomalies shown in Figs. 6 and 7 can also roughly 

reveal the evolutions of SST-modulated surface fluxes. By regressing the SST-modulated flux anomalies onto the BSISO 215 

MSE and the time rate of change of MSE (〈m〉 and ∂〈m〉/ ∂t), Figure 8 illustrates the “SST effect” on the maintenance and 

propagation of convection, respectively. In ERAI, intraseasonal SST supports 〈𝑚〉 in the central Indian Ocean and Bay of 

Bengal but destroys 〈𝑚〉 in the western North Pacific (Fig. 8a). The inter-basin differences are linked to the differences in 

SST-convection phase relationships (Gao et al. 2019). However, in SPK, simulated SST anomalies largely damp the 

convection over both the Bay of Bengal and western North Pacific (Figs. 8b and c), because of the quicker response of the 220 

SPK ocean to BSISO convection, combined with the erroneously strong suppressed convection just before the active phase. 

In SPK, the negative SST effect on 〈𝑚〉 agrees with the stronger BSISO variability in SPA (Fig. 3i; Fig. 3j) than in SPK (Fig. 

3g; Fig. 3h) over the subtropics. SST anomalies have similar effects on BSISO propagation under the observed and SPC 

mean states, with some amplitude difference. The simulated SST anomalies in SPK favor convection propagation (Figs. 8g 
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and h), but with a smaller contribution (8–12%) than in ERAI (12–20%). This is caused by the incorrect phase relationship 225 

between the simulated BSISO and SST anomalies (Figs 6 and 7). A weak SST effect on the BSISO can still be found in SPA 

(Figs. 8d, e, i, and j), as these simulations retain some intraseasonal SST variability (Fig. 3). In summary, SST variability 

enhances the simulated amplitude of BSISO variability by suppressing the excessive subtropical convection and contributes 

to the propagation of convection over the entire BSISO region. 

3.4 BSISO indices 230 

Propagating BSISO characteristics can also be examined using the BSISO indices. Figure 9 shows the annual cycle of 

variance of each of the first four PCs from ERAI and model simulations. Since EOF analysis is only applied to May–October, 

PC time series for November–April are obtained by projecting OLR and u850 anomalies onto the same EOF patterns.  

    In ERAI, PCs have a similar seasonal cycle as those from Lee et al. (2013). PC1 has the largest variance throughout boreal 

summer (Fig. 9a). It increases sharply from late April, maximising in August, followed by PC2 with about half a month 235 

delay. In contrast to PC1 and PC2, PC3 exhibits most of its variance in early summer (May–June). PC4 also has a broad 

peak, but its amplitude is much smaller than the other PCs. SPK-OBS produces a similar seasonal cycle of PC1 as ERAI, 

except for deficient variance in August–September, which largely reduces the amplitude difference between the first two 

PCs (Fig. 9b). Simulated PC1 also increases abruptly from late April, with a half-month delay between PC1 and PC2, which 

matches ERAI well. However, PC1 in SPK-SPC begins to increase in late May (Fig. 9c), about one month later than ERAI 240 

and SPK-OBS. The variance of the first two PCs in SPK-SPC has a much narrower peak and tails off from early July, 

without a second peak in October. This suggests that cold SST error leads to a late onset of BSISO activity, and also strongly 

degrades the annual cycle of BSISO activity. In both SPK simulations, the amplitude of PC3 is smaller than that of PC4, 

which indicates that the order of those simulated PCs is reversed. All model simulations show a similarly poor ability to 

simulate PC3 and PC4. Therefore, hereafter we only focus on PC1 and PC2. Removing air-sea coupling in SPA increases 245 

significantly the strength of PC1 relative to SPK. This suggests that the role of air-sea coupling in suppressing BSISO 

variability is mainly expressed through damping variability in PC1.  

    Based on the PC1 and PC2 time series, the BSISO life cycle is separated into eight phases, which represents the canonical 

northward propagating BSISO (Annamalai and Sperber, 2005; Wang et al., 2005). Figure 10 shows the phase composite of 

anomalous precipitation and 850-hPa wind from ERAI and SPK-OBS. SPK-OBS displays a similar evolution of the 250 

structure of convection and circulation as in ERAI, but with significant amplitude differences. The simulated circulation also 

matches well with the simulated convection: easterlies (westerlies) occur to the north (south) of the ascent; cyclonic 

(anticyclonic) circulations coincide with the active (suppressed) off-equatorial convection. However, the northwest-southeast 

titled rainfall band in SPK-OBS is more zonal than in ERAI (Fig. 10e and m), largely due to the poor representation of 

BSISO variability over the western Pacific. In ERAI, most strong BSISO events occur in phases 2, 5 and 7. In contrast, in 255 

SPK-OBS, a stronger preference for simulated strong BSISO events appear in off-equatorial regions (phases 3, 4, 7, and 8) 
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rather than in near-equatorial regions (phases 1, 2, 5, and 6). It implies that the BSISO variability is largely determined by 

the propagating BSISO signal (Sperber et al., 2013; Neena et al., 2017). 

    We further compute the frequency of strong BSISO events in each phase from each dataset (Fig. 11). Overall, there are 

fewer strong BSISO events in the simulations (25–30%) than in ERAI (~33%), although the amplitude of simulated 260 

precipitation associated with these events is much larger. Consistent with Fig. 10, in ERAI, phases 2, 5 and 7 show the 

highest frequencies, while in SPK-OBS, most strong simulated BSISO events occur in phases 3, 4, 7, and 8. Comparing 

SPK-SPC and SPK-OBS shows that the SPC ocean mean state has little consistent effect on the frequency of BSISO events. 

Removing air-sea coupling in SPA further increases the frequency of strong BSISO events in off-equatorial regions (phases 

3, 4, 7, and 8), associated with the greater intraseasonal convective variability in SPA relative to SPK. 265 

To more quantitatively evaluate the performance of each simulation, we construct Taylor diagrams over the Indian Ocean 

(50°E–100°E, 10°S–20°N) and western Pacific (110°E–160°E, 0°–30°N), respectively (Fig. 12). These diagrams provide 

pattern correlation coefficients and root-mean-square-errors of the simulated intraseasonal precipitation against ERAI 

intraseasonal precipitation in each BSISO phase. Over the Indian Ocean, the fidelity of each simulation varies from phase to 

phase (Fig. 12a). Generally, higher pattern correlations appear in equatorial phases (phases 1, 2, 5 and 6) than in off-270 

equatorial phases (phases 3, 4, 7 and 8). The area-averaged rainfall variability is overestimated in almost all phases, with 

largest amplitude biases in phases 3 and 6 (1.5–2.25 of the standard deviation of ERAI). Overall, SPK-SPC outperforms 

SPK-OBS, largely due to its smaller amplitude biases compared to ERAI. Under the observed ocean mean state, air-sea 

coupling improves the simulation fidelity in phases 1, 3, 7, and 8. Under the SPC ocean mean state, coupling greatly 

improves the simulated BSISO life cycle over the Indian Ocean, except for phase 2.  275 

In almost all simulations, higher pattern correlations are found over the western Pacific (0.7–0.9) than over the Indian 

Ocean (0.5–0.9), but with much larger overestimations of amplitude (Fig. 12b). The overall simulation performance is 

ranked as follows: SPK-SPC, SPA-KSPC, SPK-OBS and SPA-KOBS. Simulations with the SPC ocean mean state perform 

better than those under the observed ocean mean state, in terms of both amplitude and distribution. Since the excessive 

subtropical rainfall variability is the biggest error in SPCAM3, the underlying cold SSTs largely weaken convection, which 280 

helps to reduce the amplitude biases and improve the pattern correlation with ERAI. Air-sea coupling improves model 

performance under both mean states, particularly in suppressing the overestimated simulated BSISO variability over the 

western North Pacific. 

4 Discussion 

Despite the large correct SST-rainfall phase relationship in SPK simulations, a shorter delay between suppressed convection 285 

and warm SST exists relative to the reanalysis. This may be associated with the configuration of the MC-KPP ocean (lack of 

ocean dynamics, high coupling frequency and fine vertical resolution). As a consequence, it is easy to surmise the effect of 

air-sea coupling on the amplitude of convection, while its effect on the propagation is not obvious. Overall, in SPK, 
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intraseasonal SST anomalies largely damp intraseasonal subtropical convection variability and make a smaller contribution 

(8–12%) to ∂〈m〉/ ∂t than in ERAI (12–20%). Propagation is slightly enhanced in SPK relative to SPA over the Indian 290 

Ocean, however, coupling makes nearly no difference to the propagating signal over the western Pacific. This may be related 

to the larger underestimation of the contribution of intraseasonal SST to ∂〈m〉/ ∂t over the western Pacific than over the Bay 

of Bengal (Fig. 8). More importantly, it implies that atmospheric internal processes are essential to the propagation of 

convection, since SPCAM3 simulates BSISO propagation well even without coupling or sub-seasonal SST variability (Gao 

et al. 2019). 295 

    Stan et al. (2010) and Neena et al. (2017) reported that SPCCSM3 showed better ISO simulation skill than SPCAM3 with 

prescribed observed SST. In our experiments, the BSISO variability is similar in SPK-OBS and SPA-KOBS and in SPK-

SPC and SPA-KSPC, which suggests a limited role for air-sea coupling in the simulated BSISO. Comparing SPK-OBS and 

SPK-SPC strongly suggests that the ocean mean-state biases in SPC improve BSISO amplitude and spatial distribution. This 

implies that mean-state bias in SPC, not sub-seasonal air-sea coupled feedbacks, may be the primary reason for the improved 300 

BSISO in SPCCSM3 relative to SPCAM3. However, while the SPC mean state improves the amplitude and spatial pattern of 

simulated BSISO convection, it also weakens northward propagation. By examining Figs. 1g–h, these amplitude/spatial 

pattern and propagating differences between SPK-SPC and SPK-OBS may be related to the stronger horizontal SST 

gradients in SPK-SPC, since the pattern of mean state column water vapor biases closely follows that of mean SST biases 

(DeMott et al., 2019). Stronger meridional SST gradients in SPC may largely suppress the overestimated subtropical rainfall 305 

than in SPK-OBS. SPC also seems to reduce the zonal SST (moisture) gradient that plays an essential role in ∂〈m〉/ ∂t for 

both the boreal winter and boreal summer ISO, leading to less propagating BSISO signal (Jiang, 2017; Jiang et al., 2018; 

Gao et al., 2019). Thus, as suggested by Seo et al. (2007) and Klingaman and Woolnough (2014), it is important to control 

for the effect of mean-state biases as well as its gradients when evaluating the influence of air-sea coupling on the simulated 

ISO (DeMott et al., 2019). 310 

    In CGCMs with dynamical oceans, it is also important to consider the effects of inter-annual SST variability (such as 

ENSO), due to its strong control on sub-seasonal variability, particularly on the boreal winter MJO (Weaver et al., 2011; 

Kapur and Zhang, 2012; Klingaman and DeMott, 2020). We note that none of the simulations considered here represent 

ENSO or other coupled modes of inter-annual variability, as the MC-KPP ocean model lacks the requisite ocean dynamics. 

By using the same simulations, Klingaman and DeMott (2020) found that the intensity and propagation of the boreal-winter 315 

MJO was strongly suppressed in SPCAM3-KPP under the SPC ocean mean state, while here the SPC ocean mean state 

enhances BSISO amplitude and only slightly weakens propagation. Klingaman and DeMott (2020) found that the including 

of the SPC ENSO variability on top of the SPC mean state substantially strengthened the MJO, suggesting that the strong 

MJO in SPCCSM3 arose from an excessively intense response to ENSO. The effect of ENSO is not considered here, which 

could be a subject for further study. 320 
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5 Summary 

This study investigates the role of oceanic mean-state biases and air-sea coupling in simulating the BSISO by coupling the 

Superparameterized Community Atmospheric Model (SPCAM3) to the Multi-Column K Profile Parameterization (MC-KPP) 

mixed-layer ocean. To diagnose the sensitivity to the ocean mean state, SPCAM3-KPP is constrained to either the observed 

ocean mean state or the ocean mean state from the coupled configuration of SPCAM3 with a dynamical ocean (SPCCSM3; 325 

“SPC” for short). The SPC mean state introduces substantial cold SST biases across the Indo-Pacific. To diagnose the 

sensitivity to air-sea coupling under each mean state, SPCAM3 is driven by the 31-day running mean SST from each 

SPCAM3-KPP simulation. 

    Systematic errors in SPCAM3 result in overestimated subtropical summer mean rainfall and intraseasonal variability. This 

overestimation is greatly reduced with coupling, or with the SPC ocean mean state. Lag regression composites show that the 330 

simulated convection exhibits realistic northward propagation over both the Indian Ocean and western Pacific. However, the 

strongest convective center shifts north relative to reanalysis. The SPC ocean mean state degrades the propagating BSISO 

signal in both coupled and uncoupled simulations, relative to simulations that use the observed ocean mean state. Air-sea 

coupling slightly enhances the strength of the propagating signal under both ocean mean states. The coupled simulations 

capture a reasonable SST-rainfall phase relationship, but with warm SSTs shifting toward the suppressed convection relative 335 

to the reanalysis. Intraseasonal SST variability plays a similar role in the BSISO MSE budget in the coupled simulations, 

regardless of mean state: it damps subtropical convection and favors BSISO northward propagation, but with a smaller 

contribution (8–12%) than the reanalysis (12–20%). 

    The simulation skill of propagating BSISO characteristics is also examined by using BSISO indices. Experiments with the 

observed ocean mean state produce a realistic annual cycle of BSISO variance, while a one-month delay to the onset of 340 

BSISO activity is found in simulations with the SPC mean state. Air-sea coupling weakens convective variability mainly 

through suppressing the first EOF mode. Different from the reanalysis, all model simulations favour strong BSISO activity 

in off-equatorial regions, associated with the intense subtropical variability. Simulations under the SPC ocean mean state 

produce an improved BSISO than those under the observed ocean mean state, in both the amplitude and pattern correlation 

of anomalous precipitation. Air-sea coupling improves the BSISO fidelity in most phases. The enhancement of simulated 345 

BSISO by the ocean mean state and air-sea coupling largely arises from suppressing the erroneously strong subtropical 

convection. 

In our study, air-sea coupling has a similar effect on the simulated BSISO under different oceanic background states, 

suggesting that the role of coupling may largely depend on the phase relationship between the convection and SST anomalies. 

Compared to daily coupling frequency between the atmosphere and ocean components of CGCMs, improved fidelity for the 350 

BSISO simulation is shown in CGCMs with sub-daily coupling frequency (Woolnough et al., 2007; Klingaman et al., 2011; 

Hu et al., 2015). In our study, the ocean tends to respond quickly to the atmospheric convection, which may be associated 

with the sensitive mixed layer depth due to the absent ocean dynamics in KPP. Therefore, to better understand the role of 
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coupling in the simulated ISO, efforts should aim to simulate a realistic phase relationship between the ISO convection and 

SST anomalies. 355 

 
Code and data availability. All model outputs are available on the U.K. JASMIN collaborative research analysis facility 

(http://www.jasmin.ac.uk). Access to data can be obtained by contacting Nicholas Klingaman (nicholas.klingaman@ncas.ac.uk). Data 

used to reproduce the figures and associated code can be found at https://doi.org/10.6084/m9.figshare.c.4874406.v2 
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Table 1: List of simulations analyzed in this study, including the name used in the text, model, type, and ocean climatology condition to 
which the model is constrained (coupled model) or prescribed (atmospheric-only model). 

Name Model Type Ocean surface 

SPK-OBS SPCAM3-KPP CGCM Climatology from observation 

SPK-SPC SPCAM3-KPP CGCM Climatology from SPCCSM3 

SPA-KOBS SPCAM3 AGCM 31-day smoothed SST from SPK-OBS 

SPA-KSPC SPCAM3 AGCM 31-day smoothed SST from SPK-SPC 
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 570 
Figure 1: May–October mean SST for (a) ERAI, (b) SPCCSM3, (c) SPK-OBS, and (d) SPK-SPC. (e)–(h) are calculated as the difference 
between (a)–(d) and (a). 
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Figure 2: May–October mean precipitation (shading) and 850-hPa wind (vectors; with amplitude > 1 m s-1) for (a) ERAI, (b) SPK-OBS 575 
and (c) SPK-SPC. (d)–(f) are calculated as the difference between (a)–(c) and (a). 
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Figure 3: May–October standard deviations of 20–100-day-filtered (left column) SST and (right column) precipitation for (a, f) ERAI, (b, 580 
g) SPK-OBS, (c, h) SPK-SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC. 
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Figure 4: Lagged regression coefficients of 80°E–90°E averaged intraseasonal precipitation onto (80°E–90°E, 0°–10°N) averaged 
intraseasonal precipitation for (a) ERAI, (b) SPK-OBS, (c) SPA-KOBS, (d) SPK-SPC, and (e) SPA-KSPC. Black box in each panel 585 
denotes (10ºN–22ºN, Lags 0–20). 
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Figure 5: As in Fig. 4, except for 130°E–140°E averaged intraseasonal precipitation regressed onto (130°E–140°E, 0°–10°N) averaged 
intraseasonal precipitation. 590 
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Figure 6: Regression coefficients of intraseasonal precipitation (shading; [mm day-1]/[mm day-1]) and SST (contours; [℃]/[mm day-1]) 
onto (80°E–90°E, 0°–10°N) averaged intraseasonal precipitation over the Indian Ocean at lags of (left column) -7, (middle column) 0 and 
(right column) +7 days, for (a, f, k) ERAI, (b, g, l) SPK-OBS, (c, h, m) SPK-SPC, (d, i, n) SPA-KOBS, and (e, j, o) SPA-KSPC. The 595 
contour interval is 0.01 [℃]/[mm day-1], positive (negative) values are represented by red (blue) lines. 
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Figure 7: As in Fig. 6, except for variables regressed onto (130°E–140°E, 0°–10°N) averaged intraseasonal precipitation over the western 
Pacific. 600 
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Figure 8: The SST effect on (left column) 〈𝑚〉 and (right column) 𝜕〈𝑚〉/𝜕𝑡 through the modification of surface turbulent fluxes for (a, f) 
ERAI, (b, g) SPK-OBS, (c, h) SPK-SPC, (d, i) SPA-KOBS, and (e, j) SPA-KSPC.  
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Figure 9: The seasonal cycle of variance of the leading four PCs for (a) ERAI, (b) SPK-OBS, (c) SPK-SPC, (d) SPA-KOBS, and (e) SPA-
KSPC. A 30-day running mean is applied to the seasonal cycle of each dataset. 
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 610 
Figure 10: Composites of anomalous precipitation (shading; mm day-1) and 850-hPa wind (vectors; with amplitude > 1 m s-1) in the 
BSISO life cycle from phase 1 to phase 8 for (a–h) ERAI and (i–p) SPK-OBS. The number of days for phase composite is shown in the 
right corner above each panel. Only strong BSISO events (amplitude ≥ 1.5) are selected. 
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Figure 11: The frequency of strong BSISO activity (amplitude ≥ 1.5) in each phase (P1–P8; in the left y-axis) and their sum (in the right 615 
y-axis) for ERAI (black), SPK-OBS (light blue), SPK-SPC (red), SPA-KOBS (dark blue) and SPA-KSPC (green). 
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Figure 12: Taylor diagrams for anomalous precipitation in each BSISO phase averaged over the (a) Indian Ocean (IO; 50°E–100°E, 10°S–
20°N) and (b) western Pacific (WP; 110°E–160°E, 0°–30°N). The number above each symbol refers to the BSISO phase. 620 
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