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A B S T R A C T

A sensitivity-based initial condition (IC) perturbation method for convection-permitting ensemble forecasts
(CPEFs) is presented and preliminarily tested. The distribution of the perturbations is based on the sensitivity
patterns from the ensemble sensitivity analysis (ESA) and the fast-growing perturbations calculated by the
breeding growth mode (BGM). Two convective precipitation cases are used to quantitatively and qualitatively
evaluate the impacts of the perturbation schemes on the ensemble forecast skill based on the Weather Research
and Forecasting (WRF) model. To generate the sensitivity-based IC perturbations, ESA is applied to the short-
term convective precipitation cases to calculate the sensitivity patterns. The analysis reveals the influential
factors related to the evolution of weather situations that impact the strength of the forecast precipitation. The
sensitivity patterns are introduced to the IC perturbations by a sensitivity-based BGM (SeBGM) method proposed
in this research, and the response of the forecast skill to different perturbation magnitudes is examined.
Ensemble forecasts with sensitivity-based IC perturbations can adapt to changes in the weather regime and
provide accurate simulations of the placement and strength of convective systems, leading to improvements in
the precipitation forecast skill.

1. Introduction

Due to increased computing power, numerical models are able to
achieve a convective-aware level to explicitly forecast convective
storms (Kain et al., 2006; Rotach et al., 2009; Seity et al., 2011; Kain
et al., 2013; Bauer et al., 2015). Despite the added value provided by
the convection-permitting forecasts (CPFs), current CPFs still suffer
from persistent problems. The limitations include the inaccurate re-
presentation of partially resolved processes, referred to as the gray zone
(Shutts and Pallares, 2014; Berner et al., 2017; Gao et al., 2017), and
the rapid upscale growth of small scale error (Lorenz, 1969;
Hohenegger and Schär, 2007). To address these issues, the convection-
permitting ensemble forecasts (CPEFs) (Zhang and Pu, 2010; Gebhardt
et al., 2011; Schwartz et al., 2015; Clark et al., 2016) are designed to
consider various uncertainties in prediction, such as the growth of in-
itial condition (IC) errors (Peralta et al., 2012; Mulena et al., 2016;
Bouttier et al., 2016), their evolution as a function of the atmospheric
state (Lorenz, 1969; Ancell, 2013; Surcel et al., 2016), and the un-
certainties from the numerical models (Christensen et al., 2015; Berner
et al., 2015). As the impact of these uncertainties on forecasts varies

greatly in different cases (Surcel et al., 2016, 2017), the nature of the
uncertainty in the ICs and its evolution, especially the effect of pre-
convective environment on the subsequent convection forecasts, is an
important area of research.

Sensitivity analysis (SA) is an effective methodology for in-
vestigating forecast uncertainties. According to previous studies, con-
vection initiation and development are very sensitive to the mesoscale
environment in the early period, such as local humidity, vertical wind
shear, and instability (Weisman and Rotunno, 2000; Takemi, 2007;
Weisman et al., 2008; Schumacher et al., 2013; Trier et al., 2017). The
evolution of the mesoscale phenomena is usually controlled by the
larger-scale environment, such as low-level jets and troughs (Garcia-
Ortega et al., 2009; Duda and Gallus, 2013). Because of the inherently
multiscale interaction affecting the forecasts of convective systems, SA
studies are necessary for a better understanding of the relationship
between the pre-convective environment uncertainties and convection
forecasts. Numerous SA studies have been performed by various tech-
nologies, including initial perturbations (Martin and Xue, 2006;
Melhauser and Zhang, 2012) and adjoint sensitivity methods (Errico
and Vukicevic, 1992; Errico et al., 2016). As highlighted in these
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studies, the forecasts show significant sensitivity to the IC uncertainty
and its evolution within numerical models. However, the traditional
sensitivity analysis methods have various limitations like expensive
computational efforts, certain subjectivity in analysis and inherent
linear assumption. To account for the IC uncertainty in convection
forecasts comprehensively, a SA technique that efficiently reveal the
dynamic link of the forecasts and IC error growth is needed.

In recent years, ensemble-based sensitivity analysis (ESA) has been
employed in research to statistically assess forecast sensitivity to the
evolution of the ICs (Ancell and Hakim, 2007; Torn and Hakim, 2008).
This method evaluates the sensitivity of convection forecasts by ap-
plying linear statistics to a set of nonlinear trajectories of the model,
providing an estimate of forecast sensitivity that intrinsically represents
the dynamics of error growth. The appliance of the nonlinear ensemble
prediction in ESA method can overcome the limitation of linear as-
sumption to a certain degree, enabling the sensitivity to provide
meaningful information for understanding the nonlinear error growth
in convection forecast (Bednarczyk and Ancell, 2015). To date, ESA has
been increasingly applied to investigate the sensitivity of meso-small
scale weather events, such as mesoscale vortexes (Li et al., 2014), squall
lines (Hanley et al., 2013), dryline convection (Bednarczyk and Ancell,
2015; Torn and Romine, 2015; Hill et al., 2016; Berman et al., 2017;
Torn et al., 2017) and supercell storms (Yokota et al., 2016; Limpert
and Houston, 2018). The research suggests that the multiscale inter-
active environment has an important and long-lasting impact on the
later convection. The change in strength and position of the sensitive
synoptic systems will modulate the mesoscale thermodynamic condi-
tions, making the convection more intensive or weaker. As demon-
strated by these studies, ESA has great potential to understand the
mechanism of convective initiation and development. In addition, ESA
has also shown promise in the design of observation networks (Xie
et al., 2013; Hitchcock et al., 2016; Limpert and Houston, 2018), where
the impact of the observation locations can be estimated.

Although many studies have successfully applied ESA to convection
storms to address the sensitivity to the pre-convective environment, the
research to the evaluation and application of ESA results in CPEFs are
relatively limited (Wang and Tan, 2010; Wile et al., 2015; Ancell,
2016). Nevertheless, one appealing advantage of the ESA is that it can
foresee the evolution tendency of the forecast metrics with the mod-
ification of weather situations. The revealed sensitivity relationship
provides valuable indications to the forecasts, especially for the con-
vection which is very sensitive to the small changes of meteorological
conditions (Schumacher et al., 2013; Bednarczyk and Ancell, 2015; Hill
et al., 2016; Greybush et al., 2017). Berman et al. (2017) and Torn et al.
(2017) examined the forecast errors of the model state variables within
the sensitive regions, showing that the members forecasting convection
closer to reality have statistically smaller errors. Ancell (2016) chose
ensemble subsets with smallest error in regions with large ensemble
sensitivity to improve subsequent forecast. Therefore the areas with
higher sensitivity values can be more critical for subsequent forecasts if
the sensitivity estimates from ESA are robust and meaningful. The
sensitivity information, which can be conveniently obtained from the
historical ensemble forecasts data, has the potential to provide gui-
dance for the forecast of future weather.

Based on previous research, this study aims to: a) build sensitivity-
based IC perturbations for CPEFs, where the nature of sensitivity pat-
terns over time is considered; b) prove the hypothesis that the sensi-
tivity factors revealed by ESA are significant for subsequent predictions.
To meet the goal of this study, several ensemble experiments are de-
signed for a better understanding of forecast uncertainty due to errors
in the pre-convective environment. The feasibility of the method is
theoretically proved by the experiment, but different settings would be
required for practical application. we introduce the normalized sensi-
tivity patterns from ESA to modulate the perturbation structure based
on the operational IC perturbation techniques, and evaluate the re-
sponse of the forecasts. In this way the perturbation at the sensitive area

is amplified without changing the overall magnitude of the perturba-
tion field. Among the various methods for generating IC perturbations,
the breeding growth mode (BGM) method (Toth and Kalnay, 1993,
1997) is applied due to its advantage of capturing the persistently
growing perturbation associated with the evolving atmospheric flow via
a simple procedure. This research introduces a concept that combines
ESA and the BGM method, namely, sensitivity-based BGM (hereafter
SeBGM). The SeBGM method aims to enhance the contribution of the
fast-growing perturbation structure while promoting the development
of the perturbation in highly sensitive regions. The perturbation fields
are led to evolving in a direction that is more conducive to the forecast.

The rest of this paper is organized as follows. A brief overview of
ESA and the introduction of SeBGM are presented in Section 2. Section
3 provides an overview of the cases and describes the details of the
model implementation and experimental setup. Section 4 evaluates the
results of ESA and the ensemble forecasts with the SeBGM method. The
conclusion and discussion follow in Section 5.

2. Methodology

According to ESA method (Ancell and Hakim, 2007; Torn and
Hakim, 2008), the sensitivity pattern (sp) of a chosen forecast metric J
to a model state variable at earlier time xi is evaluated from an M-
member ensemble (i=1, …,M) via Eq. (1):

= ∂
∂

=J
x

cov
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sp J x
x

( , )
( )i

i
i

i (1)

Where J and xi are the 1 × M ensemble estimates of the respective
quantities. i is the state variable index. Cov denotes the covariance, and
var. is the variance. The sensitivity value is equal to the slope of the line
of the best fit for a linear regression between the ensemble estimates
and the model state variable, which represents the expected change in
response metric J with a change in state variable xi. When calculating
the sensitivity, the values of xi and J are normalized by the ensemble
standard deviation to eliminate the impact of the units, magnitudes and
variances in different variables. By calculating the ensemble-based
sensitivity of the forecast metric at different times, the resulting sensi-
tivity patterns will update with changes in weather conditions, not only
identifying sensitive regions that are crucial to the development of
convection but also indicating the evolution of the initial error over
time.

The BGM method generates perturbation fields that are determined
by the error growth related to the development of atmospheric flow
through the repeated dynamical cycle. It can be achieved via a simple
procedure according to Toth and Kalnay (1993):

a) Adding small arbitrary perturbations to the initial states at a given
time t0.

b) Integrating the model from the perturbed and unperturbed initial
conditions for a time period (t0-t1).

c) Rescaling the difference fields between the perturbed forecasts and
unperturbed forecasts to the same norm (root-mean-square ampli-
tude or rotational kinetic energy) of the initial perturbation, and
adding the rescaled difference fields to the analysis fields at the
corresponding time.

d) Repeating processes (b)–(c) forward in time to generate the final
perturbation fields.

To combine the fast-growing perturbation from the BGM scheme
and sensitivity patterns from the ESA into the final perturbation fields,
the sensitivity-based BGM (SeBGM) method is proposed in this paper.
The distribution of the perturbations is determined by both the dynamic
growth in the breeding cycle and the sensitivity information in ESA.
The perturbations are aimed at the crucial regions with high sensitivity
and fast-growing error. In SeBGM method, the third step of the BGM
procedure described above is modified to facilitate the introduction of
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the sensitivity patterns. The sensitivity pattern is implemented as a
product of the standardized sensitivity field and the difference between
the perturbed forecasts xif and the unperturbed control forecasts xic.
That is:

= ⋅ ⋅ −α β sp x x( )i i i
f

i
c (2)

Consistent with the Eq. (1), i is the variable index. spi is the sensi-
tivity matrix obtained by ESA, β is the rescaling factor determining the
magnitudes of the perturbations. The analysis variable of the IC for the
next breeding period xia is updated via the Eq. (3):

= + αx x(1 )ii
s

i
a (3)

where the xis is the updated analysis variable matrix for the next
breeding cycle. The sensitivity patterns play the role of adjusting the
spatiotemporal distribution of perturbations. The resulting perturbation
fields vary with the update of the sensitivity pattern in each breeding
cycle, which facilitates the perturbations to adapt consistently to the
respective weather conditions. Since the introduction of the sensitivity
patterns have modified the structure of the perturbation fields, instead
of a fixed perturbation amplitude (i.e. the same norm as the initial
perturbation) in the traditional BGM method (Toth and Kalnay, 1993,
1997; Hamill et al., 2000; Wang and Bishop, 2003; Deng et al., 2012),
the parameter β is introduced and set to several different values to test
the sensitivity of SeBGM scheme to the perturbation amplitudes.

3. Experimental design

3.1. Cases description

To determine whether the sensitivity-based IC perturbations can
adapt to different geographic areas and weather situations, the effec-
tiveness of the SeBGM scheme is examined via simulations of two case
studies with different meteorological conditions. Case 1 is associated
with a squall line in North China on 31 July 2013 (hereafter case0731),
which caused strong convective precipitation in Beijing (black box in
Fig. 2a) that occurred during a short period of time. Case 2 is a Meiyu
front rainstorm occurred in Anhui province (The location is shown in
Fig. 2) on 5 July 2013 (hereafter case0705).

For each case, an analysis box is defined to perform ESA for the
convection forecast (black box in Fig. 1). The analysis box is defined
according to the main center of the accumulated precipitation in the
convective events, and the evaluation of the precipitation forecast is
performed in the same analysis box for consistency. The size of the
analysis boxes (43×57 grid points of the inner model domain with the
resolution of 3 km) is the same for each case. The summary of the si-
mulated case and the corresponding experiment setup are shown in
Table.1.

3.2. Model configuration

The two-way nested ensemble are generated based on version 3.8.1
of the Advanced Research version of the Weather Research and
Forecasting (WRF) Model, with 15 km horizontal grid spacing in the
outer domain and 3 km in the nested domain. The domain configuration
for each case is shown in Fig. 2. Each domain has 35 vertical levels and
a model top of 50 hPa. The initial and lateral boundary conditions are
taken from the NCEP Global Forecast System Final Analysis (GFS-FNL)
data. The parameterization schemes used in this experiment are the
Thompson microphysics (Thompson et al., 2008), Rapid Radiative
Transfer Model (RRTM) longwave radiation (Mlawer et al., 1997),
Dudhia shortwave radiation (Dudhia, 1989), Yonsei University (YSU)
boundary layer (Hong et al., 2006), Noah land-surface model (Ek,
2003), and Kain Fritsch cumulus (Kain, 2003). The cumulus para-
meterization is turned off for the nested domain.

Following the settings in previous ESA studies, the ICs of the

ensemble for sensitivity analysis and subsequent experiments are pro-
duced from a 50-member ensemble data assimilation system
(Bednarczyk and Ancell, 2015; Torn and Romine, 2015; Berman et al.,
2017). The ensembles are initialized at 0600UTC 28 July 2013 for
case0731 and 0000UTC 2 July 2013 for case0705 (Table 1), with the
random perturbations based on the NCEP background error covariance
from WRF-3DVAR (Barker et al., 2012) added to the GFS-FNL fields
interpolated to the model outer domain. The Data Assimilation Re-
search Testbed (DART) (Anderson, 2009) ensemble adjustment Kalman
filter (EAKF) (Anderson, 2001) system is applied to carry out the cy-
cling assimilation for 2 days, the horizontal wind, temperature and
moisture observations from radiosonde, surface marine reports, Aircraft
Communications Addressing and Reporting System (ACARS), and sur-
face land synoptic stations are assimilated. To maintain spread in the
ensemble during the cycling phase, spatial and temporal variation of
the adaptive covariance inflation (Anderson, 2001) and covariance lo-
calization are applied with an initial inflation of 1.02 and a standard
deviation of 0.6. Inflation is also damped with a coefficient of 0.9. The
outer domian is cycled every 6 h for a day then downscaled to the
nested domain and the two domains are cycled for another 24 h before
initializing the forecast.

3.3. Experimental setup

The performance of the SeBGM scheme is evaluated in ensemble
forecast experiments in the case studies. The experiment is conducted
with five procedures, that is: (1) Hindcasting experiment initialized by
the 50-member EAKF analyses to simulate the pre-convective en-
vironment; (2) Calculating sensitivity of precipitation to model state
variables from the hindcast results; (3) Introducing sensitivity patterns
by breeding cycle with SeBGM scheme, and setting other experiments
for comparison; (4) Ensemble forecasts of four different experiments;
(5) A schematic overview of the implementation process of the ex-
periment with SeBGM method in this study is depicted in Fig. 3. The
corresponding time periods of each procedure (ti–tn) in the two cases
are shown in Table 1. The four experiments compared in this study is
summarized in Table 2. Each part of the experiment is described in
detail below.

3.3.1. Hindcasting experiment
A 50-member ensemble used to simulate the pre-convection en-

vironment is initialized by the cycling WRF-DART EAKF data assim-
ilation system described in last subsection. This configuration of en-
semble assimilation system follows the settings in previous ESA studies
(Bednarczyk and Ancell, 2015; Torn and Romine, 2015; Torn et al.,
2017) to ensure that the sensitivity analysis results are sufficiently re-
presentative. Conducted before the initialization of the forecast, this
simulation period is referred to as the hindcasting period, as shown in
Table 1 and Fig. 3. The hindcasting experiment is used to represent the
past atmospheric conditions, which is completed near analysis time of
forecast experiments (1 h later than forecast experiments; Table 1).

3.3.2. Sensitivity analysis
The ESA is implemented on the results of the 50-member hindcast.

The sensitivity of the response forecast metric to the state variables is
calculated by Eq. (1) in Section 2. In this study, J in Eq. (1) is the
precipitation averaged in the analysis box (black box in Fig. 1)
within± 1h of forecast initialization, when precipitation in the analysis
box begins to intensify in each case. The variables to be perturbed in
subsequent forecast experiments are determined as the analysis state
variables in ESA (xi in Eq. (1)), including the horizontal wind (u; v),
potential temperature (θ) and water vapor mixing ratio (qv). As shown
in Fig. 3 and Table 1, the ESA is performed backward in intervals of 6 h
based on the 50-member hindcast, and the sensitivity patterns of the
precipitation to the variables (u, v, θ, qv) at four lead times (from 0 h to
18 h prior to the forecast initialization) are generated.

X. Zhang, et al. Atmospheric Research 234 (2020) 104741

3



3.3.3. Breeding
The obtained sensitivity patterns from ESA are introduced to the IC

perturbations by breeding cycle with the SeBGM scheme. The breeding
procedure is summarized in Section 2. Here we detail our settings for
each item in the equations. The randomly selected 10 members of the
50-member EAKF analysis ICs are used as the initial ensemble analyses
for breeding. The members are integrated forward to generate the
perturbed forecasts xif in Eq. (2) in Section 2. At the end of each cycle in
breeding, the perturbations are calculated by the difference of the
perturbed forecasts xif and the control forecast xic by Eq. (2). The
sensitivity patterns are introduced as the sp matrix. The obtained sen-
sitivity-based perturbations are added to the analysis variables xia (u, v,
θ, qv) by Eq. (3) with different magnitudes. To quantify the contribu-
tion of the introduced sensitivity patterns to subsequent forecasts in-
tuitively, in this study we use the ensemble mean from the perturbed
forecasts xif as the analysis variable xia in Eq. (3), such that no addi-
tional observation information is involved in the breeding cycle. The
ICs of the forecast experiments are generated from a breeding period
lasting 24 h (Table 1 and Fig. 3) with a 6 h cycle.

By modifying the β in Eq. (2), we define that the maximum value of
the perturbation at each level is proportional to the standard deviation
(STD) of the corresponding variable at this level. In this way, the
variability of the variables at different times and vertical levels is
considered in the perturbation. Eight ensemble experiments with per-
turbation magnitudes from 0.125 to 1 STD, defined as SENS_1–8, are
designed to examine the forecast response to different perturbation
amplitudes.

To further evaluate the contributions of the SeBGM scheme to the
forecasting performance, two additional groups of experiments
(GAUSS_1–8 and BGM_1–8) are conducted following the same proce-
dures except for the introduction of the sensitivity patterns (sp in Eq.
(2)). To determine whether the sensitivity patterns implemented here
are reasonable and effective to achieve the systematic response in the
model forecast, the GAUSS experiment is introduced, where the sp
matrix in Eq. (2) is replaced by grid point-by-grid point Gaussian noise:

= ⋅ ⋅ −α β gau x x( )i
f

i
c (4)

where the gau denotes the gaussian distribution with a mean of 0 and a
STD of 1, so that the sensitivity patterns are compared with a random
distribution. To assess what improvement the sensitivity-based pertur-
bation yield compared to the raw fast-growing perturbation from the
breeding method, the BGM experiment is performed, where the addi-
tional information added to perturbation is eliminated by setting sp to
1:

= ⋅ −α β x x( )i
f

i
c (5)

Like the SENS experiment, the β in the BGM and GAUSS experi-
ments is also modified to eight different values.

3.3.4. Ensemble forecasts
As shown in Romine et al. (2013), the forecasts from the cycled

ensemble assimilation analysis ICs still suffer from the systematic bias,
and the improvements of the skill in convection-permitting forecasts
only exist in short period (the first 12 h). The possible influence of the

Fig. 1. The observed 12 h accumulated precipitation (mm) during (a) 0600-1800UTC 31 July for case0731 and (b) 0000-1200UTC 5 July for case0705. The black
boxes denote the analysis areas for both cases.

Table 1
The cases in this study and the time setup in the experiments (the ti–tn is corresponding to the same annotations in Fig. 3).

Simulated cases Case0731 Case0705

Data assimilation (ti–t0) 0600UTC 28 July–0600UTC 30 July 0000UTC 2 July–0000UTC 4 July
Hindcasting (t0–t5) 0600UTC 30 July–0700 UTC 31 July 0000UTC 4 July–0100UTC 5 July
Breeding(t0–t4) 0600UTC 30 July–0600UTC 31 July 0000UTC 4 July–0000UTC 5 July
Forecasting(t4–tn) 0600UTC–1800 UTC 31 July 0000UTC–1200UTC 5 July

X. Zhang, et al. Atmospheric Research 234 (2020) 104741

4



systematic bias and errors to the convection forecasts can also be re-
presented in the ESA patterns, which offers helpful information to im-
prove the subsequent forecasts. Therefore, the three groups of ensemble
experiments (SENS, GAUSS and BGM) based on the breeding cycle are
also compared with the forecasts initialized by original WRF-DART
analysis. The forecasts initialized by the same selected 10 members of
the 50-member WRF-DART EAKF analysis ICs are defined as the
CONTROL ensemble experiment (Fig. 3).

The four groups of experiments are conducted and evaluated as
shown in Table 2. For SENS, GAUSS and BGM experiments, the fore-
casts are initialized at the end of the last breeding cycle (The analysis

Fig. 2. Model domain configurations of case0731 (a) and case0705 (b). Red boxes denote the inner domain; black boxes are the analysis areas for both cases.The
approximate locations of the provinces mentioned in Sections 3 and 4 are marked. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Schematic representation of the experiment with SeBGM scheme and the CONTROL experiment for this study, where the sp denotes the sensitivity patterns
introduced to the IC perturbations, the bp denotes the breeding period that produce the fast-growing perturbations by model dynamic cycle, all the swallowtail
arrows indicate the model integration. The corresponding time periods ti-tn in each case are shown in Table 1.

Table 2
The experimental set up in this study.

Experiment Introduced
pattern

10-member
ensemble(s)

Breeding
period

Integrating
period

SENS Sensitivity(sp) 8 24 h 12 h
GAUSS Gaussian

pattern(gau)
8 24 h 12 h

BGM None 8 24 h 12 h
CONTROL None 1 None 36 h
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time is t4 in Fig. 3 and Table 1), and integrated forward for 12 h to
forecast the short-term convective precipitation of the two cases. Each
experiment has eight ensembles with perturbation magnitudes from
0.125 to 1 STD of the corresponding variables, defined as SENS_1–8,
GAUSS_1–8, BGM_1–8 respectively, and each ensemble has 10 mem-
bers. For CONTROL experiment, without the breeding period, one
single ensemble with 10 members is initialized 24 h before and in-
tegrated forward for 36 h (The analysis time is t0 in Fig. 3 and Table 1).
In order to compare the four experiments in the same period, only the
forecast during the 24-36 h lead times of CONTROL experiment is
adopted in the evaluation. The comparison between CONTROL and
SENS experiment aims to illustrate the benefit of sensitivity patterns to
mitigate the forecast bias and errors in the later stage of CONTROL
experiment.

3.4. Verification data and methods

Since the sensitivity analysis is performed for precipitation, the
evaluation of the forecast results focuses on the impact of the SeBGM
scheme on precipitation properties, and the non-precipitation variables
are also considered. As described previously, the verification region of
interest is defined as the same area as the forecast metric region of ESA
(black box in Fig. 1), where the most intense precipitation is located.

3.4.1. Verification data
To assess the performance of the precipitation forecast, the hourly

gridded precipitation data are derived from Chinaâ€™s automatic sta-
tion and CMORPH fusion precipitation analyses datasets as the ob-
servation data in this study. The fusion precipitation analysis data is
available at a spatial resolution of 0.1∘ × 0.1∘ and in time intervals of
1 h and covering the area of 70− 140∘E and 15− 60∘N (Xie and Xiong,
2011).

The ERA5 reanalysis data from the European Centre for Medium-
Range Weather Forecasts (ECWMF) applied in the verification of non-
precipitation variables. The reanalysis data provides hourly analysis of
a large number of atmospheric, land and oceanic climate variables,
covering the Earth on a 30 km grid and atmospheric resolution with 137
levels from the surface up to a height of 80 km. The model outputs of
the variables are interpolated bilinearly onto the space grids of the
reanalysis data.

3.4.2. Verification method
The root-mean-square error (RMSE) of the ensemble mean accu-

mulated precipitation, quantifying the distance between the forecast
and the observation, is calculated first as a general measure of fore-
casting skill. Several skill scores are used to assess the performance of
the precipitation forecasts. The forecast skill scores of the precipitation
are calculated using the neighborhood ensemble probability (NEP)
(Schwartz and Sobash, 2017), which is defined by averaging the en-
semble probability (EP) at all points (Nr) over the radius (r) of influence:

∑=
=

NEP
N

EP1
i j

r k

N

k( , )
1

r

(6)

where the ensemble probability is calculated by averaging the binary
probability (BP) of exceeding a specified precipitation rate threshold (q)
within the ensemble members (N). That is:
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While the skill scores generally increased with increasing influential
radius, we identified a radius of 15 km to be appropriate for comparing

the performance in different experiments within a relatively small
analysis box. The skill scores used here are briefly reviewed below:

The fraction skill scores (FSS) (Roberts and Lean, 2008; Zacharov
and Rezacova, 2009) is calculated for different precipitation thresholds.
First, the NEP of the model forecast and observations (denoted F and O)
are calculated by Eqs. (6)–(8) (N=1 for the observations in Eq. (7)),
and the FSS for an influential radius r and domain size Nx by Ny grid
points is defined based on Eq. (9):
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(9)

The threat score (TS) is used to quantify the fraction of the correctly
detected precipitation in the forecast. A contingency table is con-
structed by splitting the probabilities into two categories according to a
decision threshold (Table 3). The TS can be computed via Eq. (10):

=
+ +

TS a
a b c (10)

To evaluate the different effects of the two noise patterns (sensi-
tivity pattern and the Gaussian distribution) introduced to the pertur-
bation, the Brier Skill Score (BSS), which is calculated using the NEP, is
applied to assess the relative skill of the SENS and GAUSS experiments
compared with that of the CONTROL experiments for each perturbation
magnitude. The Brier Score is defined as:

∑= −
=

BS
N

F O1 ( )r
i

N

r i i( )
1

( )
2

(11)

where Oi is 1 if the observed precipitation exceeds the specific threshold
at i and is 0 otherwise. Then, the BSS is computed by Eq. (12):
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For the verification of the temperature, meridional wind and spe-
cific humidity, the temporally averaged RMSE of the ensemble mean
and the ensemble spread in the analysis box are compared vertically at
different pressure levels.

4. Results

4.1. ESA results

Before performing the sensitivity-based IC perturbations, the sen-
sitivity patterns of the two cases from ESA are analyzed in this section.
The previous research suggests that the significant sensitivity factors
relate to the lower-tropospheric thermodynamic conditions (Torn and
Romine, 2015; Berman et al., 2017; Torn et al., 2017), so that the
sensitivity patterns of temperature and humidity for 800–900 hPa are
detailed here to illustrate how the ESA represent the inherent re-
lationship between the forecast and pre-convective environment.

4.1.1. case0731
The synoptic conditions on 30 July 2013 exhibit features favorable

to the occurrence of convective outbreaks in North China (Fig. 4). The
strong southwest wet flow is divided into two branches. The south
branch transports abundant warm and moist air to the Jianghuai area
(30− 33∘N, 115− 123∘E, Anhui and Jiangsu area in Fig. 2), whereas
the north branch south-west flow extends northeasterly to the North

Table 3
The definition of miss, false alarm, hit and true negative.

Forecast\observed Yes No

F(r) > 0.5 a(hit) b(false alarm)
F(r)≤ 0.5 c(miss) d(true negative)
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China region. A stable low-level cyclone over the Mongolian Plateau
brings cold and dry air, and this event occurs in front of the deep
trough, where the warm advection and the water vapor transportation
are located. There is a significant gradient in θe through Inner Mongolia
and Hebei province (40∘N, 115∘E; Fig. 2).

As shown in Fig. 5a, in the early stage (18 h prior to the forecast),
the negative sensitivity of precipitation to qv is maximized over the
Jianghuai area to the Korean Peninsula, the southern side of the strong
southwest wet flow, while the northern side is characterized by weak
positive sensitivity. This sensitivity structure moves eastward over time
to the south of the Korean peninsula (Fig. 5b), and the dipole signal
becomes more obvious. It is suggested that increased water vapor on
the northern side or decreased water vapor on the southern side of the
southwest wet flow is associated with more precipitation. That is, more
intensive precipitation occurs when the south branch of the southwest
wet flow is farther to the north. A positive and negative symmetric
sensitivity distribution appears along the southwest wet flow 6 h prior
to the forecast (Fig. 5b). The region of the forecast metric (black box in
Fig. 1) is near the axis of this symmetric distribution, indicating that
moving the axis of the north branch of the southwest wet flow to the
northwest is beneficial for increasing the precipitation in this region.
Since the warm and wet air controlled by the southwest flow is moving
southward, such a sensitivity distribution reflects a tendency of slower
movement of the southwest flow, which contributes to the supply and
maintenance of water vapor in Beijing. For this reason, the negative
sensitivity on the south side of the system is usually relatively stronger.
Meanwhile, the sensitivity pattern also exhibits a symmetric structure
near the trough over the Mongolian region, with negative sensitivity at
the back of the trough and positive sensitivity at the front, indicating
that the eastward movement of the trough increases the precipitation.

The sensitivity to the potential temperature shows a north-south
reverse distribution near the analysis area (Fig. 5c, d). Along the north
branch of the southwest wet flow, a region of scattered but extensive
negative sensitivity to the potential temperature is located over the
southern portion of the domain 18 h prior to the forecast and is ac-
companied by stable positive sensitivity to its north (Fig. 5c). The po-
sitive and negative sensitivities both move eastward, and the negative

sensitivity is significantly strengthened at 0000UTC 31 July, 6 h prior to
the forecast (Fig. 5d). The analysis area is at the junction of the positive
and negative sensitivity areas. These sensitivity patterns indicate that
the precipitation will increase as the north side of the analysis region
warms and the south side cools. To the south of the cold center near
northwestern Mongolia is a region of negative sensitivity that extends
towards the south with the strengthening of the cold center, indicating
a contribution of the southward intrusion of cold air to precipitation in
the analysis area.

4.1.2. case0705
The synoptic setup on 4 July 2013 shows typical weather regimes of

the Meiyu front rainstorm (Fig. 6). The central and eastern coasts of
East China are under the edge of a subtropical high, whereas a low-level
southwest jet extends from East China to the south of the Yellow Sea.
Jianghuai region is experiencing conditions of high temperatures and
humidity. Low vortex and shear lines are located in the middle and
lower reaches of the Yangtze River, and the Meiyu front pushes
southward over time.

The precipitation during 2300UTC 4 July - 0100UTC 5 July within
the analysis box is strongly sensitive to the water vapor mixing ratio in
the upstream regions (Fig. 7a) west of the analysis box over Hubei
province (30°N, 112°E; Fig. 2), where the positive sensitivity is max-
imized. As the analysis box is in the south edge of the Meiyu front at this
moment, the strong upstream positive sensitivity represents the con-
tribution of the southwest water vapor transport as well as the south-
ward movement of the Meiyu Front to the precipitation. With the
movement of the Meiyu front, the analysis box is at the center of the
Meiyu front at 1800UTC 4 July (Fig. 6b). The Meiyu front is oriented in
a more northeast-southwest direction, accompanied by the weakening
and the eastward movement of the positive sensitive region (Fig. 7b).
North of the positive sensitivity area is a region of scattered negative
sensitivity at 0600UTC (Fig. 7a) over the north of Shaanxi and Shanxi
provinces (35− 37∘N, 110− 115∘E; Fig. 2) that moves southwestwards
during the next 12 h (Fig. 7b). The coupling of the positive and negative
sensitivity may also be tied to the movements of the shear line and the
Meiyu front, revealing that the southward movement of the shear line

Fig. 4. WRF-DART analysis of equivalent potential temperature (θe, shading; k) and horizontal winds (vector; m ⋅ s−1) at 850 hPa and heights at 500 hPa (contours;
m) for case0731, valid at (a) 18 h (1200UTC 30 July) and (b) 6 h (0000UTC 31 July) prior to the forecast initialized at 0600UTC 31 July. Black boxes denote the
analysis area of ESA.
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and the Meiyu front contributes to the precipitation in the analysis box.
The sensitivity to temperature shows obvious coupled positive and

negative distributions only near the west edge of the simulated domain
over Chongqing and Sichuan provinces (30− 32∘N, 105− 110∘E;
Fig. 2) 18 h prior to the forecast, suggesting a positive impact of the
southward movement of warm air in this area on precipitation (Fig. 7c).
Six hours prior to the forecast, a slender negative sensitivity line ap-
pears along the Yangtze River, and positive sensitivities are distributed
on both sides of the negative line (Fig. 7d). How this distribution may
directly impact the precipitation response remains unclear, but it may
be tied to the Meiyu front. The following perturbation experiments may
provide a clearer understanding of the impact of these sensitive regions
on the precipitation forecast from another perspective.

4.2. Forecast verification

The sensitivity patterns are introduced to the IC perturbations by
the SeBGM method described in Section 2 and the procedures discussed
in Section 3.3. The forecast results of ensembles with different pertur-
bation schemes (SENS, GAUSS, BGM and CONTROL) are estimated in
the following subsection. The verification of the forecast result is per-
formed first for precipitation, and non-precipitation variables such as
temperature, specific humidity and horizontal winds are then con-
sidered in the verification to assess the performance of the ensembles
more comprehensively.

The RMSE of the ensemble mean 12 h accumulated precipitation
with respect to observation data in the analysis box are calculated for

Fig. 5. Sensitivity of the spatially averaged precipitation during 0500-0700UTC 31 July averaged over the analysis area to the 800–900 hPa water vapor mixing ratio
(qv; a, b) and the potential temperature (θ; c, d) for case0731, valid at (a, c) 18 h (1200UTC 30 July) and (b, d) 6 h (0000UTC 31 July) prior to the forecast initialized
at 0600UTC 31 July. The contours are the ensemble mean values for qv(kg ⋅ kg−1, a, b) and potential temperature (k, c, d). Black boxes denote the analysis area of
ESA.
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each ensemble within the four experiments. As shown in Fig. 8, en-
sembles with different experimental setups exhibit different properties.
In both cases, most of the ensembles initialized by the breeding cycle
show smaller RMSE than the CONTROL experiment, indicating that the
bias and errors from the cycling assimilation accumulate with the
model integration and degrade the forecast skill in the later stage of the
forecast (beyond 24 h). The RMSE of the SENS experiments show clear
trends with the change of perturbation magnitudes, for case0731, the
RMSE values gradually increase first and then decrease between the
magnitude of 0.125–0.75 STD, then increase again with the perturba-
tion magnitude. For case0705, the values present a tendency of con-
tinuous decrease between 0.125 and 0.75 STD and then increase as the
perturbation magnitude amplifies. In both cases the values of RMSE
reach a relatively minimum value at a perturbation magnitude of 0.75
STD, although the smallest RMSE in case0731 appears at the magnitude
of 0.125STD. In general, the SENS ensembles show relatively low RMSE
across all perturbation magnitudes and the lowest RMSE at perturba-
tion magnitudes of 0.25–0.75 STD.

The RMSE of the GAUSS and BGM experiments exhibits greater
uncertainty across different perturbation magnitudes. For case0731,
larger perturbation magnitudes in the BGM experiment lead to in-
creased error, while the error is relatively small at magnitudes below
0.5 STD. For case0705, increasing perturbation magnitude in the BGM
experiment is associated with better performance, and greater error
appears at smaller magnitudes. The RMSE distribution across different
magnitudes in the GAUSS experiment is relatively steady for case0731
but fluctuates for case0705. The uncertain characteristics of the GAUSS
and BGM experiments indicate that the fast-growing perturbations ob-
tained by the breeding cycle behave differently under various weather
conditions. The optimal perturbation magnitude is difficult to de-
termine. As pointed out by Hamill et al. (2000) and Wang and Bishop
(2003), the simple bred method doesn't perform well in representing
the case-to-case uncertainties. By contrast, the RMSE of the SENS ex-
periment shows clear regularity with changes in perturbation magni-
tude, suggesting that introducing the sensitivity pattern leads to more
reasonable distributions of the perturbations and systematically im-
proves the forecasting skills. Overall, the SENS experiment exhibits
better performance than that of the other two experiments. A relatively

optimal perturbation magnitude is at approximately 0.75 STD in both
cases.

For an overall comparison of the precipitation forecast skill among
all the ensemble experiments within the four experimental configura-
tions, the fractions skill score (FSS) with a neighborhood size of 15 km
and the threat score (TS) in the analysis box are examined for each
ensemble. As shown in Fig. 9, in both cases, the SENS experiments for
the various perturbation magnitudes are positioned closer to the top
right corner for each precipitation threshold, which means that the FSS
and the TS values in these ensembles are higher than those in the other
ensembles. In addition, most of the SENS ensembles shows higher
scores than the CONTROL ensemble, indicating that the SeBGM scheme
achieves the purpose of correcting the bias and errors in forecasts from
the cycling data assimilation system to a certain degree. Moreover,
ensembles with perturbation magnitudes of 0.5 to 0.75 STD have su-
perior performance at most rain-rate thresholds, especially for larger
rain-rate thresholds in case0705. It is worth noting that although the
ensemble of SENS experiment at magnitude of 0.125STD has the
smallest RMSE in case0731, it shows relatively poor performance
compared with the ensemble at magnitudes of 0.5–0.75STD according
to the skill scores. Consistent with the inference above, the perturbation
magnitudes of about 0.5–0.75STD are relatively optimal for capture the
convective precipitation in this study. The performance of the BGM and
GAUSS experiments varies greatly with the perturbation magnitude,
rain-rate threshold and case, suggesting that the optimal perturbation
magnitude of the two experiments is dependent on the meteorological
conditions. Neither of them outperforms the CONTROL experiment
significantly in skill scores across all the perturbation magnitudes and
rain-rate thresholds. The SENS experiments adapt to the changes in
weather conditions and have robust performance in different cases. In
general, the SENS experiment outperforms the other three experiments
across precipitation thresholds, and the advantage is more pronounced
at larger thresholds (10mm ⋅ h−1).

To evaluate the impact of the additional information introduced in
the SENS and GAUSS experiments, a intercomparison of the precipita-
tion forecast skill at each perturbation magnitude is performed by
calculating the Brier skill scores (BSS) and TS differences of the SENS
and GAUSS experiments relative to the BGM experiment. According to

Fig. 6. As in Fig. 3, but for case0705, valid at (a) 18 h (0600UTC 4 July) and (b) 6 h (1800UTC 4 July) prior to the forecast initialized at 0000UTC 5 July. Black boxes
denote the analysis area of ESA.
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Fig. 10, for both cases, more SENS ensembles are located in the upper
right corner quadrant across the precipitation threshold, where both the
BSS and the TS values are superior to those of BGM experiments at these
perturbation magnitudes. As the threshold increases, the SENS experi-
ments show greater advantages, indicating that the introduction of the
sensitivity pattern has a positive impact on the precipitation forecasts,
especially at larger rain-rate thresholds. By contrast, the GAUSS ex-
periments usually exhibit poor performance relative to the BGM ex-
periments in at least one skill score, suggesting that there is no sig-
nificant added value of introducing the Gaussian distribution into the
perturbation. Similar to the previous results, the SENS experiments with
perturbation magnitudes of 0.5–0.75 STD have relatively better per-
formance at most precipitation thresholds for both cases.

Since the SENS experiment shows lower precipitation forecast error,
especially at the perturbation magnitude of 0.75 STD for both cases, the
forecasts of the non-precipitation variables within SENS_6, GAUSS_6
and BGM_6 experiments at this magnitude along with the CONTROL
experiment are evaluated. As mentioned earlier, convection develop-
ment is more sensitive to the thermodynamic conditions at low-level of
atmosphere according to previous research (Hill et al., 2016; Torn and
Romine, 2015; Torn et al., 2017; Berman et al., 2017). In order to ex-
plore whether the SeBGM scheme reflects such a vertical correspon-
dence in the prediction of variables, we assess the performance of dif-
ferent experiments across the vertical levels. In Fig. 11, the temporally
averaged RMSE and spread of the temperature, meridional wind, and
specific humidity are shown for the two cases. The introduction of

Fig. 7. Sensitivity of the spatially averaged precipitation during 2300 4 July - 0100UTC 5 July averaged over the analysis area to the 800–900 hPa water vapor
mixing ratio (qv; a, b) and the potential temperature (θ; c, d) for case0705, valid at (a, c) 18 h (0600UTC 4 July) and (b, d) 6 h (1800UTC 4 July) prior to the forecast
initialized at 0000UTC 5 July. The contours are the ensemble mean values for qv(kg ⋅ kg−1, a, b) and potential temperature(k, c, d). Black boxes denote the analysis
area of ESA.
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sensitivity-based perturbations usually leads to increased spread and
reduced RMSE at most levels. For case0731, the errors in temperature
and moisture in the SENS_6 ensemble are reduced the most at low levels
near the surface (Fig. 11a, c), whereas the error in meridional wind is
reduced mostly in the middle and high levels (Fig. 11b). The spread of
the SENS_6 experiment is slightly improved relative to that of the
GAUSS_6 and BGM_6 experiments. The CONTROL experiment shows
relatively larger spread at some levels but is accompanied by increased
errors. For case0705, the reduced RMSE and enhanced spread in the
SENS_6 experiment in terms of temperature and specific humidity
usually appear at low and middle levels, except for the increased error
in the specific humidity at 700–800 hPa (Fig. 11f). Moreover, reduction
in the error of the meridional wind is also found mostly in the middle
and high levels (Fig. 11e). It is worth noting that the GAUSS_6 ex-
periment generally outperforms the BGM_6 for case0731 but performs
worse than the BGM_6 for case0705, which agrees with the verification
based on precipitation. The fast-growing perturbations from the
breeding cycle have unstable performance in different cases, whereas
the sensitivity-based perturbations are able to adapt to changes in
weather conditions, producing reasonable forecasts for both precipita-
tion and non-precipitation variables.

4.3. Impact on near-surface simulation

To demonstrate the impact of the introduced sensitivity patterns on
the forecast in detail, the near-surface variables of the inner domain in
the BGM_6 (perturbation magnitude of 0.75 STD) experiment are
compared with the GAUSS_6 and SENS_6 experiments spatially and
temporally in case0731. According to Fig. 12, the simulated precipita-
tion of the BGM_6 experiment moves southeastwards and develops too
fast in the early stage, whereas the strength is insufficient relative to the
observation (Fig. 12d–f). The heavy precipitation in the BGM_6 ex-
periment occurred prior to the observation but collapsed quickly, re-
sulting in the error in the precipitation forecast in the BGM_6 experi-
ment. The same problem lies in the GAUSS_6 experiment, but the
precipitation at the back of the squall line is slightly more intensive
(Fig. 12g–i). The precipitation forecast of the SENS_6 experiment is
closer to the observation, especially reflected in the maintenance of

precipitation behind the squall line in the later stage (Fig. 12j–l). Since
the precipitation is associated with the squall line in this case, accurate
simulation of the convective system is crucial for the precipitation
forecast.

Figs. 13 and 14 highlight some of the systematic differences in
SENS_6 ensemble relative to the BGM_6 ensemble, which explains the
mechanism of how the introduced sensitivity patterns improve the
precipitation forecast. The mean state 2m temperature from the BGM_6
ensemble at 0900UTC features a warm air mass located in the southeast
of the domain and cold air in the northwest (Fig. 13a). The squall line is
at the junction of the warm and cold area and moves southeast over
time. The difference in the 2m temperature between the SENS_6 and
BGM_6 ensembles at 0900UTC shows a significant northeast-southwest
oriented warm line near the squall line, together with strengthening of
the southeast wind component in the same area (Fig. 13c). This warm
line remains until 1200UTC, when the precipitation develops most in-
tensively, and moves towards the southeast (Fig. 13d), indicating that
the edge of the warm air in the SENS_6 experiment is northwest relative
to that in the BGM_6. Therefore, the simulated squall line in the SENS_6
experiment moves slower towards the southeast than it does in BGM_6.
In addition, the cold air behind the squall line is strengthened in the
SENS_6 experiment relative to that in BGM_6 at 0900UTC, resulting in a
more intensive development of the squall line in the SENS_6 experi-
ment. By contrast, although the difference between GAUSS_6 and
BGM_6 also exhibits strengthening of the cold air behind the squall line
(Fig. 13e, f), it shows a relatively random distribution at 0900UTC, with
no systematic difference near the squall line (Fig. 13e). At 1200UTC,
the 2m temperature near the southern part of the squall line in the
GAUSS_6 ensemble shows a significant positive difference with respect
to that of the BGM_6 experiment, while the area near the northern part
of the squall line is significantly colder. Additionally, strengthening of
the southeast and northwest wind components near the southern and
northern parts of the squall line, respectively, is observed in GAUSS_6
(Fig. 13f). The differences in the analysis box remain small over time.

The mean state precipitable water of BGM_6 is concentrated mainly
in the Beijing area and to the southeast, the maximum is along the
position of squall line. Compared to the 2m temperature, the gradient
of precipitable water is not so strong near the squall line. Therefore the

Fig. 8. The root-mean-square error (RMSE) of the ensemble mean 12 h accumulated precipitation (mm) in the analysis box from the BGM (orange), GAUSS (blue),
SENS (red) at different perturbation magnitudes and the CONTROL experiment (black dash line) with respect to the observation data. The precipitation was
accumulated during 0600–1800 UTC on 31 July for case0731 (a) and 0000UTC-1200UTC 5 July for case0705 (b). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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difference in the precipitable water shows less systematicness in both
experiments. Despite this a long drier belt still appears in SENS_6 ex-
periment in front of precipitable water maximum, followed by a wetter
belt (Fig. 14c, d). This structure similar to a dipole signal represents a
westward shift of the moisture maximum in the SENS_6 experiment.
The precipitation belt of the SENS_6 experiment moves more slowly
towards the southeast than it does in the BGM_6 experiment. The wetter
region behind the squall line indicates the greater abundance of pre-
cipitable water in the SENS_6 experiment, leading to more intensive
precipitation, which is closer to the reality. The difference between
GAUSS_6 and BGM_6 shows a more random distribution near the squall
line at 0900UTC (Fig. 14e). There is a significant drier region near the
southwestern part of the squall line while no systematic difference is
observed near the northeastern area at 1200UTC (Fig. 14f). These
features demonstrate the ability of the SeBGM scheme to capture the
crucial system in the forecast and to improve the simulation accuracy of
the systems' movements and developments.

In addition to the difference fields, the ensemble spread of these

near-surface variables is also compared. As shown in Fig. 15, overall the
spread difference between SENS_6 and BGM_6 experiments shows a
slight increase of spread in SENS_6 experiment (Fig. 15a–c and g–i),
while the GAUSS_6 experiment shows a decrease of spread (Fig. 15d–f
and j–l). It is indicated that the introduced sensitivity patterns facilitate
the perturbation fields to capture the uncertainty in the convection
evolution, while the Gaussian distribution is not conducive to represent
this uncertainty. The SENS_6 experiment shows more significant im-
provement of spread near the west side of the squall line at 1200UTC
(Fig. 15g–i). The distribution of the spread difference is similar to the
mean difference in these variables. The dipole structures also appear in
spread difference fields of SENS_6 at 1200UTC, suggesting that the
maximum spread in SENS_6 experiment locates more west than BGM_6.

It is noted that for all variables, the difference fields in the GAUSS_6
experiment show somehow similar characteristics to that in the SENS_6
in some areas, especially near the cold air at the back of the squall line.
This may reflect some limitations of the ESA method. Since the ESA
method relies on linear assumption, when the ensemble members are

Fig. 9. Fractions skill score (FSS) with a neighborhood size of 15 km and threat score (TS) in the analysis box for case0731 (a–c) and case0705 (d–f) for BGM
(orange), GAUSS (blue), SENS (red) and CONTROL(black dot) averaged over the ensemble forecasts for rain-rate thresholds of (a), (c) 0.25; (b), (d) 1.0; (c), (f)10
mm ⋅ h−1. Each symbol denotes a perturbation magnitude in BGM, GAUSS and SENS experiments. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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limited, the sensitivity patterns may also contain some spurious corre-
lations and noise, thus produce effects similar to the Gaussian dis-
tribution. However, for crucial convective systems, the sensitivity pat-
terns still provide indicative information, so that the SENS experiment
has a more obvious improvement on the position forecast of the squall
line.

Overall, the sensitivity-based IC perturbations provide systematic
improvement in the simulation of the near-surface conditions, leading
to more reasonable forecasts of convection development, such that the
accuracy of the precipitation forecast is improved. These results further
prove that the sensitivity relationship revealed by ESA is robust and
indicative. While the sensitivity-based perturbation significantly influ-
ences the simulation of the near-surface thermodynamic features, the
impact on the upper-level conditions is relatively small (not shown).
This result is consistent with the RMSE values of the temperature and
specific humidity, which are reduced mainly at the low levels in this
case, and is also in agreement with previous studies showing that the
convection forecast is more sensitive to low-level thermodynamic

features (Weisman and Rotunno, 2000; Takemi, 2007; Weisman et al.,
2008; Schumacher et al., 2013; Trier et al., 2017).

5. Conclusions

This research focuses on developing and evaluating a method
(SeBGM) for introducing sensitivity-based IC perturbations into CPEFs.
The sensitivity of the forecast metric to the model state variable is
calculated via ESA, and the sensitivity patterns at various lead times are
introduced as the product of the sensitivity value and the fast-growing
perturbations obtained by the breeding cycle. The effects of different
amplitudes of perturbation are examined to explore the range of ap-
propriate magnitudes for this method. The results of ensembles with a
sensitivity-based perturbation scheme (SENS) are compared to those
perturbed without the introduction of a sensitivity pattern (GAUSS,
BGM and CONTROL). All the four experiments are initialized by the
same 10 randomly selected members of the 50-member WRF-DART
EAKF analysis. For SENS, GAUSS, and BGM experiments, the forecasts

Fig. 10. Brier skill scores (BSS) with a neighborhood size of 15 km and difference of threat scores (DTS) in the analysis box for case0731 (a–c) and case0705 (d–f) for
GAUSS (blue) and SENS (red) relative to BGM for the same perturbation magnitude averaged over the ensemble forecasts for rain-rate thresholds of (a), (c) 0.25; (b),
(d) 1.0; (c), (f)10 mm ⋅ h−1. Each symbol denotes a perturbation magnitude. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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are initialized after a breeding period lasting 24 h. In the GAUSS ex-
periments, a Gaussian distribution with a mean of 0 and a standard
deviation of 1 is introduced to the perturbation fields following the
same procedure as that used for SENS. In the BGM experiments, no
additional pattern is implemented in the breeding cycle. For CONTROL
experiment, the forecast is initialized by the original analysis fields
from WRF-DART without breeding period. The performances of all the
four experiments (SENS, GAUSS, BGM and CONTROL) are evaluated in
two convective precipitation cases.

Since sensitivity patterns represent meaningful relationships be-
tween the forecast metric (precipitation in this study) and the en-
vironment at earlier lead times, sensitivity-based perturbations exhibit
reasonable and indicative development with the evolution of the
weather situations. The SENS experiments show improved capability
for capturing short-term convective precipitation in the analysis boxes,
and the forecast skill in terms of precipitation with changes in pertur-
bation magnitude exhibits similar trends in the two different cases. For
both cases, this scheme has an optimal perturbation magnitude of ap-
proximately 0.75 STD, indicating that the sensitivity-based perturba-
tions in this interval of amplitudes are the most suitable for re-
presenting the error evolution in the forecasts in this study. The
CONTROL experiment shows relatively poor performance during the
time period of comparison, which may be due to the bias and errors
from the assimilation cycle accumulating with the model integration
and degrade the skill in the later stage of the forecast. The performances
of the other two experiments (GAUSS and BGM) are unstable at various
perturbation magnitudes and in different cases. This instability may be
due to the fact that the contribution of the dynamic growing error and
the random error component to the forecasts is uncertain and

dependent on the weather regime. The SeBGM scheme adapts to the
two different weather situations, yielding more reasonable response
than do the other perturbation schemes considered in this experiment.

For both cases, the greatest improvement in the forecast skill in the
SENS experiment is achieved at higher rain-rate thresholds, while the
advantage of the SENS experiment is not as substantial at small
thresholds. Since the precipitation forecast at larger thresholds is more
sensitive to the convective system's development, the SeBGM scheme
provides greater ability to represent the uncertainty related to the si-
mulation of convective systems, as indicated by the spatial inter-
comparison of three ensemble experiments in case0731. The SeBGM
scheme improves the precipitation forecast by modifying the near-sur-
face thermodynamic conditions systematically in this case, leading to a
more reasonable simulation of the convective system's development
and movement. The SeBGM scheme has the greatest impact on the
forecast of the thermodynamic conditions at near-surface levels, and
the effect is relatively weak at upper-levels, which also agrees with
previous studies showing that the convection forecast is more sensitive
to lower-tropospheric thermodynamic features.

This study introduced ESA-based perturbations into the ICs via re-
latively simple procedures to explore the feasibility of designing the
sensitivity-based perturbation scheme. The method developed in this
study aims to extract and utilize indicative information from the past
forecast data by sensitivity analysis to improve the structure of the
perturbation field. In our experiment, we set up a 50-member hindcast
initialized by the EAKF cycling assimilation system to represent the
historical forecast results of the past weather situations during t0 to t4.
In the meanwhile, to evaluate the contribution of the introduced sen-
sitivity patterns intuitively, the observation information is not involved

Fig. 11. The spatial and temporal averaged root-mean-square error (RMSE; solid line) and spread (dash line) of the temperature (k; a, d), v-wind component
(mm ⋅ s−1; b, e) and specific humidity (kg ⋅ kg−1; c, f) for BGM_6 (orange), GAUSS_6 (blue), SENS_6 (red) at a perturbation magnitude of 0.75 STD and CONTROL
(black) experiments in analysis boxes for case0731 (a–c) and case0705 (d–f). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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during the breeding period. In practical applications of a real-time
ensemble forecast system, the method proposed in this study can im-
prove the nowcasting of convective events according to the comparison
of SENS and the other two breeding experiments (GAUSS and BGM).
For a forecast initialized at t4, the sensitivity can be directly calculated
from the historical forecast data during t0 to t4. The introduction of the

sensitivity patterns can be combined with the observation data and
assimilation techniques in the continuous cycle during t0 to t4 to im-
prove the quality of the final analysis fields at t4. Besides, when com-
paring the SENS and CONTROL experiment, the method also shows the
potential to improve the extended forecast. That is, for an ensemble
forecast initialized at t0, the forecast in the later stage during t4 to tn can

Fig. 12. Every 3 h averaged precipitation (mm ⋅ h−1) of the inner model domain in case0731 from 0600UTC to 1500UTC 31 July for the observations (a–c), BGM_6
(d–f), GAUSS_6 (g–i) and SENS_6 (j–l).
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be corrected by the SeBGM method, based on sensitivity analysis to the
forecast in the earlier stage during t0 to t4. Overall, we design this
method to propose an idea that applying the sensitivity analysis to
ensemble forecast at earlier lead times can extract indicative informa-
tion to improve the subsequent forecast.

Although the sensitivity-based perturbation scheme indeed provides
systematic improvements in the forecast of convective precipitation in
this research, further implementation of this scheme should consider
optimization of the parameter in the perturbation scheme, such as the

fixed analysis area and response metric, the subjectively determined
perturbation magnitudes and the updating frequency of sensitivity
patterns. In the meanwhile, as discussed in previous research and this
study, ESA still has certain limitations in describing the development of
nonlinear error, and the sampling error in the finite ensemble may
cause the overestimation of the sensitivity (Wile et al., 2015; Hacker
and Lei, 2015). This is an issue that needs to be specially considered in
the practical application of the SeBGM method in different ensemble
systems. It is necessary to combine additional technologies with the

Fig. 13. Ensemble mean 2m temperature (k) and 10m wind vector forecast(m ⋅ s−1) for the BGM_6 forecast (a–b), and mean difference from the BGM_6 for the
SENS_6 (c–d) and GAUSS_6 (e–f) ensemble forecasts valid at 0900UTC (a, c, e) and 1200UTC (b, d, f) on 31 July 2013. The black boxes denote the analysis area.
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sensitivity analysis to improve the ability to represent the uncertainty in
various processes. In addition, this work demonstrates the potential of
the sensitivity-based perturbation scheme in limited cases to represent
different weather regimes. The robustness of the results require further
investigation based on larger datasets.
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